|
1
|
Hayes C: Cellular immunotherapies for
cancer. Ir J Med Sci. Jul 1–2020.(Epub ahead of print). doi:
10.1007/s11845-020-02264-w.
|
|
2
|
Alard E, Butnariu AB, Grillo M, Kirkham C,
Zinovkin DA, Newnham L, Macciochi J and Pranjol MZI: Advances in
anti-cancer immunotherapy: Car-T cell, checkpoint inhibitors,
dendritic cell vaccines, and oncolytic viruses, and emerging
cellular and molecular targets. Cancers (Basel). 12:18262020.
View Article : Google Scholar
|
|
3
|
Hemminki O, Dos Santos JM and Hemminki A:
Oncolytic viruses for cancer immunotherapy. J Hematol Oncol.
13:842020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Romero D: Immunotherapy: Oncolytic viruses
prime antitumour immunity. Nat Rev Clin Oncol. 15:1352018.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Engeland CE and Bell JC: Introduction to
oncolytic virotherapy. Methods Mol Biol. 2058:1–6. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kolb EA, Sampson V, Stabley D, Walter A,
Sol-Church K, Cripe T, Hingorani P, Ahern CH, Weigel BJ, Zwiebel J
and Blaney SM: A phase I trial and viral clearance study of
reovirus (Reolysin) in children with relapsed or refractory
extra-cranial solid tumors: A children's oncology group phase I
consortium report. Pediatr Blood Cancer. 62:751–758. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hamid O, Ismail R and Puzanov I:
Intratumoral immunotherapy-update 2019. Oncologist. 25:e423–e438.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Roy DG, Bell JC and Bourgeois-Daigneault
MC: Magnetic targeting of oncolytic VSV-based therapies improves
infection of tumor cells in the presence of virus-specific
neutralizing antibodies in vitro. Biochem Biophys Res Commun.
526:641–646. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Schirrmacher V, van Gool S and Stuecker W:
Breaking therapy resistance: An update on oncolytic newcastle
disease virus for improvements of cancer therapy. Biomedicines.
7:662019. View Article : Google Scholar
|
|
10
|
Mahasa KJ, de Pillis L, Ouifki R, Eladdadi
A, Maini P, Yoon AR and Yun CO: Mesenchymal stem cells used as
carrier cells of oncolytic adenovirus results in enhanced oncolytic
virotherapy. Sci Rep. 10:4252020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hadrys A, Sochanik A, McFadden G and
Jazowiecka-Rakus J: Mesenchymal stem cells as carriers for systemic
delivery of oncolytic viruses. Eur J Pharmacol. 874:1729912020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Naseri Z, Oskuee RK, Forouzandeh-Moghadam
M and Jaafari MR: Delivery of LNA-antimiR-142-3p by mesenchymal
stem cells-derived exosomes to breast cancer stem cells reduces
tumorigenicity. Stem Cell Rev Rep. 16:541–556. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Altaner C and Altanerova U: Mesenchymal
stem cell exosome-mediated prodrug gene therapy for cancer. Methods
Mol Biol. 1895:75–85. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kostadinova M and Mourdjeva M: Potential
of mesenchymal stem cells in anti-cancer therapies. Curr Stem Cell
Res Ther. 15:482–491. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Spaggiari GM, Capobianco A, Abdelrazik H,
Becchetti F, Mingari MC and Moretta L: Mesenchymal stem cells
inhibit natural killer-cell proliferation, cytotoxicity, and
cytokine production: Role of indoleamine 2,3-dioxygenase and
prostaglandin E2. Blood. 111:1327–1333. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y,
Yu XD and Mao N: Human mesenchymal stem cells inhibit
differentiation and function of monocyte-derived dendritic cells.
Blood. 105:4120–4126. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lei J, Jacobus EJ, Taverner WK, Fisher KD,
Hemmi S, West K, Slater L, Lilley F, Brown A, Champion B, et al:
Expression of human CD46 and trans-complementation by murine
adenovirus 1 fails to allow productive infection by a group B
oncolytic adenovirus in murine cancer cells. J Immunother Cancer.
6:552018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Koehler M, Aravamudhan P, Guzman-Cardozo
C, Dumitru AC, Yang J, Gargiulo S, Soumillion P, Dermody TS and
Alsteens D: Glycan-mediated enhancement of reovirus receptor
binding. Nat Commun. 10:44602019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Phillips MB, Stuart JD, Rodriguez Stewart
RM, Berry JT, Mainou BA and Boehme KW: Current understanding of
reovirus oncolysis mechanisms. Oncolytic Virother. 7:53–63. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sakurai F, Inoue S, Kaminade T, Hotani T,
Katayama Y, Hosoyamada E, Terasawa Y, Tachibana M and Mizuguchi H:
Cationic liposome-mediated delivery of reovirus enhances the tumor
cell-killing efficiencies of reovirus in reovirus-resistant tumor
cells. Int J Pharm. 524:238–247. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mahalingam D, Goel S, Aparo S, Patel Arora
S, Noronha N, Tran H, Chakrabarty R, Selvaggi G, Gutierrez A,
Coffey M, et al: A phase II study of pelareorep
(REOLYSIN(R)) in combination with gemcitabine for
patients with advanced pancreatic adenocarcinoma. Cancers (Basel).
10:1602018. View Article : Google Scholar
|
|
22
|
Jonker DJ, Tang PA, Kennecke H, Welch SA,
Cripps MC, Asmis T, Chalchal H, Tomiak A, Lim H, Ko YJ, et al: A
randomized phase II study of FOLFOX6/bevacizumab with or without
pelareorep in patients with metastatic colorectal cancer: IND.210,
a canadian cancer trials group trial. Clin Colorectal Cancer.
17:231–239 e7. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Davola ME and Mossman KL: Oncolytic
viruses: How ‘lytic’ must they be for therapeutic efficacy?
Oncoimmunology. 8:e15815282019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Luo Y, Lin C, Zou Y, Ju F, Ren W, Lin Y,
Wang Y, Huang X, Liu H, Yu Z, et al: Tumor-targeting oncolytic
virus elicits potent immunotherapeutic vaccine responses to tumor
antigens. Oncoimmunology. 9:17261682020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pidelaserra-Marti G and Engeland CE:
Mechanisms of measles virus oncolytic immunotherapy. Cytokine
Growth Factor Rev. 56:28–38. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Pol JG, Bridle BW and Lichty BD: Detection
of tumor antigen-specific T-cell responses after oncolytic
vaccination. Methods Mol Biol. 2058:191–211. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Keshavarz M, Solaymani-Mohammadi F, Miri
SM and Ghaemi A: Oncolytic paramyxoviruses-induced autophagy; a
prudent weapon for cancer therapy. J Biomed Sci. 26:482019.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bommareddy PK, Zloza A, Rabkin SD and
Kaufman HL: Oncolytic virus immunotherapy induces immunogenic cell
death and overcomes STING deficiency in melanoma. Oncoimmunology.
8:15918752019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ma J, Ramachandran M, Jin C, Quijano-Rubio
C, Martikainen M, Yu D and Essand M: Characterization of
virus-mediated immunogenic cancer cell death and the consequences
for oncolytic virus-based immunotherapy of cancer. Cell Death Dis.
11:482020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang X, Shao X, Gu L, Jiang K, Wang S,
Chen J, Fang J, Guo X, Yuan M, Shi J, et al: Targeting STAT3
enhances NDV-induced immunogenic cell death in prostate cancer
cells. J Cell Mol Med. 24:4286–4297. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Shao X, Wang X, Guo X, Jiang K, Ye T, Chen
J, Fang J, Gu L, Wang S, Zhang G, et al: STAT3 contributes to
oncolytic newcastle disease virus-induced immunogenic cell death in
melanoma cells. Front Oncol. 9:4362019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xu Q, Rangaswamy US, Wang W, Robbins SH,
Harper J, Jin H and Cheng X: Evaluation of newcastle disease virus
mediated dendritic cell activation and cross-priming tumor-specific
immune responses ex vivo. Int J Cancer. 146:531–541. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Garg AD and Agostinis P: Cell death and
immunity in cancer: From danger signals to mimicry of pathogen
defense responses. Immunol Rev. 280:126–148. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jiang H and Fueyo J: Healing after death:
Antitumor immunity induced by oncolytic adenoviral therapy.
Oncoimmunology. 3:e9478722014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kepp O, Senovilla L, Vitale I, Vacchelli
E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N,
et al: Consensus guidelines for the detection of immunogenic cell
death. Oncoimmunology. 3:e9556912014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Garg AD, Galluzzi L, Apetoh L, Baert T,
Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R,
Cirone M, et al: Molecular and translational classifications of
DAMPs in immunogenic cell death. Front Immunol. 6:5882015.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Das K, Urbiola C, Spiesschaert B, Mueller
P and Wollmann G: Analysis of immunological treatment effects of
virotherapy in tumor tissue. Methods Mol Biol. 2058:155–177. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Reale A, Vitiello A, Conciatori V, Parolin
C, Calistri A and Palu G: Perspectives on immunotherapy via
oncolytic viruses. Infect Agent Cancer. 14:52019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sobol PT, Boudreau JE, Stephenson K, Wan
Y, Lichty BD and Mossman KL: Adaptive antiviral immunity is a
determinant of the therapeutic success of oncolytic virotherapy.
Mol Ther. 19:335–344. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gujar S, Pol JG, Kim Y, Lee PW and Kroemer
G: Antitumor benefits of antiviral immunity: An underappreciated
aspect of oncolytic virotherapies. Trends Immunol. 39:209–221.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ledford H: Cancer-fighting viruses win
approval. Nature. 526:622–623. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
O'Donoghue C, Doepker MP and Zager JS:
Talimogene laherparepvec: Overview, combination therapy and current
practices. Melanoma Manag. 3:267–272. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sunshine JC, Sosman J, Shetty A and Choi
JN: Successful treatment of in-transit metastatic melanoma in a
renal transplant patient with combination T-VEC/Imiquimod
immunotherapy. J Immunother. 43:149–152. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Masoud SJ, Hu JB, Beasley GM, Stewart JH
IV and Mosca PJ: Efficacy of talimogene laherparepvec (T-VEC)
therapy in patients with in-transit melanoma metastasis decreases
with increasing lesion size. Ann Surg Oncol. 26:4633–4641. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Howard F and Muthana M: Designer
nanocarriers for navigating the systemic delivery of oncolytic
viruses. Nanomedicine (Lond). 15:93–110. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Phan M, Watson MF, Alain T and Diallo JS:
Oncolytic viruses on drugs: Achieving higher therapeutic efficacy.
ACS Infect Dis. 4:1448–1467. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Rosewell Shaw A and Suzuki M: Oncolytic
viruses partner with T-cell therapy for solid tumor treatment.
Front Immunol. 9:21032018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hwang CC, Igase M, Sakurai M, Haraguchi T,
Tani K, Itamoto K, Shimokawa T, Nakaichi M, Nemoto Y, Noguchi S, et
al: Oncolytic reovirus therapy: Pilot study in dogs with
spontaneously occurring tumours. Vet Comp Oncol. 16:229–238. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Mok DZL and Chan KR: The effects of
pre-existing antibodies on live-attenuated viral vaccines. Viruses.
12:5202020. View Article : Google Scholar
|
|
50
|
Harrington K, Freeman DJ, Kelly B, Harper
J and Soria JC: Optimizing oncolytic virotherapy in cancer
treatment. Nat Rev Drug Discov. 18:689–706. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Naji A, Eitoku M, Favier B, Deschaseaux F,
Rouas-Freiss N and Suganuma N: Biological functions of mesenchymal
stem cells and clinical implications. Cell Mol Life Sci.
76:3323–3348. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Volarevic V, Markovic BS, Gazdic M,
Volarevic A, Jovicic N, Arsenijevic N, Armstrong L, Djonov V, Lako
M and Stojkovic M: Ethical and safety issues of stem cell-based
therapy. Int J Med Sci. 15:36–45. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A,
Prockop DJ and Horwitz E: Minimal criteria for defining multipotent
mesenchymal stromal cells. The international society for cellular
therapy position statement. Cytotherapy. 8:315–317. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Salmasi Z, Hashemi M, Mahdipour E, Nourani
H, Abnous K and Ramezani M: Mesenchymal stem cells engineered by
modified polyethylenimine polymer for targeted cancer gene therapy,
in vitro and in vivo. Biotechnol Prog. 36:e30252020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yoon AR, Hong J, Li Y, Shin HC, Lee H, Kim
HS and Yun CO: Mesenchymal stem cell-mediated delivery of an
oncolytic adenovirus enhances antitumor efficacy in hepatocellular
carcinoma. Cancer Res. 79:4503–4514. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Vangala G, Imhoff FM, Squires CML, Cridge
AG and Baird SK: Mesenchymal stem cell homing towards cancer cells
is increased by enzyme activity of cathepsin D. Exp Cell Res.
383:1114942019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kwon S, Yoo KH, Sym SJ and Khang D:
Mesenchymal stem cell therapy assisted by nanotechnology: A
possible combinational treatment for brain tumor and central nerve
regeneration. Int J Nanomedicine. 14:5925–5942. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Thomas JG, Parker Kerrigan BC, Hossain A,
Gumin J, Shinojima N, Nwajei F, Ezhilarasan R, Love P, Sulman EP
and Lang FF: Ionizing radiation augments glioma tropism of
mesenchymal stem cells. J Neurosurg. 128:287–295. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Choi SA, Lee JY, Kwon SE, Wang KC, Phi JH,
Choi JW, Jin X, Lim JY, Kim H and Kim SK: Human adipose
tissue-derived mesenchymal stem cells target brain tumor-initiating
cells. PLoS One. 10:e01292922015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Verdelli C, Vaira V and Corbetta S:
Parathyroid tumor microenvironment. Adv Exp Med Biol. 1226:37–50.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Karagiannis K, Proklou A, Tsitoura E,
Lasithiotaki I, Kalpadaki C, Moraitaki D, Sperelakis I, Kontakis G,
Antoniou KM and Tzanakis N: Impaired mRNA expression of the
migration related chemokine receptor CXCR4 in mesenchymal stem
cells of COPD patients. Int J Inflam. 2017:60894252017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Armakolas A, Dimakakos A, Loukogiannaki C,
Armakolas N, Antonopoulos A, Florou C, Tsioli P, Papageorgiou E,
Alexandrou TP, Stathaki M, et al: IL-6 is associated to IGF-1Ec
upregulation and Ec peptide secretion, from prostate tumors. Mol
Med. 24:62018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lejmi E, Perriraz N, Clement S, Morel P,
Baertschiger R, Christofilopoulos P, Meier R, Bosco D, Buhler LH
and Gonelle-Gispert C: Inflammatory chemokines MIP-1δ and MIP-3α
are involved in the migration of multipotent mesenchymal stromal
cells induced by hepatoma cells. Stem Cells Dev. 24:1223–1235.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Pavon LF, Sibov TT, de Souza AV, da Cruz
EF, Malheiros SM, Cabral FR, de Souza JG, Boufleur P, de Oliveira
DM, de Toledo SR, et al: Tropism of mesenchymal stem cell toward
CD133+ stem cell of glioblastoma in vitro and promote
tumor proliferation in vivo. Stem Cell Res Ther. 9:3102018.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ramirez M, Garcia-Castro J, Melen GJ,
Gonzalez-Murillo A and Franco-Luzon L: Patient-derived mesenchymal
stem cells as delivery vehicles for oncolytic virotherapy: Novel
state-of-the-art technology. Oncolytic Virother. 4:149–155. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kaczorowski A, Hammer K, Liu L, Villhauer
S, Nwaeburu C, Fan P, Zhao Z, Gladkich J, Gross W, Nettelbeck DM
and Herr I: Delivery of improved oncolytic adenoviruses by
mesenchymal stromal cells for elimination of tumorigenic pancreatic
cancer cells. Oncotarget. 7:9046–9059. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Mehler VJ, Burns C and Moore ML: Concise
review: Exploring immunomodulatory features of mesenchymal stromal
cells in humanized mouse models. Stem Cells. 37:298–305. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Gao F, Chiu SM, Motan DA, Zhang Z, Chen L,
Ji HL, Tse HF, Fu QL and Lian Q: Mesenchymal stem cells and
immunomodulation: Current status and future prospects. Cell Death
Dis. 7:e20622016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Abbasi-Kangevari M, Ghamari SH,
Safaeinejad F, Bahrami S and Niknejad H: Potential therapeutic
features of human amniotic mesenchymal stem cells in multiple
sclerosis: Immunomodulation, inflammation suppression, angiogenesis
promotion, oxidative stress inhibition, neurogenesis induction,
MMPs regulation, and remyelination stimulation. Front Immunol.
10:2382019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ma ZJ, Wang YH, Li ZG, Wang Y, Li BY, Kang
HY and Wu XY: Immunosuppressive effect of exosomes from mesenchymal
stromal cells in defined medium on experimental colitis. Int J Stem
Cells. 12:440–448. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Carreras-Planella L, Monguio-Tortajada M,
Borras FE and Franquesa M: Immunomodulatory effect of MSC on B
cells is independent of secreted extracellular vesicles. Front
Immunol. 10:12882019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wilson A, Chee M, Butler P and Boyd AS:
Isolation and characterisation of human adipose-derived stem cells.
Methods Mol Biol. 1899:3–13. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang F, Wang C, Wen X, Chen Y, Mao R, Cui
D, Li L, Liu J, Chen Y, Cheng J and Lu Y: Mesenchymal stem cells
alleviate rat diabetic nephropathy by suppressing CD103+
DCs-mediated CD8+ T cell responses. J Cell Mol Med.
24:5817–5831. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Haddad R and Saldanha-Araujo F: Mechanisms
of T-cell immunosuppression by mesenchymal stromal cells: What do
we know so far? Biomed Res Int. 2014:2168062014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Rozenberg A, Rezk A, Boivin MN, Darlington
PJ, Nyirenda M, Li R, Jalili F, Winer R, Artsy EA, Uccelli A, et
al: Human mesenchymal stem cells impact Th17 and Th1 responses
through a prostaglandin E2 and myeloid-dependent mechanism. Stem
Cells Transl Med. 5:1506–1514. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Khare D, Or R, Resnick I, Barkatz C,
Almogi-Hazan O and Avni B: Mesenchymal stromal cell-derived
exosomes affect mRNA expression and function of B-lymphocytes.
Front Immunol. 9:30532018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Corcione A, Benvenuto F, Ferretti E,
Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi
GL, Pistoia V and Uccelli A: Human mesenchymal stem cells modulate
B-cell functions. Blood. 107:367–372. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Rezaei Kahmini F, Shahgaldi S and Moazzeni
SM: Mesenchymal stem cells alter the frequency and cytokine profile
of natural killer cells in abortion-prone mice. J Cell Physiol.
235:7214–7223. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xu LL, Fu HX, Zhang JM, Feng FE, Wang QM,
Zhu XL, Xue J, Wang CC, Chen Q, Liu X, et al: Impaired function of
bone marrow mesenchymal stem cells from immune thrombocytopenia
patients in inducing regulatory dendritic cell differentiation
through the Notch-1/Jagged-1 signaling pathway. Stem Cells Dev.
26:1648–1661. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Liu Q, Zheng H, Chen X, Peng Y, Huang W,
Li X, Li G, Xia W, Sun Q and Xiang AP: Human mesenchymal stromal
cells enhance the immunomodulatory function of CD8(+)CD28(−)
regulatory T cells. Cell Mol Immunol. 12:708–718. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
El Omar R, Xiong Y, Dostert G, Louis H,
Gentils M, Menu P, Stoltz JF, Velot E and Decot V: Immunomodulation
of endothelial differentiated mesenchymal stromal cells: Impact on
T and NK cells. Immunol Cell Biol. 94:342–356. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Cho KA, Lee JK, Kim YH, Park M, Woo SY and
Ryu KH: Mesenchymal stem cells ameliorate B-cell-mediated immune
responses and increase IL-10-expressing regulatory B cells in an
EBI3-dependent manner. Cell Mol Immunol. 14:895–908. 2017.
View Article : Google Scholar
|
|
83
|
Liu X, Qu X, Chen Y, Liao L, Cheng K, Shao
C, Zenke M, Keating A and Zhao RC: Mesenchymal stem/stromal cells
induce the generation of novel IL-10-dependent regulatory dendritic
cells by SOCS3 activation. J Immunol. 189:1182–1192. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ahmed AU, Rolle CE, Tyler MA, Han Y,
Sengupta S, Wainwright DA, Balyasnikova IV, Ulasov IV and Lesniak
MS: Bone marrow mesenchymal stem cells loaded with an oncolytic
adenovirus suppress the anti-adenoviral immune response in the
cotton rat model. Mol Ther. 18:1846–1856. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Atiya H, Frisbie L, Pressimone C and
Coffman L: Mesenchymal stem cells in the tumor microenvironment.
Adv Exp Med Biol. 1234:31–42. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Cai C, Hou L, Zhang J, Zhao D, Wang Z, Hu
H, He J, Guan W and Ma Y: The inhibitory effect of mesenchymal stem
cells with rAd-NK4 on liver cancer. Appl Biochem Biotechnol.
183:444–459. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Fathi E, Sanaat Z and Farahzadi R:
Mesenchymal stem cells in acute myeloid leukemia: A focus on
mechanisms involved and therapeutic concepts. Blood Res.
54:165–174. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
El-Khadragy MF, Nabil HM, Hassan BN,
Tohamy AA, Waaer HF, Yehia HM, Alharbi AM and Moneim AEA: Bone
marrow cell therapy on 1,2-Dimethylhydrazine (DMH)-induced colon
cancer in rats. Cell Physiol Biochem. 45:1072–1083. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Morales-Molina A, Gambera S, Cejalvo T,
Moreno R, Rodriguez-Milla MA, Perise-Barrios AJ and Garcia-Castro
J: Antitumor virotherapy using syngeneic or allogeneic mesenchymal
stem cell carriers induces systemic immune response and
intratumoral leukocyte infiltration in mice. Cancer Immunol
Immunother. 67:1589–1602. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ruano D, Lopez-Martin JA, Moreno L,
Lassaletta A, Bautista F, Andion M, Hernandez C, Gonzalez-Murillo
A, Melen G, Alemany R, et al: First-in-human, first-in-child trial
of autologous MSCs carrying the oncolytic virus Icovir-5 in
patients with advanced tumors. Mol Ther. 28:1033–1042. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Rincon E, Cejalvo T, Kanojia D, Alfranca
A, Rodriguez-Milla MA, Gil Hoyos RA, Han Y, Zhang L, Alemany R,
Lesniak MS and García-Castro J: Mesenchymal stem cell carriers
enhance antitumor efficacy of oncolytic adenoviruses in an
immunocompetent mouse model. Oncotarget. 8:45415–45431. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Banijamali RS, Soleimanjahi H, Soudi S,
Karimi H, Abdoli A, Seyed Khorrami SM and Zandi K: Kinetics of
oncolytic reovirus T3D replication and growth pattern in
mesenchymal stem cells. Cell J. 22:283–292. 2020.PubMed/NCBI
|
|
93
|
Keshavarz M, Ebrahimzadeh MS, Miri SM,
Dianat-Moghadam H, Ghorbanhosseini SS, Mohebbi SR, Keyvani H and
Ghaemi A: Oncolytic newcastle disease virus delivered by
mesenchymal stem cells-engineered system enhances the therapeutic
effects altering tumor microenvironment. Virol J. 17:642020.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Hai C, Jin YM, Jin WB, Han ZZ, Cui MN,
Piao XZ, Shen XH, Zhang SN and Sun HH: Application of mesenchymal
stem cells as a vehicle to deliver replication-competent adenovirus
for treating malignant glioma. Chin J Cancer. 31:233–240. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Du W, Seah I, Bougazzoul O, Choi G, Meeth
K, Bosenberg MW, Wakimoto H, Fisher D and Shah K: Stem
cell-released oncolytic herpes simplex virus has therapeutic
efficacy in brain metastatic melanomas. Proc Natl Acad Sci USA.
114:E6157–E6165. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ong HT, Federspiel MJ, Guo CM, Ooi LL,
Russell SJ, Peng KW and Hui KM: Systemically delivered measles
virus-infected mesenchymal stem cells can evade host immunity to
inhibit liver cancer growth. J Hepatol. 59:999–1006. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Castleton A, Dey A, Beaton B, Patel B,
Aucher A, Davis DM and Fielding AK: Human mesenchymal stromal cells
deliver systemic oncolytic measles virus to treat acute
lymphoblastic leukemia in the presence of humoral immunity. Blood.
123:1327–1335. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hammer K, Kazcorowski A, Liu L, Behr M,
Schemmer P, Herr I and Nettelbeck DM: Engineered adenoviruses
combine enhanced oncolysis with improved virus production by
mesenchymal stromal carrier cells. Int J Cancer. 137:978–990. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Kazimirsky G, Jiang W, Slavin S, Ziv-Av A
and Brodie C: Mesenchymal stem cells enhance the oncolytic effect
of newcastle disease virus in glioma cells and glioma stem cells
via the secretion of TRAIL. Stem Cell Res Ther. 7:1492016.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Melen GJ, Franco-Luzon L, Ruano D,
Gonzalez-Murillo A, Alfranca A, Casco F, Lassaletta A, Alonso M,
Madero L, Alemany R, et al: Influence of carrier cells on the
clinical outcome of children with neuroblastoma treated with high
dose of oncolytic adenovirus delivered in mesenchymal stem cells.
Cancer Lett. 371:161–170. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Leoni V, Gatta V, Palladini A, Nicoletti
G, Ranieri D, Dall'Ora M, Grosso V, Rossi M, Alviano F, Bonsi L, et
al: Systemic delivery of HER2-retargeted oncolytic-HSV by
mesenchymal stromal cells protects from lung and brain metastases.
Oncotarget. 6:34774–34787. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Hoyos V, Del Bufalo F, Yagyu S, Ando M,
Dotti G, Suzuki M, Bouchier-Hayes L, Alemany R and Brenner MK:
Mesenchymal stromal cells for linked delivery of oncolytic and
apoptotic adenoviruses to non-small-cell lung cancers. Mol Ther.
23:1497–1506. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Franco-Luzon L, Gonzalez-Murillo A,
Alcantara-Sanchez C, Garcia-Garcia L, Tabasi M, Huertas AL, Chesler
L and Ramirez M: Systemic oncolytic adenovirus delivered in
mesenchymal carrier cells modulate tumor infiltrating immune cells
and tumor microenvironment in mice with neuroblastoma. Oncotarget.
11:347–361. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Morales-Molina A, Rodriguez-Milla MA,
Gimenez-Sanchez A, Perise-Barrios AJ and Garcia-Castro J: Cellular
virotherapy increases tumor-infiltrating lymphocytes (TIL) and
decreases their PD-1+ subsets in mouse immunocompetent
models. Cancers (Basel). 12:19202020. View Article : Google Scholar
|
|
105
|
Mader EK, Maeyama Y, Lin Y, Butler GW,
Russell HM, Galanis E, Russell SJ, Dietz AB and Peng KW:
Mesenchymal stem cell carriers protect oncolytic measles viruses
from antibody neutralization in an orthotopic ovarian cancer
therapy model. Clin Cancer Res. 15:7246–7255. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Hakkarainen T, Sarkioja M, Lehenkari P,
Miettinen S, Ylikomi T, Suuronen R, Desmond RA, Kanerva A and
Hemminki A: Human mesenchymal stem cells lack tumor tropism but
enhance the antitumor activity of oncolytic adenoviruses in
orthotopic lung and breast tumors. Hum Gene Ther. 18:627–641. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ocansey DKW, Pei B, Yan Y, Qian H, Zhang
X, Xu W and Mao F: Improved therapeutics of modified mesenchymal
stem cells: An update. J Transl Med. 18:422020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Najafi M, Goradel NH, Farhood B, Salehi E,
Solhjoo S, Toolee H, Kharazinejad E and Mortezaee K: Tumor
microenvironment: Interactions and therapy. J Cell Physiol.
234:5700–5721. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Oh CM, Chon HJ and Kim C: Combination
immunotherapy using oncolytic virus for the treatment of advanced
solid tumors. Int J Mol Sci. 21:77432020. View Article : Google Scholar
|
|
110
|
Sostoa J, Dutoit V and Migliorini D:
Oncolytic viruses as a platform for the treatment of malignant
brain tumors. Int J Mol Sci. 21:74492020. View Article : Google Scholar
|
|
111
|
Sivanandam V, LaRocca CJ, Chen NG, Fong Y
and Warner SG: Oncolytic viruses and immune checkpoint inhibition:
The best of both worlds. Mol Ther Oncolytics. 13:93–106. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Heinio C, Havunen R, Santos J, de Lint K,
Cervera-Carrascon V, Kanerva A and Hemminki A: TNFα and IL2
encoding oncolytic adenovirus activates pathogen and
danger-associated immunological signaling. Cells. 9:7982020.
View Article : Google Scholar
|
|
113
|
Ribas A, Dummer R, Puzanov I, VanderWalde
A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J,
Fernandez E, et al: Oncolytic virotherapy promotes intratumoral T
cell infiltration and improves Anti-PD-1 immunotherapy. Cell.
174:1031–1032. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Sun L, Funchain P, Song JM, Rayman P,
Tannenbaum C, Ko J, McNamara M, Marcela Diaz-Montero C and Gastman
B: Talimogene laherparepvec combined with anti-PD-1 based
immunotherapy for unresectable stage III–IV melanoma: A case
series. J Immunother Cancer. 6:362018. View Article : Google Scholar : PubMed/NCBI
|