|
1
|
Fruman DA, Meyers RE and Cantley LC:
Phosphoinositide kinases. Annu Rev Biochem. 67:481–507. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Katso R, Okkenhaug K, Ahmadi K, White S,
Timms J and Waterfield MD: Cellular function of phosphoinositide
3-kinases: Implications for development, homeostasis, and cancer.
Annu Rev Cell Dev Biol. 17:615–675. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Nobukuni T, Kozma SC and Thomas G: hvps34,
an ancient player, enters a growing game: mTOR Complex1/S6K1
signaling. Curr Opin Cell Biol. 19:135–141. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Dornan GL and Burke JE: Molecular
mechanisms of human disease mediated by oncogenic and primary
immunodeficiency mutations in Class IA phosphoinositide 3-kinases.
Front Immunol. 9:5752018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bader AG, Kang S, Zhao L and Vogt PK:
Oncogenic PI3K deregulates transcription and translation. Nat Rev
Cancer. 5:921–929. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
6
|
Suire S, Coadwell J, Ferguson GJ, Davidson
K, Hawkins P and Stephens L: p84, a new Gbetagamma-activated
regulatory subunit of the type IB phosphoinositide 3-kinase
p110gamma. Curr Biol. 15:566–570. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Voigt P, Dorner MB and Schaefer M:
Characterization of p87PIKAP, a novel regulatory subunit of
phosphoinositide 3-kinase gamma that is highly expressed in heart
and interacts with PDE3B. J Biol Chem. 281:9977–9986. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gulluni F, De Santis MC, Margaria JP,
Martini M and Hirsch E: Class II PI3K functions in cell biology and
disease. Trends Cell Biol. 29:339–359. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Rommel C: Taking PI3Kδ and PI3Kγ one step
ahead: Dual active PI3Kδ/γ inhibitors for the treatment of
immune-mediated inflammatory diseases. Curr Top Microbiol Immunol.
346:279–299. 2010.PubMed/NCBI
|
|
10
|
Mayer IA and Arteaga CL: PIK3CA activating
mutations: A discordant role in early versus advanced
hormone-dependent estrogen receptor-positive breast cancer? J Clin
Oncol. 32:2932–2934. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Martínez-Sáez O, Chic N, Pascual T, Adamo
B, Vidal M, González-Farré B, Sanfeliu E, Schettini F, Conte B,
Brasó-Maristany F, et al: Frequency and spectrum of PIK3CA somatic
mutations in breast cancer. Breast Cancer Res. 22:452020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Stephens LR, Jackson TR and Hawkins PT:
Agonist-stimulated synthesis of
phosphatidylinositol(3,4,5)-trisphosphate: A new intracellular
signalling system? Biochim Biophys Acta. 1179:27–75. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Vanhaesebroeck B, Leevers SJ, Ahmadi K,
Timms J, Katso R, Driscoll PC, Woscholski R, Parker PJ and
Waterfield MD: Synthesis and function of 3-phosphorylated inositol
lipids. Annu Rev Biochem. 70:535–602. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Foster FM, Traer CJ, Abraham SM and Fry
MJ: The phosphoinositide (PI) 3-kinase family. J Cell Sci.
116:3037–3040. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wymann MP, Zvelebil M and Laffargue M:
Phosphoinositide 3-kinase signalling-which way to target? Trends
Pharmacol Sci. 24:366–376. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Oudit GY, Sun H, Kerfant BG, Crackower MA,
Penninger JM and Backx PH: The role of phosphoinositide-3 kinase
and PTEN in cardiovascular physiology and disease. J Mol Cell
Cardiol. 37:449–471. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Maehama T, Taylor GS and Dixon JE: PTEN
and myotubularin: Novel phosphoinositide phosphatases. Annu Rev
Biochem. 70:247–279. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
DiNitto JP, Cronin TC and Lambright DG:
Membrane recognition and targeting by lipid-binding domains. Sci
STKE. 2003:re162003.PubMed/NCBI
|
|
19
|
Miralem T, Lerner-Marmarosh N, Gibbs PE,
Jenkins JL, Heimiller C and Maines MD: Interaction of human
biliverdin reductase with Akt/protein kinase B and
phosphatidylinositol-dependent kinase 1 regulates glycogen synthase
kinase 3 activity: A novel mechanism of Akt activation. FASEB J.
30:2926–2944. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kang SA, O'Neill DJ, Machl AW, Lumpkin CJ,
Galda SN, Sengupta S, Mahoney SJ, Howell JJ, Molz L, Hahm S, et al:
Discovery of small-molecule selective mTORC1 inhibitors via direct
inhibition of glucose transporters. Cell Chem Biol.
26:1203–1213.e13. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hua H, Kong Q, Zhang H, Wang J, Luo T and
Jiang Y: Targeting mTOR for cancer therapy. J Hematol Oncol.
12:712019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jacinto E, Loewith R, Schmidt A, Lin S,
Rüegg MA, Hall A and Hall MN: Mammalian TOR complex 2 controls the
actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol.
6:1122–1128. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jacinto E, Facchinetti V, Liu D, Soto N,
Wei S, Jung SY, Huang Q, Qin J and Su B: SIN1/MIP1 maintains
rictor-mTOR complex integrity and regulates Akt phosphorylation and
substrate specificity. Cell. 127:125–137. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Engelman JA, Luo J and Cantley LC: The
evolution of phosphatidylinositol 3-kinases as regulators of growth
and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Darici S, Alkhaldi H, Horne G, Jørgensen
HG, Marmiroli S and Huang X: Targeting PI3K/Akt/mTOR in AML:
Rationale and clinical evidence. J Clin Med. 9:29342020. View Article : Google Scholar
|
|
26
|
Raza W, Luqman S and Meena A: Prospects of
tangeretin as a modulator of cancer targets/pathways. Pharmacol
Res. 161:1052022020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wen W, Marcinkowski E, Luyimbazi D, Luu T,
Xing Q, Yan J, Wang Y, Wu J, Guo Y, Tully D, et al: Eribulin
synergistically increases anti-tumor activity of an mTOR inhibitor
by inhibiting pAKT/pS6K/pS6 in triple negative breast cancer.
Cells. 8:10102019. View Article : Google Scholar
|
|
28
|
Meng C, Xia Q, Wu H, Huang H, Liu H, Li Y,
Zhang F and Song W: Photobiomodulation with 630-nm LED radiation
inhibits the proliferation of human synoviocyte MH7A cells possibly
via TRPV4/PI3K/AKT/mTOR signaling pathway. Lasers Med Sci.
35:1927–1936. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Verret B, Cortes J, Bachelot T, Andre F
and Arnedos M: Efficacy of PI3K inhibitors in advanced breast
cancer. Ann Oncol. 30 (Suppl):10:x12-x20. 2019. View Article : Google Scholar
|
|
30
|
Liu N, Rowley BR, Bull CO, Schneider C,
Haegebarth A, Schatz CA, Fracasso PR, Wilkie DP, Hentemann M,
Wilhelm SM, et al: BAY 80-6946 is a highly selective intravenous
PI3K inhibitor with potent p110α and p110δ activities in tumor cell
lines and xenograft models. Mol Cancer Ther. 12:2319–2330. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
O'Brien C, Wallin JJ, Sampath D,
GuhaThakurta D, Savage H, Punnoose EA, Guan J, Berry L, Prior WW,
Amler LC, et al: Predictive biomarkers of sensitivity to the
phosphatidylinositol 3′ kinase inhibitor GDC-0941 in breast cancer
preclinical models. Clin Cancer Res. 16:3670–3683. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sarker D, Ang JE, Baird R, Kristeleit R,
Shah K, Moreno V, Clarke PA, Raynaud FI, Levy G, Ware JA, et al:
First-in-human phase I study of pictilisib (GDC-0941), a potent
pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in
patients with advanced solid tumors. Clin Cancer Res. 21:77–86.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Raynaud FI, Eccles SA, Patel S, Alix S,
Box G, Chuckowree I, Folkes A, Gowan S, De Haven Brandon A, Di
Stefano F, et al: Biological properties of potent inhibitors of
class I phosphatidylinositide 3-kinases: from PI-103 through
PI-540, PI-620 to the oral agent GDC-0941. Mol Cancer Ther.
8:1725–1738. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ragon BK, Kantarjian H, Jabbour E, Ravandi
F, Cortes J, Borthakur G, DeBose L, Zeng Z, Schneider H, Pemmaraju
N, et al: Buparlisib, a PI3K inhibitor, demonstrates acceptable
tolerability and preliminary activity in a phase I trial of
patients with advanced leukemias. Am J Hematol. 92:7–11. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Heudel PE, Fabbro M, Roemer-Becuwe C,
Kaminsky MC, Arnaud A, Joly F, Roche-Forestier S, Meunier J, Foa C,
You B, et al: Phase II study of the PI3K inhibitor BKM120 in
patients with advanced or recurrent endometrial carcinoma: A
stratified type I-type II study from the GINECO group. Br J Cancer.
116:303–309. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Matulonis UA, Wulf GM, Barry WT, Birrer M,
Westin SN, Farooq S, Bell-McGuinn KM, Obermayer E, Whalen C,
Spagnoletti T, et al: Phase I dose escalation study of the
PI3kinase pathway inhibitor BKM120 and the oral poly (ADP ribose)
polymerase (PARP) inhibitor olaparib for the treatment of
high-grade serous ovarian and breast cancer. Ann Oncol. 28:512–518.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Bedard PL, Tabernero J, Janku F, Wainberg
ZA, Paz-Ares L, Vansteenkiste J, Van Cutsem E, Pérez-García J,
Stathis A, Britten CD, et al: A phase Ib dose-escalation study of
the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with
the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with
selected advanced solid tumors. Clin Cancer Res. 21:730–738. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Maira SM, Pecchi S, Huang A, Burger M,
Knapp M, Sterker D, Schnell C, Guthy D, Nagel T, Wiesmann M, et al:
Identification and characterization of NVP-BKM120, an orally
available pan-class I PI3-kinase inhibitor. Mol Cancer Ther.
11:317–328. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Tamura K, Kodaira M, Shimizu C, Yonemori
K, Yunokawa M, Shimomura A, Kobayashi T, Nakano K, Tomomatsu J, Ito
Y, et al: Phase I study of taselisib in Japanese patients with
advanced solid tumors or hormone receptor-positive advanced breast
cancer. Cancer Sci. 109:1592–1601. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Juric D, Krop I, Ramanathan RK, Wilson TR,
Ware JA, Sanabria Bohorquez SM, Savage HM, Sampath D, Salphati L,
Lin RS, et al: Phase I dose-escalation study of taselisib, an oral
PI3K inhibitor, in patients with advanced solid tumors. Cancer
Discov. 7:704–715. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Edelman G, Rodon J, Lager J, Castell C,
Jiang J, Van Allen EM, Wagle N, Lindeman NI, Sholl LM and Shapiro
GI: Phase I trial of a tablet formulation of pilaralisib, a
Pan-class I PI3K inhibitor, in patients with advanced solid tumors.
Oncologist. 23:401–e38. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wheler J, Mutch D, Lager J, Castell C, Liu
L, Jiang J and Traynor AM: Phase I dose-escalation study of
pilaralisib (SAR245408, XL147) in combination with paclitaxel and
carboplatin in patients with solid tumors. Oncologist. 22:377–e37.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Abramson V, Supko J, Ballinger T, Cleary
JM, Hilton JF, Tolaney SM, Chau NG, Cho DC, Pearlberg J, Lager J,
et al: Phase Ib study of safety and pharmacokinetics of the PI3K
inhibitor SAR245408 with the HER3-neutralizing human antibody
SAR256212 in patients with solid tumors. Clin Cancer Res.
23:3520–3528. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang Y, Liu J, Qiu Y, Jin M, Chen X, Fan
G, Wang R and Kong D: ZSTK474, a specific class I
phosphatidylinositol 3-kinase inhibitor, induces G1 arrest and
autophagy in human breast cancer MCF-7 cells. Oncotarget.
7:19897–19909. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lockhart AC, Olszanski AJ, Allgren RL,
Yaguchi S, Cohen SJ, Hilton JF, Wang-Gillam A and Shapiro GI:
Abstract B271: A first-in-human phase I study of ZSTK474, an oral
pan-PI3K inhibitor, in patients with advanced solid malignancies.
Mol Cancer Ther. 12:B271. 2013.
|
|
46
|
Hotte SJ, Chi KN, Joshua AM, Tu D,
Macfarlane RJ, Gregg RW, Ruether JD, Basappa NS, Finch D, Salim M,
et al: A phase II study of PX-866 in patients with recurrent or
metastatic castration-resistant prostate cancer: Canadian cancer
trials Group Study IND205. Clin Genitourin Cancer. 17:201–208.e201.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pitz MW, Eisenhauer EA, MacNeil MV,
Thiessen B, Easaw JC, Macdonald DR, Eisenstat DD, Kakumanu AS,
Salim M, Chalchal H, et al: Phase II study of PX-866 in recurrent
glioblastoma. Neuro Oncol. 17:1270–1274. 2015.PubMed/NCBI
|
|
48
|
Zhang N, Caenepeel S, Wang L, Norman M,
Kendall R, Burgess T, Radinsky R, Hughes P and Freeman DJ: Abstract
2797: AMG 511, a potent and selective class I PI3K inhibitor,
demonstrates anti-tumor activity in multiple xenograft models.
Cancer Res. 72:2797. 2012.
|
|
49
|
Fiascarelli A, Merlino G, Capano S, Paoli
A, Bressan A, Bigion M, Scaltrit M, Arribas J, Bernadó Morales C,
Pellacani A, et al: 1938P Characterization of the mechanism of
action and efficacy of MEN1611 (PA799), a novel PI3K inhibitor, in
breast cancer preclinical models. Ann Oncol. 302019.doi:
10.1093/annonc/mdz268.065.
|
|
50
|
Speranza MC, Nowicki MO, Behera P, Cho CF,
Chiocca EA and Lawler SE: BKM-120 (Buparlisib): A
phosphatidyl-inositol-3 kinase inhibitor with anti-invasive
properties in glioblastoma. Sci Rep. 6:201892016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Robert M, Frenel J, Bourbouloux E, Berton
Rigaud D, Patsouris A, Augereau P, Gourmelon C and Campone M:
Efficacy of buparlisib in treating breast cancer. Expert Opin
Pharmacother. 18:2007–2016. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Matulonis U, Wulf GM, Birrer MJ, Westin
SN, Quy P, Bell-McGuinn K, Lasonde B, Whalen C, Aghajanian C, Solit
DB, et al: Phase I study of oral BKM120 and oral olaparib for
high-grade serous ovarian cancer (HGSC) or triple-negative breast
cancer (TNBC). J Clin Oncol. 32:25102014. View Article : Google Scholar
|
|
53
|
Matulonis UA, Wulf G, Barry W, Birrer M,
Birrer M, Westin S, Spagnoletti T, Bell-McGuinn K, Obermayer E,
Whalen C, et al: Abstract CT324: Phase I of oral BKM120 or BYL719
and olaparib for high-grade serous ovarian cancer or
triple-negative breast cancer: Final results of the BKM120 plus
olaparib cohort. Cancer Res. 75:CT3242015.
|
|
54
|
Wang J, Li H, He G, Chu Z, Peng K, Ge Y,
Zhu Q and Xu Y: Discovery of novel dual poly(ADP-ribose)polymerase
and phosphoinositide 3-kinase inhibitors as a promising strategy
for cancer therapy. J Med Chem. 63:122–139. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Owonikoko TK, Harvey RD, Carthon B, Chen
Z, Lewis C, Collins H, Zhang C, Lawson DH, Alese OB, Bilen MA, et
al: A Phase I study of safety, pharmacokinetics, and
pharmacodynamics of concurrent everolimus and buparlisib treatment
in advanced solid tumors. Clin Cancer Res. 26:2497–2505. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bousmail D, Amrein L, Fakhoury JJ, Fakih
HH, Hsu JCC, Panasci L and Sleiman HF: Precision spherical nucleic
acids for delivery of anticancer drugs. Chem Sci. 8:6218–6229.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
de Gooijer M, Zhang P, Buil LCM,
Çitirikkaya CH, Thota N, Beijnen JH and van Tellingen O: Buparlisib
is a brain penetrable pan-PI3K inhibitor. Sci Rep. 8:107842018.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Saura C, Bendell J, Jerusalem G, Su S, Ru
Q, De Buck S, Mills D, Ruquet S, Bosch A, Urruticoechea A, et al:
Phase Ib study of buparlisib plus trastuzumab in patients with
HER2-positive advanced or metastatic breast cancer that has
progressed on Trastuzumab-based therapy. Clin Cancer Res.
20:1935–1945. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bavelloni A, Focaccia E, Piazzi M, Orsini
A, Ramazzotti G, Cocco L, Blalock W and Faenza I: Therapeutic
potential of nvp-bkm120 in human osteosarcomas cells. J Cell
Physiol. 234:10907–10917. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Müller A, Gillissen B, Richter A, Richter
A, Chumduri C, Daniel PT and Scholz CW: Pan-class I PI3-kinase
inhibitor BKM120 induces MEK1/2-dependent mitotic catastrophe in
non-Hodgkin lymphoma leading to apoptosis or polyploidy determined
by Bax/Bak and p53. Cell Death Dis. 9:3842018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhao P, Hall J, Durston M, Voydanoff A,
VanSickle E, Kelly S, Nagulapally AB, Bond J and Saulnier Sholler
G: BKM120 induces apoptosis and inhibits tumor growth in
medulloblastoma. PLoS One. 12:e01799482017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lonetti A, Antunes IL, Chiarini F, Orsini
E, Buontempo F, Ricci F, Tazzari PL, Pagliaro P, Melchionda F,
Pession A, et al: Activity of the pan-class I phosphoinositide
3-kinase inhibitor NVP-BKM120 in T-cell acute lymphoblastic
leukemia. Leukemia. 28:1196–1206. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sun B, Jensen NR, Chung D, Yang M, LaRue
AC, Cheung HW and Wang Q: Synergistic effects of SHP2 and PI3K
pathway inhibitors in GAB2-overexpressing ovarian cancer. Am J
Cancer Res. 9:145–159. 2019.PubMed/NCBI
|
|
64
|
Yu F, Zhao J, Hu Y, Zhou Y, Guo R, Bai J,
Zhang S, Zhang H and Zhang J: The combination of NVP-BKM120 with
trastuzumab or RAD001 synergistically inhibits the growth of breast
cancer stem cells in vivo. Oncol Rep. 36:356–364. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen IC, Hsiao LP, Huang IW, Yu HC, Yeh
LC, Lin CH, Wei-Wu Chen T, Cheng AL and Lu YS:
Phosphatidylinositol-3 kinase inhibitors, buparlisib and alpelisib,
sensitize estrogen receptor-positive breast cancer cells to
tamoxifen. Sci Rep. 7:98422017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Alipour F, Riyahi N, Safaroghli-Azar A,
Sari S, Zandi Z and Bashash D: Inhibition of PI3K pathway using
BKM120 intensified the chemo-sensitivity of breast cancer cells to
arsenic trioxide (ATO). Int J Biochem Cell Biol. 116:1056152019.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Solberg NT, Waaler J, Lund K, Mygland L,
Olsen PA and Krauss S: TANKYRASE inhibition enhances the
antiproliferative effect of PI3K and EGFR inhibition, mutually
affecting β-CATENIN and AKT signaling in colorectal cancer. Mol
Cancer Res. 16:543–553. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yao W, Yue P, Zhang G, Owonikoko TK, Khuri
FR and Sun SY: Enhancing therapeutic efficacy of the MEK inhibitor,
MEK162, by blocking autophagy or inhibiting PI3K/Akt signaling in
human lung cancer cells. Cancer Lett. 364:70–78. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Blanco B, Herrero-Sanchez C,
Rodriguez-Serrano C, Sanchez-Barba M and Del Canizo MC: Comparative
effect of two pan-class I PI3K inhibitors used as anticancer drugs
on human T cell function. Int Immunopharmacol. 28:675–685. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Schimmer AD, Hedley DW, Penn LZ and Minden
MD: Receptor- and mitochondrial-mediated apoptosis in acute
leukemia: A translational view. Blood. 98:3541–3553. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Pereira JK, Machado-Neto JA, Lopes MR,
Morini BC, Traina F, Costa FF, Saad ST and Favaro P: Molecular
effects of the phosphatidylinositol-3-kinase inhibitor NVP-BKM120
on T and B-cell acute lymphoblastic leukaemia. Eur J Cancer.
51:2076–2085. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liu X, Li Q, Huang P, Tong D, Wu H and
Zhang F: EGFR-mediated signaling pathway influences the sensitivity
of oral squamous cell carcinoma to JQ1. J Cell Biochem.
119:8368–8377. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Bian X, Gao J, Luo F, Rui C, Zheng T, Wang
D, Wang Y, Roberts TM, Liu P, Zhao JJ and Cheng H: PTEN deficiency
sensitizes endometrioid endometrial cancer to compound PARP-PI3K
inhibition but not PARP inhibition as monotherapy. Oncogene.
37:341–351. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Philip CA, Laskov I, Beauchamp MC, Marques
M, Amin O, Bitharas J, Kessous R, Kogan L, Baloch T, Gotlieb WH and
Yasmeen A: Inhibition of PI3K-AKT-mTOR pathway sensitizes
endometrial cancer cell lines to PARP inhibitors. BMC Cancer.
17:6382017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Bashash D, Safaroghli-Azar A, Delshad M,
Bayati S, Nooshinfar E and Ghaffari SH: Inhibitor of pan class-I
PI3K induces differentially apoptotic pathways in acute leukemia
cells: Shedding new light on NVP-BKM120 mechanism of action. Int J
Biochem Cell Biol. 79:308–317. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Preyat N and Leo O: Sirtuin deacylases: A
molecular link between metabolism and immunity. J Leukoc Biol.
93:669–680. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Bashash D, Delshad M, Riyahi N,
Safaroghli-Azar A, Pourbagheri-Sigaroodi A and Momeny M: Inhibition
of PI3K signaling pathway enhances the chemosensitivity of APL
cells to ATO: Proposing novel therapeutic potential for BKM120. Eur
J Pharmacol. 841:10–18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Safaroghli-Azar A, Bashash D, Kazemi A,
Pourbagheri-Sigaroodi A and Momeny M: Anticancer effect of pan-PI3K
inhibitor on multiple myeloma cells: Shedding new light on the
mechanisms involved in BKM120 resistance. Eur J Pharmacol.
842:89–98. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang Y, Nie L, Xu K, Fu Y, Zhong J, Gu K
and Zhang L: SIRT6, a novel direct transcriptional target of
FoxO3a, mediates colon cancer therapy. Theranostics. 9:2380–2394.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang S, Niu X, Bao X, Wang Q and Zhang J,
Lu S, Wang Y, Xu L, Wang M and Zhang J: The PI3K inhibitor
buparlisib suppresses osteoclast formation and tumour cell growth
in bone metastasis of lung cancer, as evidenced by multimodality
molecular imaging. Oncol Rep. 41:2636–2646. 2019.PubMed/NCBI
|
|
81
|
Trautmann M, Cyra M, Isfort I, Jeiler B,
Krüger A, Grünewald I, Steinestel K, Altvater B, Rossig C, Hafner
S, et al: Phosphatidylinositol-3-kinase (PI3K)/Akt signaling is
functionally essential in myxoid liposarcoma. Mol Cancer Ther.
18:834–844. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Jin L, Jin MH, Nam AR, Park JE, Bang JH,
Oh DY and Bang YJ: Anti-tumor effects of NVP-BKM120 alone or in
combination with MEK162 in biliary tract cancer. Cancer Lett.
411:162–170. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Parrales A and Iwakuma T: Targeting
oncogenic mutant p53 for cancer therapy. Front Oncol. 5:2882015.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li Z, Xu X, Li Y, Zou K, Zhang Z, Xu X,
Liao Y, Zhao X, Jiang W, Yu W, et al: Synergistic antitumor effect
of BKM120 with Prima-1-met via inhibiting PI3K/AKT/mTOR and
CPSF4/hTERT signaling and reactivating mutant P53. Cell Physiol
Biochem. 45:1772–1786. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Aasen SN, Parajuli H, Hoang T, Feng Z,
Stokke K, Wang J, Roy K, Bjerkvig R, Knappskog S and Thorsen F:
Effective treatment of metastatic melanoma by combining MAPK and
PI3K signaling pathway inhibitors. Int J Mol Sci. 20:42352019.
View Article : Google Scholar
|
|
86
|
Li M, Liang RF, Wang X, Mao Q and Liu YH:
BKM120 sensitizes C6 glioma cells to temozolomide via suppression
of the PI3K/Akt/NF-kappaB/MGMT signaling pathway. Oncol Lett.
14:6597–6603. 2017.PubMed/NCBI
|
|
87
|
De Martino D, Yilmaz E, Orlacchio A,
Ranieri M, Zhao K and Di Cristofano A: PI3K blockage synergizes
with PLK1 inhibition preventing endoreduplication and enhancing
apoptosis in anaplastic thyroid cancer. Cancer Lett. 439:56–65.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sai J, Owens P, Novitskiy SV, Hawkins OE,
Vilgelm AE, Yang J, Sobolik T, Lavender N, Johnson AC, McClain C,
et al: PI3K inhibition reduces mammary tumor growth and facilitates
antitumor immunity and Anti-PD1 responses. Clin Cancer Res.
23:3371–3384. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Anisuzzaman AS, Haque A, Wang D, Rahman
MA, Zhang C, Chen Z, Chen ZG, Shin DM and Amin AR: In vitro and in
vivo synergistic antitumor activity of the combination of BKM120
and erlotinib in head and neck cancer: Mechanism of apoptosis and
resistance. Mol Cancer Ther. 16:729–738. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yun MR, Choi HM, Kang HN, Lee Y, Joo HS,
Kim DH, Kim HR, Hong MH, Yoon SO and Cho BC: ERK-dependent IL-6
autocrine signaling mediates adaptive resistance to pan-PI3K
inhibitor BKM120 in head and neck squamous cell carcinoma.
Oncogene. 37:377–388. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liu X, Wu H, Huang P and Zhang F: JQ1 and
PI3K inhibition synergistically reduce salivary adenoid cystic
carcinoma malignancy by targeting the c-Myc and EGFR signaling
pathways. J Oral Pathol Med. 48:43–51. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Sakakibara K, Tsujioka T, Kida JI,
Kurozumi N, Nakahara T, Suemori SI, Kitanaka A, Arao Y and Tohyama
K: Binimetinib, a novel MEK1/2 inhibitor, exerts anti-leukemic
effects under inactive status of PI3Kinase/Akt pathway. Int J
Hematol. 110:213–227. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang D, Li C, Zhang Y, Wang M, Jiang N,
Xiang L, Li T, Roberts TM, Zhao JJ, Cheng H and Liu P: Combined
inhibition of PI3K and PARP is effective in the treatment of
ovarian cancer cells with wild-type PIK3CA genes. Gynecol Oncol.
142:548–556. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yang L, Yang G, Ding Y, Huang Y, Liu S,
Zhou L, Wei W, Wang J and Hu G: Combined treatment with PI3K
inhibitor BKM120 and PARP inhibitor olaparib is effective in
inhibiting the gastric cancer cells with ARID1A deficiency. Oncol
Rep. 40:479–487. 2018.PubMed/NCBI
|
|
95
|
Qiu Y, Pu T, Guo P, Wei B, Zhang Z, Zhang
H, Zhong X, Zheng H, Chen L, Bu H and Ye F:
ALDH+/CD44+ cells in breast cancer are
associated with worse prognosis and poor clinical outcome. Exp Mol
Pathol. 100:145–150. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wu L, Meng F, Dong L, Block CJ, Mitchell
AV, Wu J, Jang H, Chen W, Polin L, Yang Q, et al: Disulfiram and
BKM120 in combination with chemotherapy impede tumor progression
and delay tumor recurrence in tumor initiating cell-rich TNBC. Sci
Rep. 9:2362019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhao H, Yang Q, Hu Y and Zhang J:
Antitumor effects and mechanisms of olaparib in combination with
carboplatin and BKM120 on human triple-negative breast cancer
cells. Oncol Rep. 40:3223–3234. 2018.PubMed/NCBI
|
|
98
|
Yan G, Ru Y, Wu K, Yan F, Wang Q, Wang J,
Pan T, Zhang M, Han H, Li X and Zou L: GOLM1 promotes prostate
cancer progression through activating PI3K-AKT-mTOR signaling.
Prostate. 78:166–177. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Varambally S, Laxman B, Mehra R, Cao Q,
Dhanasekaran SM, Tomlins SA, Granger J, Vellaichamy A, Sreekumar A,
Yu J, et al: Golgi protein GOLM1 is a tissue and urine biomarker of
prostate cancer. Neoplasia. 10:1285–1294. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Foster KA, Jane EP, Premkumar DR, Morales
A and Pollack IF: NVP-BKM120 potentiates apoptosis in tumor
necrosis factor-related apoptosis-inducing ligand-resistant glioma
cell lines via upregulation of Noxa and death receptor 5. Int J
Oncol. 47:506–516. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Radovich M, Solzak JP, Hancock BA, Conces
ML, Atale R, Porter RF, Zhu J, Glasscock J, Kesler KA, Badve SS, et
al: A large microRNA cluster on chromosome 19 is a transcriptional
hallmark of WHO type A and AB thymomas. Br J Cancer. 114:477–484.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bukum N, Novotna E, Morell A, Hofman J and
Wsol V: Buparlisib is a novel inhibitor of daunorubicin reduction
mediated by aldo-keto reductase 1C3. Chem Biol Interact.
302:101–107. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Hamid AR, Pfeiffer MJ, Verhaegh GW,
Schaafsma E, Brandt A, Sweep FC, Sedelaar JP and Schalken JA:
Aldo-keto reductase family 1 member C3 (AKR1C3) is a biomarker and
therapeutic target for castration-resistant prostate cancer. Mol
Med. 18:1449–1455. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Jiang ZB, Huang J, Xie C, Li X, Liu L, He
J, Pan H, Huang L, Fan XX, Yao XJ, et al: Combined use of PI3K and
MEK inhibitors synergistically inhibits lung cancer with EGFR and
KRAS mutations. Oncol Rep. 36:365–375. 2016. View Article : Google Scholar : PubMed/NCBI
|