1
|
Islami F, Torre LA and Jemal A: Global
trends of lung cancer mortality and smoking prevalence. Transl Lung
Cancer Res. 4:3272015.PubMed/NCBI
|
2
|
Lin HT, Liu FC, Wu CY, Kuo CF, Lan WC and
Yu HP: Epidemiology and survival outcomes of lung cancer: A
population-based study. Biomed Res Int. 2019:81481562019.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Schabath MB and Cote ML: Cancer progress
and priorities: Lung cancer. Cancer Epidemiol Biomarkers Prev.
28:1563–1579. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Molina JR, Yang P, Cassivi SD, Schild SE
and Adjei AA: Non-small cell lung cancer: Epidemiology, risk
factors, treatment, and survivorship. Mayo Clinic Proceedings.
83:584–594. 2008. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Torre LA, Siegel RL and Jemal A: Lung
cancer statistics. Adv Exp Med Biol. 893:1–19. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xue X, Liu Y, Wang Y, Meng M, Wang K, Zang
X, Zhao S, Sun X, Cui L, Pan L and Liu S: MiR-21 and MiR-155
promote non-small cell lung cancer progression by downregulating
SOCS1, SOCS6, and PTEN. Oncotarget. 7:84508–84519. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ma L, Teruya-Feldstein J and Weinberg RA:
Tumour invasion and metastasis initiated by microRNA-10b in breast
cancer. Nature. 449:682–688. 2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hu Y, Qiu Y, Yagüe E, Ji W, Liu J and
Zhang J: miRNA-205 targets VEGFA and FGF2 and regulates resistance
to chemotherapeutics in breast cancer. Cell Death Dis. 7:e22912016.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Mraz M, Malinova K, Mayer J and
Pospisilova S: MicroRNA isolation and stability in stored RNA
samples. Biochem Biophys Res Commun. 390:1–4. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Glinge C, Clauss S, Boddum K, Jabbari R,
Jabbari J, Risgaard B, Tomsits P, Hildebrand B, Kääb S, Wakili R,
et al: Stability of circulating blood-based microRNAs-pre-analytic
methodological considerations. PLoS One. 12:e01679692017.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Rupaimoole R and Slack FJ: MicroRNA
therapeutics: Towards a new era for the management of cancer and
other diseases. Nat Rev Drug Discov. 16:2032017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bajan S and Hutvagner G: RNA-based
therapeutics: From antisense oligonucleotides to miRNAs. Cells.
9:1372020. View Article : Google Scholar
|
14
|
Fabbri M: MicroRNAs and cancer: Towards a
personalized medicine. Curr Mol Med. 13:751–756. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Florczuk M, Szpechcinski A and
Chorostowska-Wynimko J: miRNAs as biomarkers and therapeutic
targets in non-small cell lung cancer: Current perspectives. Target
Oncol. 12:179–200. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Rayan A, Raiyn J and Falah M: Nature is
the best source of anticancer drugs: Indexing natural products for
their anticancer bioactivity. PLoS One. 12:e01879252017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sharifi-Rad J, Ozleyen A, Boyunegmez Tumer
T, Oluwaseun Adetunji C, El Omari N, Balahbib A, Taheri Y, Bouyahya
A, Martorell M, Martins N and Cho WC: Natural products and
synthetic analogs as a source of antitumor drugs. Biomolecules.
9:6792019. View Article : Google Scholar
|
18
|
Yu SM and Kim SJ: Production of reactive
oxygen species by withaferin A causes loss of type collagen
expression and COX-2 expression through the PI3K/Akt, p38, and JNK
pathways in rabbit articular chondrocytes. Exp Cell Res.
319:2822–2834. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Roy RV, Suman S, Das TP, Luevano JE and
Damodaran C: Withaferin A, a steroidal lactone from Withania
somnifera, induces mitotic catastrophe and growth arrest in
prostate cancer cells. J Nat Prod. 76:1909–1915. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Stan SD, Zeng Y and Singh SV: Ayurvedic
medicine constituent withaferin a causes G2 and M phase cell cycle
arrest in human breast cancer cells. Nutr Cancer. 60 (Suppl
1):S51–S60. 2008. View Article : Google Scholar
|
21
|
Mayola E, Gallerne C, Degli Esposti D,
Esposti DD, Martel C, Pervaiz S, Larue L, Debuire B, Lemoine A,
Brenner C and Lemaire C: Withaferin A induces apoptosis in human
melanoma cells through generation of reactive oxygen species and
down-regulation of Bcl-2. Apoptosis. 16:1014–1027. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fong MY, Jin S, Rane M, Singh RK, Gupta R
and Kakar SS: Withaferin A synergizes the therapeutic effect of
doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS
One. 7:e422652012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cai Y, Sheng ZY, Chen Y and Bai C: Effect
of withaferin A on A549 cellular proliferation and apoptosis in
non-small cell lung cancer. Asian Pac J Cancer Prev. 15:1711–1714.
2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Oh JH, Lee TJ, Kim SH, Choi YH, Lee SH,
Lee JM, Kim YH, Park JW and Kwon TK: Induction of apoptosis by
withaferin A in human leukemia U937 cells through down-regulation
of Akt phosphorylation. Apoptosis. 13:1494–1504. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yu Y, Hamza A, Zhang T, Gu M, Zou P,
Newman B, Li Y, Gunatilaka AA, Zhan CG and Sun D: Withaferin A
targets heat shock protein 90 in pancreatic cancer cells. Biochem
Pharmacol. 79:542–551. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hahm ER, Lee J, Huang Y and Singh SV:
Withaferin a suppresses estrogen receptor-α expression in human
breast cancer cells. Mol Carcinog. 50:614–624. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kyakulaga AH, Aqil F, Munagala R and Gupta
RC: Withaferin a inhibits epithelial to mesenchymal transition in
non-small cell lung cancer cells. Sci Rep. 8:157372018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Grogan PT, Sleder KD, Samadi AK, Zhang H,
Timmermann BN and Cohen MS: Cytotoxicity of withaferin A in
glioblastomas involves induction of an oxidative stress-mediated
heat shock response while altering Akt/mTOR and MAPK signaling
pathways. Invest New Drugs. 31:545–557. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hsu JH, Chang PM, Cheng TS, Kuo YL, Wu AT,
Tran TH, Yang YH, Chen JM, Tsai YC, Chu YS, et al: Identification
of withaferin A as a potential candidate for anti-cancer therapy in
non-small cell lung cancer. Cancers (Basel). 11:10032019.
View Article : Google Scholar
|
30
|
Strober W: Trypan blue exclusion test of
cell viability. Curr Protoc Immunol. 21:A. 3B. 1–A. 3B. 2.
1997.
|
31
|
Ernst O and Zor T: Linearization of the
Bradford protein assay. J Vis Exp. 19182010.
|
32
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Wu CC, Huang KF, Yang TY, Li YL, Wen CL,
Hsu SL and Chen TH: The topoisomerase 1 inhibitor austrobailignan-1
isolated from Koelreuteria Henryi induces a G2/M-phase arrest and
cell death independently of p53 in non-small cell lung cancer
cells. PLoS One. 10:e01320522015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi
G, Shanmugam MK, Chong PP and Looi CY: The E-cadherin and
N-cadherin switch in epithelial-to-mesenchymal transition:
Signaling, therapeutic implications, and challenges. Cells.
8:11182019. View Article : Google Scholar
|
35
|
Liang G, Ding M, Lu H, Cao NA, Niu Y, Gao
Y and Lu J: Metformin upregulates E-cadherin and inhibits B16F10
cell motility, invasion and migration. Oncol Lett. 10:1527–1532.
2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ma L, Reinhardt F, Pan E, Soutschek J,
Bhat B, Marcusson EG, Teruya-Feldstein J, Bell GW and Weinberg RA:
Therapeutic silencing of miR-10b inhibits metastasis in a mouse
mammary tumor model. Nat Biotechnol. 28:341–347. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang R, He Y, Zhang X, Xing B, Sheng Y,
Lu H and Wei Z: Estrogen receptor-regulated microRNAs contribute to
the BCL2/BAX imbalance in endometrial adenocarcinoma and
precancerous lesions. Cancer Lett. 314:155–165. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Oh JH and Kwon TK: Withaferin A inhibits
tumor necrosis factor-α-induced expression of cell adhesion
molecules by inactivation of Akt and NF-kappaB in human pulmonary
epithelial cells. Int Immunopharmacol. 9:614–619. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhou YF, Yu XT, Yao JJ, Xu CW, Huang JH,
Wan Y and Wu MJ: Withaferin A inhibits hepatoma cell proliferation
through induction of apoptosis and cell cycle arrest. Int J Clin
Exp Pathol. 9:12381–12389. 2016.
|
40
|
Chang HW, Li RN, Wang HR, Liu JR, Tang JY,
Huang HW, Chan YH and Yen CY: Withaferin A induces oxidative
stress-mediated apoptosis and DNA damage in oral cancer cells.
Front Physiol. 8:6342017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Lv TZ and Wang GS: Antiproliferation
potential of withaferin A on human osteosarcoma cells via the
inhibition of G2/M checkpoint proteins. Exp Therap Med. 10:323–329.
2015. View Article : Google Scholar
|
42
|
Thaiparambil JT, Bender L, Ganesh T, Kline
E, Patel P, Liu Y, Tighiouart M, Vertino PM, Harvey RD, Garcia A
and Marcus AI: Withaferin A inhibits breast cancer invasion and
metastasis at sub-cytotoxic doses by inducing vimentin disassembly
and serine 56 phosphorylation. Int J Cancer. 129:2744–2755. 2011.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Mello SS and Attardi LD: Deciphering p53
signaling in tumor suppression. Curr Opin Cell Biol. 51:65–72.
2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Braithwaite A and Prives C: p53: More
research and more questions. Cell Death Differ. 13:877–880. 2006.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Wu M, Ye H, Tang Z, Shao C, Lu G, Chen B,
Yang Y, Wang G and Hao H: p53 dynamics orchestrates with binding
affinity to target genes for cell fate decision. Cell Death Dis.
8:e31302017. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yang TY, Teng CLJ, Lin TCC, Chen KC, Hsu
SL and Wu CC: Transcriptional repression of Aurora-A gene by
wild-type p53 through directly binding to its promoter with histone
deacetylase 1 and mSin3a. Int J Cancer. 142:92–108. 2018.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Muller PA and Vousden KH: p53 mutations in
cancer. Nat Cell Biol. 15:2–8. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lu C and El-Deiry WS: Targeting p53 for
enhanced radio-and chemo-sensitivity. Apoptosis. 14:597–606. 2009.
View Article : Google Scholar : PubMed/NCBI
|
49
|
He C, Li L, Guan X, Xiong L and Miao X:
Mutant p53 gain of function and chemoresistance: The role of mutant
p53 in response to clinical chemotherapy. Chemotherapy. 62:43–53.
2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Sheedy P and Medarova Z: The fundamental
role of miR-10b in metastatic cancer. Am J Cancer Res. 8:1674–1688.
2018.PubMed/NCBI
|
51
|
Li X, Xu M, Ding L and Tang J: MiR-27a: A
novel biomarker and potential therapeutic target in tumors. J
Cancer. 10:2836–2848. 2019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Li X, Liu X, Xu W, Zhou P, Gao P, Jiang S,
Lobie PE and Zhu T: c-MYC-regulated miR-23a/24-2/27a cluster
promotes mammary carcinoma cell invasion and hepatic metastasis by
targeting Sprouty2. J Biol Chem. 288:18121–18133. 2013. View Article : Google Scholar : PubMed/NCBI
|
53
|
Riley T, Sontag E, Chen P and Levine A:
Transcriptional control of human p53-regulated genes. Nat Rev Mol
Cell Biol. 9:402–412. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Takahashi T, Nau MM, Chiba I, Birrer MJ,
Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF and Minna JD:
p53: A frequent target for genetic abnormalities in lung cancer.
Science. 246:491–494. 1989. View Article : Google Scholar : PubMed/NCBI
|