|
1
|
Rkein AM and Ozog DM: Photodynamic
therapy. Dermatol Clin. 32:415–425. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chilakamarthi U and Giribabu L:
Photodynamic therapy: Past, present and future. Chem Rec.
17:775–802. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Moy LS, Frost D and Moy S: Photodynamic
therapy for photodamage, actinic keratosis, and acne in the
cosmetic practice. Facial Plast Surg Clin North Am. 28:135–148.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ghorbani J, Rahban D, Aghamiri S, Teymouri
A and Bahador A: Photosensitizers in antibacterial photodynamic
therapy: An overview. Laser Ther. 27:293–302. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang J, Jiang C, Figueiró Longo JP,
Azevedo RB, Zhang H and Muehlmann LA: An updated overview on the
development of new photosensitizers for anticancer photodynamic
therapy. Acta Pharm Sin B. 8:137–146. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Abrahamse H and Hamblin MR: New
photosensitizers for photodynamic therapy. Biochem J. 473:347–364.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kataoka H, Nishie H, Hayashi N, Tanaka M,
Nomoto A, Yano S and Joh T: New photodynamic therapy with
next-generation photosensitizers. Ann Transl Med. 5:1832017.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mansoori B, Mohammadi A, Amin Doustvandi
M, Mohammadnejad F, Kamari F, Gjerstorff MF, Baradaran B and
Hamblin MR: Photodynamic therapy for cancer: Role of natural
products. Photodiagnosis Photodyn Ther. 26:395–404. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ortiz LM, Lombardi P, Tillhon M and
Scovassi AI: Berberine, an epiphany against cancer. Molecules.
19:12349–12367. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Neag MA, Mocan A, Echeverria J, Pop RM,
Bocsan CI, Crişan G and Buzoianu AD: Berberine: Botanical
occurrence, traditional uses, extraction methods, and relevance in
cardiovascular, metabolic, hepatic, and renal disorders. Front
Pharmacol. 9:5572018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Feng X, Sureda A, Jafari S, Memariani Z,
Tewari D, Annunziata G, Barrea L, Hassan STS, Šmejkal K, Malaník M,
et al: Berberine in cardiovascular and metabolic diseases: From
mechanisms to therapeutics. Theranostics. 9:1923–1951. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liu D, Meng X, Wu D, Qiu Z and Luo H: A
natural isoquinoline alkaloid with antitumor activity: Studies of
the biological activities of berberine. Front Pharmacol. 10:92019.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Philogène BJ, Arnason JT, Towers GH,
Abramowski Z, Campos F, Champagne D and McLachlan D: Berberine: A
naturally occurring phototoxic alkaloid. J Chem Ecol. 10:115–123.
1984. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang MX, Huo LM, Yang HC, Gao YJ and E Z:
An experimental study on the photodynamic activity of berberine in
vitro on cancer cells. J Tradit Chin Med. 6:125–127.
1986.PubMed/NCBI
|
|
15
|
Liu HQ, An YW, Hu AZ, Li MH and Cui GH:
Photodynamic therapy enhanced the antitumor effects of berberine on
HeLa cells. Open Chemistry. 17:413–421. 2019. View Article : Google Scholar
|
|
16
|
Liu H, Zheng T, Zhou Z, Hu A, Li M, Zhang
Z, Yu G, Feng H, An Y, Peng J and Chen Y: Berberine nanoparticles
for promising sonodynamic therapy of a HeLa xenograft tumour. Rsc
Advances. 9:10528–10535. 2019. View Article : Google Scholar
|
|
17
|
Acamovic T and Brooker JD: Biochemistry of
plant secondary metabolites and their effects in animals. Proc Nutr
Soc. 64:403–412. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Schreiner M, Mewis I, Huyskens-Keil S,
Jansen MAK, Zrenner R, Winkler JB, O'Brien N and Krumbein A:
UV-B-induced secondary plant metabolites-potential benefits for
plant and human health. Crit Rev Plant Sci. 31:229–240. 2012.
View Article : Google Scholar
|
|
19
|
Gismondi A, Marco GD, Canuti L and Canini
A: Antiradical activity of phenolic metabolites extracted from
grapes of white and red Vitis vinifera L. cultivars. Vitis J
Grapevine Res. 56:19–26. 2017.
|
|
20
|
Makkar HPS, Siddhuraju P and Becker K:
Plant Secondary Metabolites. Humana Press; Totowa, NJ, USA: 2007,
View Article : Google Scholar
|
|
21
|
Lockwood B: Plant Secondary Metabolites
Occurrence, Structure and Role in the Human Diet. Crozier A,
Clifford MN and Ashihara H: Blackwell Publishing Ltd; pp. 384GBP
99.50, ISBN 13: 978-1-4051-2509-3. Phytochemistry. 69. pp. 1288.
2008, View Article : Google Scholar
|
|
22
|
Steglich W: Plant Secondary Metabolites.
Occurrence, Structure and Role in the Human Diet. Alan Crozier,
Clifford MN and Ashihara H: Angewandte Chemie International
Edition. 46. pp. 8113–8114. 2007, View Article : Google Scholar
|
|
23
|
Crozier A, Clifford MN and Ashihara H:
Plant Secondary Metabolites: Occurrence Structure and Role in the
Human Diet. Blackwell Publishing Ltd; UK: 2006
|
|
24
|
Agarwal R, Zaidi SI, Athar M, Bickers DR
and Mukhtar H: Photodynamic effects of chloroaluminum
phthalocyanine tetrasulfonate are mediated by singlet oxygen: In
vivo and in vitro studies utilizing hepatic microsomes as a model
membrane source. Arch Biochem Biophys. 294:30–37. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Arnason JT, Guerin B, Kraml MM, Mehta B,
Redmond RW and Scaiano JC: Phototoxic and photochemical properties
of sanguinarine. Photochem Photobiol. 55:35–38. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Inbaraj JJ, Kukielczak BM, Bilski P,
Sandvik SL and Chignell CF: Photochemistry and photocytotoxicity of
alkaloids from Goldenseal (Hydrastis canadensis L.) 1. Berberine.
Chem Res Toxicol. 14:1529–1534. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Brezová V, Dvoranova D and Kost'alova D:
Oxygen activation by photoexcited protoberberinium alkaloids from
Mahonia aquifolium. Phytother Res. 18:640–646. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cheng LL, Wang M, Zhu H, Li K, Zhu RR, Sun
XY, Yao SD, Wu QS and Wang SL: Characterization of the transient
species generated by the photoionization of Berberine: A laser
flash photolysis study. Spectrochim Acta A Mol Biomol Spectrosc.
73:955–959. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hackbarth S, Islam W, Fang J, Šubr V,
Röder B, Etrych T and Maeda H: Singlet oxygen phosphorescence
detection in vivo identifies PDT-induced anoxia in solid tumors.
Photochem Photobiol Sci. 18:1304–1314. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Dmitrieva VA, Tyutereva EV and
Voitsekhovskaja OV: Singlet oxygen in plants: Generation,
detection, and signaling roles. Int J Mol Sci. 21:32372020.
View Article : Google Scholar
|
|
31
|
Jantová S, Letasiova S, Brezova V, Cipak L
and Labaj J: Photochemical and phototoxic activity of berberine on
murine fibroblast NIH-3T3 and Ehrlich ascites carcinoma cells. J
Photochem Photobiol B. 85:163–176. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Cheng L, Wang M, Zhao P, Zhu H, Zhu R, Sun
X, Yao S and Wang S: The examination of berberine excited state by
laser flash photolysis. Spectrochim Acta A Mol Biomol Spectrosc.
73:268–272. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cheng LL, Wang M, Wu MH, Yao SD, Jiao Z
and Wang SL: Interaction mechanism between berberine and the enzyme
lysozyme. Spectrochim Acta A Mol Biomol Spectrosc. 97:209–214.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shen L and Ji HF: The mechanisms of
ROS-photogeneration by berberine, a natural isoquinoline alkaloid.
J Photochem Photobiol B. 99:154–156. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu R and Zhang Y: Mechanism of UV-driven
photoelectrocatalytic degradation of berberine chloride form using
the ESR Spin-trapping method. Photochem Photobiol. 94:650–658.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Görner H, Miskolczy Z, Megyesi M and
Biczok L: Photooxidation of alkaloids: Considerable quantum yield
enhancement by rose bengal-sensitized singlet molecular oxygen
generation. Photochem Photobiol. 87:1315–1320. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Görner H, Miskolczy Z, Megyesi M and
Biczok L: Photoreduction and ketone-sensitized reduction of
alkaloids. Photochem Photobiol. 87:284–291. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hirakawa K, Kawanishi S and Hirano T: The
mechanism of guanine specific photooxidation in the presence of
berberine and palmatine: Activation of photosensitized singlet
oxygen generation through DNA-binding interaction. Chem Res
Toxicol. 18:1545–1552. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen XW, Di YM, Zhang J, Zhou ZW, Li CG
and Zhou SF: Interaction of herbal compounds with biological
targets: A case study with berberine. ScientificWorldJournal.
2012:7082922012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hirakawa K and Hirano T: The
microenvironment of DNA switches the activity of singlet oxygen
generation photosensitized by berberine and palmatine. Photochem
Photobiol. 84:202–208. 2008.PubMed/NCBI
|
|
41
|
Hirakawa K, Hirano T, Nishimura Y, Arai T
and Nosaka Y: Dynamics of singlet oxygen generation by DNA-binding
photosensitizers. J Phys Chem B. 116:3037–3044. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jiang D and Rusling JF: Oxidation
chemistry of DNA and p53 tumor suppressor gene. ChemistryOpen.
8:252–265. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Cheng LL, Wang YJ, Huang DH, Yao SD, Ding
GJ, Wang SL and Jiao Z: Radiolysis and photolysis studies on active
transient species of berberine. Spectrochim Acta A Mol Biomol
Spectrosc. 124:670–676. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wu J, Xiao Q, Zhang N, Xue C, Leung AW,
Zhang H, Tang QJ and Xu C: Palmatine hydrochloride mediated
photodynamic inactivation of breast cancer MCF-7 cells:
Effectiveness and mechanism of action. Photodiagnosis Photodyn
Ther. 15:133–138. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bhattacharyya R, Gupta P, Bandyopadhyay
SK, Patro BS and Chattopadhyay S: Coralyne, a protoberberine
alkaloid, causes robust photosenstization of cancer cells through
ATR-p38 MAPK-BAX and JAK2-STAT1-BAX pathways. Chem Biol Interact.
285:27–39. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wu J, Xiao Q, Zhang N, Xue C, Leung AW,
Zhang H, Xu C and Tang QJ: Photodynamic action of palmatine
hydrochloride on colon adenocarcinoma HT-29 cells. Photodiagnosis
Photodyn Ther. 15:53–58. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Qi F, Sun Y, Lv M, Qin F, Cao W and Bi L:
Effects of palmatine hydrochloride mediated photodynamic therapy on
oral squamous cell carcinoma. Photochem Photobiol Sci.
18:1596–1605. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Patro BS, Bhattacharyya R, Gupta P,
Bandyopadhyay S and Chattopadhyay S: Mechanism of coralyne-mediated
DNA photo-nicking process. J Photochem Photobiol B. 194:140–148.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ihmels H and Salbach A: Efficient
photoinduced DNA damage by coralyne. Photochem Photobiol.
82:1572–1576. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Basu A, Jaisankar P and Kumar GS:
Photophysical and calorimetric studies on the binding of
9-O-substituted analogs of the plant alkaloid berberine to double
stranded poly(A). J Photochem Photobiol B. 125:105–114. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Basu A, Jaisankar P and Suresh Kumar G:
Synthesis of novel 9-O-N-aryl/aryl-alkyl amino carbonyl methyl
substituted berberine analogs and evaluation of DNA binding
aspects. Bioorg Med Chem. 20:2498–2505. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liu C, Liu S, Wang Y, Wang S, Zhang J, Li
S, Qin X, Li X, Wang K and Zhou Q: Synthesis, cytotoxicity, and
DNA-binding property of berberine derivatives. Med Chemistry Res.
23:1899–1907. 2014. View Article : Google Scholar
|
|
53
|
Molero ML, Hazen MJ and Stockert JC:
Photodynamic effect of berberine sulfate on the growth rate of
allium cepa roots. J Plant Physiol. 120:91–94. 1985. View Article : Google Scholar
|
|
54
|
Lee NK, Jenner L, Harney A and Cameron J:
Pharmacotherapy for amphetamine dependence: A systematic review.
Drug Alcohol Depend. 191:309–337. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lee MMS, Zheng L, Yu B, Xu W, Kwok RTK,
Lam JWY, Xu F, Wang D and Tang BZ: A highly efficient and
AIE-active theranostic agent from natural herbs. Materials
Chemistry Front. 3:1454–1461. 2019. View Article : Google Scholar
|
|
56
|
Ma XQ, Liu HL, Cheng GP, Yuan SC and Liang
B: Effects of berberine combined with photodynamic on apoptosis of
gastric cancer MGC-803 Cell. Chin J Clin Pharmacol Therapeutics.
20:961–966. 2015.
|
|
57
|
Chen KT, Hao DM, Liu ZX, Chen YC and You
ZS: Effect of berberine alone or in combination with argon ion
laser treatment on 9L rat glioma cell line. Chin Med J (Engl).
107:808–812. 1994.PubMed/NCBI
|
|
58
|
Lopes TZ, de Moraes FR, Tedesco AC, Arni
RK, Rahal P and Calmon MF: Berberine associated photodynamic
therapy promotes autophagy and apoptosis via ROS generation in
renal carcinoma cells. Biomed Pharmacother. 123:1097942020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Warowicka A, Popenda Ł, Bartkowiak G,
Musidlak O, Litowczenko-Cybulska J, Kuźma D, Nawrot R, Jurga S and
Goździcka-Józefiak A: Protoberberine compounds extracted from
Chelidonium majus L. as novel natural photosensitizers for
cancer therapy. Phytomedicine. 64:1529192019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang Y, Liu Y, Du X, Ma H and Yao J: The
anti-cancer mechanisms of berberine: A review. Cancer Manag Res.
12:695–702. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liu HQ, An YW, Li ZW, Li WX, Yuan B, Wang
JC, Jin HT and Wang C: Sinoporphyrin sodium, a novel sensitizer for
photodynamic and sonodynamic therapy. Open Chemistry. 18:691–701.
2020. View Article : Google Scholar
|
|
62
|
An YW, Liu HQ, Zhou ZQ, Wang JC, Jiang GY,
Li ZW, Wang F and Jin HT: Sinoporphyrin sodium is a promising
sensitizer for photodynamic and sonodynamic therapy in glioma.
Oncol Rep. 44:1596–1604. 2020.PubMed/NCBI
|
|
63
|
Wang X, He L, Liu B and Wang J:
Spectroscopic investigation on the sonodynamic damage to proteins
in the presence of berberine in vitro. J Luminescence.
131:1361–1367. 2011. View Article : Google Scholar
|
|
64
|
Geng C, Zhang Y, Hidru TH, Zhi L, Tao M,
Zou L, Chen C, Li H and Liu Y: Sonodynamic therapy: A potential
treatment for atherosclerosis. Life Sci. 207:304–313. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tian Y and Guo S: Sonodynamic effect of
berberine on macrophages. Heart. 98:E87–E88. 2012.
|
|
66
|
Kou JY, Li Y, Zhong ZY, Jiang YQ, Li XS,
Han XB, Liu ZN, Tian Y and Yang LM: Berberine-sonodynamic therapy
induces autophagy and lipid unloading in macrophage. Cell Death
Dis. 8:e25582017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Sun HW and Ouyang WQ: Preparation and
physicochemical characteristics of berberine hydrochloric
nanoemulsion. Chin Traditional Herbal Drugs. 38:1476–1480.
2007.
|
|
68
|
Song J, Lin C, Yang X, Xie Y, Hu P, Li H,
Zhu W and Hu H: Mitochondrial targeting nanodrugs self-assembled
from 9-O-octadecyl substituted berberine derivative for cancer
treatment by inducing mitochondrial apoptosis pathways. J Control
Release. 294:27–42. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fan JX, Liu MD, Li CX, Hong S, Zheng DW,
Liu XH, Chen S, Cheng H and Zhang XZ: A metal-semiconductor
nanocomposite as an efficient oxygen-independent photosensitizer
for photodynamic tumor therapy. Nanoscale Horiz. 2:349–355. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wang C, Dai C, Hu Z, Li H, Yu L, Lin H,
Bai J and Chen Y: Photonic cancer nanomedicine using the near
infrared-II biowindow enabled by biocompatible titanium nitride
nanoplatforms. Nanoscale Horiz. 4:415–425. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhen W, Liu Y, Jia X, Wu L, Wang C and
Jiang X: Reductive surfactant-assisted one-step fabrication of a
BiOI/BiOIO3 heterojunction biophotocatalyst for enhanced
photodynamic theranostics overcoming tumor hypoxia. Nanoscale
Horiz. 4:720–726. 2019. View Article : Google Scholar
|
|
72
|
Zhang D, Zhang J, Li Q, Tian H, Zhang N,
Li Z and Luan Y: pH- and enzyme-sensitive IR820-paclitaxel
conjugate self-assembled nanovehicles for near-infrared
fluorescence imaging-guided chemo-photothermal therapy. ACS Appl
Mater Interfaces. 10:30092–30102. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang J, Zhang D, Li Q, Jiang Y, Song A,
Li Z and Luan Y: Task-specific design of immune-augmented
nanoplatform to enable high-efficiency tumor immunotherapy. ACS
Appl Mater Interfaces. 11:42904–42916. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Rajpoot K: Solid lipid nanoparticles: A
promising nanomaterial in drug delivery. Curr Pharm Des.
25:3943–3959. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hou J and Zhou SW: Optimization of the
preparation technology of berberine hydrochloride solid lipid
nanoparticles by orthogonal experiment. China Pharmacy.
19:1150–1152. 2008.
|
|
76
|
Wang Y, Zheng J, Xu B, Wang H, Deng Y and
Bi D: Determination of entrapment efficiency of berberine
hydrochloride solid lipid nanoparticles by coagulation-centrifuge
method. J Zhengzhou Univ (Med Ences). 44:188–189. 2009.
|
|
77
|
Elhissi A: Liposomes for pulmonary drug
delivery: The role of formulation and inhalation device design.
Curr Pharm Des. 23:362–372. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Luo X, Li J, Guo L, Cheng X, Zhang T and
Deng Y: Preparation of berberine hydrochloride long-circulating
liposomes by ionophore A23187-mediated ZnSO4 gradient method. Asian
J Pharmaceutical Ences. 8:261–266. 2013. View Article : Google Scholar
|
|
79
|
Chen J, Tian L, Li W and Li G: Study on
the preparation process of berberine hydrochloride liposomes by
orthogonal design. J Practical Med Techniques. 14:1868–1870.
2007.
|
|
80
|
Kapoor DN, Bhatia A, Kaur R, Sharma R,
Kaur G and Dhawan S: PLGA: A unique polymer for drug delivery. Ther
Deliv. 6:41–58. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Khan I, Joshi G, Nakhate KT, Ajazuddin,
Kumar R and Gupta U: Nano-Co-delivery of berberine and anticancer
drug using PLGA nanoparticles: Exploration of better anticancer
activity and in vivo kinetics. Pharm Res. 36:1492019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Guo T, Fan Y, Chen M, Wu X, Zhang L, He T,
Wang H, Wan J, Wang X and Lu Z: Cardiovascular implications of
fatal outcomes of patients with coronavirus disease 2019
(COVID-19). JAMA Cardiol. 5:811–818. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Guo HH, Feng CL, Zhang WX, Luo ZG, Zhang
HJ, Zhang TT, Ma C, Zhan Y, Li R, Wu S, et al: Liver-target
nanotechnology facilitates berberine to ameliorate cardio-metabolic
diseases. Nat Commun. 10:19812019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bhatnagar P, Kumari M, Pahuja R, Pant AB,
Shukla Y, Kumar P and Gupta KC: Hyaluronic acid-grafted PLGA
nanoparticles for the sustained delivery of berberine chloride for
an efficient suppression of Ehrlich ascites tumors. Drug Deliv
Transl Res. 8:565–579. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Grebinyk A, Prylutska S, Buchelnikov A,
Tverdokhleb N, Grebinyk S, Evstigneev M, Matyshevska O, Cherepanov
V, Prylutskyy Y, Yashchuk V, et al: C60 fullerene as an
effective nanoplatform of alkaloid berberine delivery into leukemic
cells. Pharmaceutics. 11:5862019. View Article : Google Scholar
|