|
1
|
Arber DA, Orazi A, Hasserjian R, Thiele J,
Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW:
The 2016 revision to the World Health Organization classification
of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Geyer JT: Myeloid neoplasms with germline
predisposition. Pathobiology. 86:53–61. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
McReynolds LJ, Yang Y, Yuen Wong H, Tang
J, Zhang Y, Mulé MP, Daub J, Palmer C, Foruraghi L, Liu Q, et al:
MDS-associated mutations in germline GATA2 mutated patients with
hematologic manifestations. Leuk Res. 76:70–75. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wen XM, Hu JB, Yang J, Qian W, Yao DM,
Deng ZQ, Zhang YY, Zhu XW, Guo H, Lin J and Qian J: CEBPA
methylation and mutation in myelodysplastic syndrome. Med Oncol.
32:1922015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Tawana K, Wang J, Renneville A, Bödör C,
Hills R, Loveday C, Savic A, Van Delft FW, Treleaven J, Georgiades
P, et al: Disease evolution and outcomes in familial AML with
germline CEBPA mutations. Blood. 126:1214–1223. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Smith ML, Cavenagh JD, Lister TA and
Fitzgibbon J: Mutation of CEBPA in familial acute myeloid leukemia.
N Engl J Med. 351:2403–2407. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Cammenga J, Mulloy JC, Berguido FJ,
MacGrogan D, Viale A and Nimer SD: Induction of C/EBPalpha activity
alters gene expression and differentiation of human CD34+ cells.
Blood. 101:2206–2214. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus
ML, Dayaram T, Owens BM, Shigematsu H, Levantini E, Huettner CS,
Lekstrom-Himes JA, et al: Enhancement of hematopoietic stem cell
repopulating capacity and self-renewal in the absence of the
transcription factor C/EBP alpha. Immunity. 21:853–863. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Schwieger M, Löhler J, Fischer M, Herwig
U, Tenen DG and Stocking C: A dominant-negative mutant of
C/EBPalpha, associated with acute myeloid leukemias, inhibits
differentiation of myeloid and erythroid progenitors of man but not
mouse. Blood. 103:2744–2752. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sellick GS, Spendlove HE, Catovsky D,
Pritchard-Jones K and Houlston RS: Further evidence that germline
CEBPA mutations cause dominant inheritance of acute myeloid
leukaemia. Leukemia. 19:1276–1278. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nanri T, Uike N, Kawakita T, Iwanaga E,
Mitsuya H and Asou N: A family harboring a germ-line N-terminal
C/EBPalpha mutation and development of acute myeloid leukemia with
an additional somatic C-terminal C/EBPalpha mutation. Genes
Chromosomes Cancer. 49:237–241. 2010.PubMed/NCBI
|
|
12
|
Pabst T, Eyholzer M, Haefliger S, Schardt
J and Mueller BU: Somatic CEBPA mutations are a frequent second
event in families with germline CEBPA mutations and familial acute
myeloid leukemia. J Clin Oncol. 26:5088–5093. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Renneville A, Mialou V, Philippe N,
Kagialis-Girard S, Biggio V, Zabot MT, Thomas X, Bertrand Y and
Preudhomme C: Another pedigree with familial acute myeloid leukemia
and germline CEBPA mutation. Leukemia. 23:804–806. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yan B, Ng C, Moshi G, Ban K, Lee PL, Seah
E, Chiu L, Koay ES, Liu TC, Ng CH, et al: Myelodysplastic features
in a patient with germline CEBPA-mutant acute myeloid leukaemia. J
Clin Pathol. 69:652–654. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cheah JJC, Hahn CN, Hiwase DK, Scott HS
and Brown AL: Myeloid neoplasms with germline DDX41 mutation. Int J
Hematol. 106:163–174. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Jiang Y, Zhu Y, Qiu W, Liu YJ, Cheng G,
Liu ZJ and Ouyang S: Structural and functional analyses of human
DDX41 DEAD domain. Protein Cell. 8:72–76. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Polprasert C, Schulze I, Sekeres MA,
Makishima H, Przychodzen B, Hosono N, Singh J, Padgett RA, Gu X,
Phillips JG, et al: Inherited and somatic defects in DDX41 in
myeloid neoplasms. Cancer Cell. 27:658–670. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lewinsohn M, Brown AL, Weinel LM, Phung C,
Rafidi G, Lee MK, Schreiber AW, Feng J, Babic M, Chong CE, et al:
Novel germ line DDX41 mutations define families with a lower age of
MDS/AML onset and lymphoid malignancies. Blood. 127:1017–1023.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cardoso SR, Ryan G, Walne AJ, Ellison A,
Lowe R, Tummala H, Rio-Machin A, Collopy L, Al Seraihi A, Wallis Y,
et al: Germline heterozygous DDX41 variants in a subset of familial
myelodysplasia and acute myeloid leukemia. Leukemia. 30:2083–2086.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li R, Sobreira N, Witmer PD, Pratz KW and
Braunstein EM: Two novel germline DDX41 mutations in a family with
inherited myelodysplasia/acute myeloid leukemia. Haematologica.
101:e228–e231. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Al-Harbi S, Aljurf M, Mohty M, Almohareb F
and Ahmed SOA: An update on the molecular pathogenesis and
potential therapeutic targeting of AML with
t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv. 4:229–238. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Osato M, Asou N, Abdalla E, Hoshino K,
Yamasaki H, Okubo T, Suzushima H, Takatsuki K, Kanno T, Shigesada K
and Ito Y: Biallelic and heterozygous point mutations in the runt
domain of the AML1/PEBP2alphaB gene associated with myeloblastic
leukemias. Blood. 93:1817–1824. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ismael O, Shimada A, Hama A, Elshazley M,
Muramatsu H, Goto A, Sakaguchi H, Tanaka M, Takahashi Y, Yinyan X,
et al: De novo childhood myelodysplastic/myeloproliferative disease
with unique molecular characteristics. Brit J Haematol.
158:129–137. 2012. View Article : Google Scholar
|
|
24
|
Owen CJ, Toze CL, Koochin A, Forrest DL,
Smith CA, Stevens JM, Jackson SC, Poon M, Sinclair GD, Leber B, et
al: Five new pedigrees with inherited RUNX1 mutations causing
familial platelet disorder with propensity to myeloid malignancy.
Blood. 112:4639–4645. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Cavalcante de Andrade Silva M, Krepischi
ACV, Kulikowski LD, Zanardo EA, Nardinelli L, Leal AM, Costa SS,
Muto NH, Rocha V and Velloso EDRP: Deletion of RUNX1 exons 1 and 2
associated with familial platelet disorder with propensity to acute
myeloid leukemia. Cancer Genet. 222-223:32–37. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Harada Y and Harada H: Molecular
mechanisms that produce secondary MDS/AML by RUNX1/AML1 point
mutations. J Cell Biochem. 112:425–432. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Galera P, Dulau-Florea A and Calvo KR:
Inherited thrombocytopenia and platelet disorders with germline
predisposition to myeloid neoplasia. Int J Lab Hematol. 41 (Suppl
1):S131–S141. 2019. View Article : Google Scholar
|
|
28
|
Ding LW, Ikezoe T, Tan KT, Mori M,
Mayakonda A, Chien W, Lin DC, Jiang YY, Lill M, Yang H, et al:
Mutational profiling of a MonoMAC syndrome family with GATA2
deficiency. Leukemia. 31:244–245. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
An WB, Liu C, Wan Y, Chen XY, Guo Y, Chen
XJ, Yang WY, Chen YM, Zhang YC and Zhu XF: Clinical and molecular
characteristics of GATA2 related pediatric primary myelodysplastic
syndrome. Zhonghua Xue Ye Xue Za Zhi. 40:477–483. 2019.(In
Chinese). PubMed/NCBI
|
|
30
|
Wang X, Muramatsu H, Okuno Y, Sakaguchi H,
Yoshida K, Kawashima N, Xu Y, Shiraishi Y, Chiba K, Tanaka H, et
al: GATA2 and secondary mutations in familial myelodysplastic
syndromes and pediatric myeloid malignancies. Haematologica.
100:e398–e401. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wlodarski MW, Hirabayashi S, Pastor V,
Starý J, Hasle H, Masetti R, Dworzak M, Schmugge M, van den
Heuvel-Eibrink M, Ussowicz M, et al: Prevalence, clinical
characteristics, and prognosis of GATA2-related myelodysplastic
syndromes in children and adolescents. Blood. 127:1387–1397, 1518.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bödör C, Renneville A, Smith M, Charazac
A, Iqbal S, Etancelin P, Cavenagh J, Barnett MJ, Kramarzová K,
Krishnan B, et al: Germ-line GATA2 p.THR354MET mutation in familial
myelodysplastic syndrome with acquired monosomy 7 and ASXL1
mutation demonstrating rapid onset and poor survival.
Haematologica. 97:890–894. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Pasquet M, Bellanné-Chantelot C, Tavitian
S, Prade N, Beaupain B, Larochelle O, Petit A, Rohrlich P, Ferrand
C, Van Den Neste E, et al: High frequency of GATA2 mutations in
patients with mild chronic neutropenia evolving to MonoMac
syndrome, myelodysplasia, and acute myeloid leukemia. Blood.
121:822–829. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hahn CN, Brautigan PJ, Chong CE, Janssan
A, Venugopal P, Lee Y, Tims AE, Horwitz MS, Klingler-Hoffmann M and
Scott HS: Characterisation of a compound in-cis GATA2 germline
mutation in a pedigree presenting with myelodysplastic
syndrome/acute myeloid leukemia with concurrent thrombocytopenia.
Leukemia. 29:1795–1797. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kralovics R, Passamonti F, Buser AS, Teo
S, Tiedt R, Passweg JR, Tichelli A, Cazzola M and Skoda RC: A
gain-of-function mutation of JAK2 in myeloproliferative disorders.
N Engl J Med. 352:1779–1790. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Engle EK, Fisher DA, Miller CA, McLellan
MD, Fulton RS, Moore DM, Wilson RK, Ley TJ and Oh ST: Clonal
evolution revealed by whole genome sequencing in a case of primary
myelofibrosis transformed to secondary acute myeloid leukemia.
Leukemia. 29:869–876. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yoshimitsu M, Hachiman M, Uchida Y, Arima
N, Arai A, Kamada Y, Shide K, Ito M, Shimoda K and Ishitsuka K:
Essential thrombocytosis attributed to JAK2-T875N germline
mutation. Int J Hematol. 110:584–590. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Marty C, Saint-Martin C, Pecquet C,
Grosjean S, Saliba J, Mouton C, Leroy E, Harutyunyan AS, Abgrall
JF, Favier R, et al: Germ-line JAK2 mutations in the kinase domain
are responsible for hereditary thrombocytosis and are resistant to
JAK2 and HSP90 inhibitors. Blood. 123:1372–1383. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Etheridge SL, Cosgrove ME, Sangkhae V,
Corbo LM, Roh ME, Seeliger MA, Chan EL and Hitchcock IS: A novel
activating, germline JAK2 mutation, JAK2R564Q, causes familial
essential thrombocytosis. Blood. 123:1059–1068. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Poggi M, Canault M, Favier M, Turro E,
Saultier P, Ghalloussi D, Baccini V, Vidal L, Mezzapesa A,
Chelghoum N, et al: Germline variants in ETV6 underlie reduced
platelet formation, platelet dysfunction and increased levels of
circulating CD34+ progenitors. Haematologica. 102:282–294. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Melazzini F, Palombo F, Balduini A, De
Rocco D, Marconi C, Noris P, Gnan C, Pippucci T, Bozzi V,
Faleschini M, et al: Clinical and pathogenic features of
ETV6-related thrombocytopenia with predisposition to acute
lymphoblastic leukemia. Haematologica. 101:1333–1342. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Moriyama T, Metzger ML, Wu G, Nishii R,
Qian M, Devidas M, Yang W, Cheng C, Cao X, Quinn E, et al: Germline
genetic variation in ETV6 and risk of childhood acute lymphoblastic
leukaemia: A systematic genetic study. Lancet Oncol. 16:1659–1666.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang MY, Churpek JE, Keel SB, Walsh T,
Lee MK, Loeb KR, Gulsuner S, Pritchard CC, Sanchez-Bonilla M,
Delrow JJ, et al: Germline ETV6 mutations in familial
thrombocytopenia and hematologic malignancy. Nat Genet. 47:180–185.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Topka S, Vijai J, Walsh MF, Jacobs L,
Maria A, Villano D, Gaddam P, Wu G, McGee RB, Quinn E, et al:
Germline ETV6 mutations confer susceptibility to acute
lymphoblastic leukemia and thrombocytopenia. PLoS Genet.
11:e10052622015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Noetzli L, Lo RW, Lee-Sherick AB,
Callaghan M, Noris P, Savoia A, Rajpurkar M, Jones K, Gowan K,
Balduini C, et al: Germline mutations in ETV6 are associated with
thrombocytopenia, red cell macrocytosis and predisposition to
lymphoblastic leukemia. Nat Genet. 47:535–538. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Oh ST, Simonds EF, Jones C, Hale MB,
Goltsev Y, Gibbs KD Jr, Merker JD, Zehnder JL, Nolan GP and Gotlib
J: Novel mutations in the inhibitory adaptor protein LNK drive
JAK-STAT signaling in patients with myeloproliferative neoplasms.
Blood. 116:988–992. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Maslah N, Cassinat B, Verger E, Kiladjian
JJ and Velazquez L: The role of LNK/SH2B3 genetic alterations in
myeloproliferative neoplasms and other hematological disorders.
Leukemia. 31:1661–1670. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yano M, Imamura T, Asai D, Deguchi T,
Hashii Y, Endo M, Sato A, Kawasaki H, Kosaka Y, Kato K, et al:
Clinical significance of SH2B3 (LNK) expression in paediatric
B-cell precursor acute lymphoblastic leukaemia. Br J Haematol.
183:327–330. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
McMullin MF and Cario H: LNK mutations and
myeloproliferative disorders. Am J Hematol. 91:248–251. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Luque Paz D, Boyer F, Beucher A, Bouvier
A, Jouanneau-Courville R, Guardiola P, Lambert D, Delneste Y,
Hunault M, Blanchet O and Ugo V: Concomitant CALR and LNK mutations
leading to essential thrombocythemia with erythrocytosis. Blood
Cells Mol Dis. 71:75–76. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Spolverini A, Pieri L, Guglielmelli P,
Pancrazzi A, Fanelli T, Paoli C, Bosi A, Nichele I, Ruggeri M and
Vannucchi AM: Infrequent occurrence of mutations in the PH domain
of LNK in patients with JAK2 mutation-negative ‘idiopathic’
erythrocytosis. Haematologica. 98:e101–e102. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Loscocco GG, Mannarelli C, Pacilli A,
Fanelli T, Rotunno G, Gesullo F, Corbizi-Fattori G, Vannucchi AM
and Guglielmelli P: Germline transmission of LNKE208Q variant in a
family with myeloproliferative neoplasms. Am J Hematol.
91:E3562016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rumi E, Harutyunyan AS, Pietra D, Feenstra
JD, Cavalloni C, Roncoroni E, Casetti I, Bellini M, Milanesi C,
Renna MC, et al: LNK mutations in familial myeloproliferative
neoplasms. Blood. 128:144–145. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Oh ST, Zahn JM, Jones CD, Zhang B, Loh ML,
Kantarjian H, Simonds EF, Bruggner RV, Abidi P, Natsoulis G, et al:
Identification of novel LNK mutations in patients with chronic
myeloproliferative neoplasms and related disorders. Blood.
116:3152010. View Article : Google Scholar
|
|
55
|
Babushok DV, Stanley NL, Morrissette JJD,
Lieberman DB, Olson TS, Chou ST and Hexner EO: Germline duplication
of ATG2B and GSKIP genes is not required for the familial myeloid
malignancy syndrome associated with the duplication of chromosome
14q32. Leukemia. 32:2720–2723. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Plo I, Bellanné-Chantelot C and
Vainchenker W: ATG2B and GSKIP: 2 new genes predisposing to myeloid
malignancies. Mol Cell Oncol. 3:e10945642015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hu D, Zhang S, Zhao Y, Wang S, Wang Q,
Song X, Lu D, Mao Y and Chen H: Association of genetic variants in
the retinoblastoma binding protein 6 gene with the risk of glioma:
A case-control study in a Chinese Han population. J Neurosurg.
121:1209–1218. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mbita Z, Meyer M, Skepu A, Hosie M, Rees J
and Dlamini Z: De-regulation of the RBBP6 isoform 3/DWNN in human
cancers. Mol Cell Biochem. 362:249–262. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Rumi E and Cazzola M: Advances in
understanding the pathogenesis of familial myeloproliferative
neoplasms. Brit J Haematol. 178:689–698. 2017. View Article : Google Scholar
|
|
60
|
Harutyunyan AS, Giambruno R, Krendl C,
Stukalov A, Klampfl T, Berg T, Chen D, Milosevic Feenstra JD, Jäger
R, Gisslinger B, et al: Germline RBBP6 mutations in familial
myeloproliferative neoplasms. Blood. 127:362–365. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Narumi S, Amano N, Ishii T, Katsumata N,
Muroya K, Adachi M, Toyoshima K, Tanaka Y, Fukuzawa R, Miyako K, et
al: SAMD9 mutations cause a novel multisystem disorder, MIRAGE
syndrome, and are associated with loss of chromosome 7. Nat Genet.
48:792–797. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Noris P, Perrotta S, Seri M, Pecci A, Gnan
C, Loffredo G, Pujol-Moix N, Zecca M, Scognamiglio F, De Rocco D,
et al: Mutations in ANKRD26 are responsible for a frequent form of
inherited thrombocytopenia: Analysis of 78 patients from 21
families. Blood. 117:6673–6680. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Takaoka K, Kawazu M, Koya J, Yoshimi A,
Masamoto Y, Maki H, Toya T, Kobayashi T, Nannya Y, Arai S, et al: A
germline HLTF mutation in familial MDS induces DNA damage
accumulation through impaired PCNA polyubiquitination. Leukemia.
33:1773–1782. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Duployez N, Lejeune S, Renneville A and
Preudhomme C: Myelodysplastic syndromes and acute leukemia with
genetic predispositions: A new challenge for hematologists. Expert
Rev Hematol. 9:1189–1202. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Townsley DM, Dumitriu B and Young NS: Bone
marrow failure and the telomeropathies. Blood. 124:2775–2783. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Király AP, Kállay K, Gángó A, Kellner Á,
Egyed M, Szőke A, Kiss R, Vályi-Nagy I, Csomor J, Matolcsy A and
Bödör C: Familial acute myeloid leukemia and myelodysplasia in
hungary. Pathol Oncol Res. 24:83–88. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
McReynolds LJ, Zhang Y, Yang Y, Tang J,
Mulé M, Hsu AP, Townsley DM, West RR, Zhu J, Hickstein DD, et al:
Rapid progression to AML in a patient with germline GATA2 mutation
and acquired NRAS Q61K mutation. Leuk Res Rep.
12:1001762019.PubMed/NCBI
|
|
68
|
Rafei H and DiNardo CD: Hereditary myeloid
malignancies. Best Pract Res Clin Haematol. 32:163–176. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wiggins M and Stevenson W: Genetic
predisposition in acute leukaemia. Int J Lab Hematol. 42 (Suppl
1):S75–S81. 2020. View Article : Google Scholar
|
|
70
|
Babushok DV, Bessler M and Olson TS:
Genetic predisposition to myelodysplastic syndrome and acute
myeloid leukemia in children and young adults. Leuk Lymphoma.
57:520–536. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Nannya Y, Tobiasson M, Bernard E, Sato S,
Creignou M, Takeda J, Anying Z, Shiraishi Y, Chiba K, Tanaka H, et
al: Molecular characteristics that predict response to azacitidine
therapy. Blood. 134 (Suppl 1):42462019. View Article : Google Scholar
|
|
72
|
Galera P, Hsu AP, Wang W, Droll S, Chen R,
Schwartz JR, Klco JM, Arai S, Maese L, Zerbe C, et al:
Donor-derived MDS/AML in families with germline GATA2 mutation.
Blood. 132:1994–1998. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Bochtler T, Haag G, Schott S, Kloor M,
Krämer A and Müller-Tidow C: Hematological malignancies in adults
with a family predisposition. Dtsch Arztebl Int. 115:848–854.
2018.PubMed/NCBI
|
|
74
|
Miller LH, Qu CK and Pauly M: Germline
mutations in the bone marrow microenvironment and dysregulated
hematopoiesis. Exp Hematol. 66:17–26. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wolf DP, Mitalipov PA and Mitalipov SM:
Principles of and strategies for germline gene therapy. Nat Med.
25:890–897. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Qu S, Li B, Qin T, Xu Z, Pan L, Hu N,
Huang G, Peter Gale R and Xiao Z: Molecular and clinical features
of myeloid neoplasms with somatic DDX41 mutations. Br J Haematol.
Apr 19–2020.(Epub ahead of print). View Article : Google Scholar
|
|
77
|
Jones L, McCarthy P and Bond J:
Epigenetics of paediatric acute myeloid leukaemia. Brit J Haematol.
188:63–76. 2020. View Article : Google Scholar
|
|
78
|
Liu XL, Liu HQ, Li J, Mao CY, He JT and
Zhao X: Role of epigenetic in leukemia: From mechanism to therapy.
Chem Biol Interact. 317:1089632020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Becker MMM, Lapouge K, Segnitz B, Wild K
and Sinning I: Structures of human SRP72 complexes provide insights
into SRP RNA remodeling and ribosome interaction. Nucleic Acids
Res. 45:470–481. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tamary H and Alter BP: Current diagnosis
of inherited bone marrow failure syndromes. Pediatr Hemat Oncol.
24:87–99. 2007. View Article : Google Scholar
|
|
81
|
Balakumaran A, Mishra PJ, Pawelczyk E,
Yoshizawa S, Sworder BJ, Cherman N, Kuznetsov SA, Bianco P, Giri N,
Savage SA, et al: Bone marrow skeletal stem/progenitor cell defects
in dyskeratosis congenita and telomere biology disorders. Blood.
125:793–802. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Marrone A, Sokhal P, Walne A, Beswick R,
Kirwan M, Killick S, Williams M, Marsh J, Vulliamy T and Dokal I:
Functional characterization of novel telomerase RNA (TERC)
mutations in patients with diverse clinical and pathological
presentations. Haematologica. 92:1013–1020. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yamaguchi H, Baerlocher GM, Lansdorp PM,
Chanock SJ, Nunez O, Sloand E and Young NS: Mutations of the human
telomerase RNA gene (TERC) in aplastic anemia and myelodysplastic
syndrome. Blood. 102:916–918. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yan S, Han B, Wu Y, Zhou D and Zhao Y:
Telomerase gene mutation screening and telomere overhang detection
in Chinese patients with acute myeloid leukemia. Leuk Lymphoma.
54:1437–1441. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Both A, Krauter J, Damm F, Thol F, Göhring
G, Heuser M, Ottmann O, Lübbert M, Wattad M, Kanz L, et al: The
hypomorphic TERT A1062T variant is associated with increased
treatment-related toxicity in acute myeloid leukemia. Ann Hematol.
96:895–904. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yamaguchi H, Calado RT, Ly H, Kajigaya S,
Baerlocher GM, Chanock SJ, Lansdorp PM and Young NS: Mutations in
TERT, the gene for telomerase reverse transcriptase, in aplastic
anemia. N Engl J Med. 352:1413–1424. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chiang YH, Chang YC, Lin HC, Huang L,
Cheng CC, Wang WT, Cheng HI, Su NW, Chen CG, Lin J, et al: Germline
variations at JAK2, TERT, HBS1L-MYB and MECOM and the risk of
myeloproliferative neoplasms in Taiwanese population. Oncotarget.
8:76204–76213. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Trifa AP, Bănescu C, Bojan AS, Voina CM,
Popa Ș, Vișan S, Ciubean AD, Tripon F, Dima D, Popov VM, et al:
MECOM, HBS1L-MYB, THRB-RARB, JAK2, and TERT polymorphisms defining
the genetic predisposition to myeloproliferative neoplasms: A study
on 939 patients. Am J Hematol. 93:100–106. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Oddsson A, Kristinsson SY, Helgason H,
Gudbjartsson DF, Masson G, Sigurdsson A, Jonasdottir A, Jonasdottir
A, Steingrimsdottir H, Vidarsson B, et al: The germline sequence
variant rs2736100_C in TERT associates with myeloproliferative
neoplasms. Leukemia. 28:1371–1374. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kim HJ, Choi EJ, Sohn HJ, Park SH, Min WS
and Kim TG: Combinatorial molecular marker assays of WT1, survivin,
and TERT at initial diagnosis of adult acute myeloid leukemia. Eur
J Haematol. 91:411–422. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Aref S, El-Ghonemy MS, Abouzeid TE,
El-Sabbagh AM and El-Baiomy MA: Telomerase reverse transcriptase
(TERT) A1062T mutation as a prognostic factor in Egyptian patients
with acute myeloid leukemia (AML). Med Oncol. 31:1582014.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Akram Z, Ahmed P, Kajigaya S, Satti TM,
Satti HS, Chaudhary QUN, Gutierrez-Rodrigues F, Ibanez PF, Feng X,
Mahmood SK, et al: Epidemiological, clinical and genetic
characterization of aplastic anemia patients in Pakistan. Ann
Hematol. 98:301–312. 2019. View Article : Google Scholar : PubMed/NCBI
|