Open Access

Non‑coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies (Review)

  • Authors:
    • Georgios Drillis
    • Maria Goulielmaki
    • Demetrios A. Spandidos
    • Sofia Aggelaki
    • Vassilios Zoumpourlis
  • View Affiliations

  • Published online on: March 18, 2021     https://doi.org/10.3892/ol.2021.12654
  • Article Number: 393
  • Copyright: © Drillis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Contemporary developments in molecular biology have been combined with discoveries on the analysis of the role of all non‑coding RNAs (ncRNAs) in human diseases, particularly in cancer, by examining their roles in cells. Currently, included among these common types of cancer, are all the lymphomas and lymphoid malignancies, which represent a diverse group of neoplasms and malignant disorders. Initial data suggest that non‑coding RNAs, particularly long ncRNAs (lncRNAs), play key roles in oncogenesis and that lncRNA‑mediated biology is an important key pathway to cancer progression. Other non‑coding RNAs, termed microRNAs (miRNAs or miRs), are very promising cancer molecular biomarkers. They can be detected in tissues, cell lines, biopsy material and all biological fluids, such as blood. With the number of well‑characterized cancer‑related lncRNAs and miRNAs increasing, the study of the roles of non‑coding RNAs in cancer is bringing forth new hypotheses of the biology of cancerous cells. For the first time, to the best of our knowledge, the present review provides an up‑to‑date summary of the recent literature referring to all diagnosed ncRNAs that mediate the pathogenesis of all types of lymphomas and lymphoid malignancies.

Introduction

Lymphomas are a heterogeneous group of cancers; more specifically, they consist of a group of blood disorders derived from lymphocytes and are presented with multiple variations in clinical presentation, long-term prognosis and pathogenesis. They represent one of the most common types of cancer worldwide and affect numerous patients. According to the World Health Organization (WHO) classification report, there are approximately 100 different types of lymphoma. The two main categories of lymphomas are non-Hodgkin lymphoma (NHL) (consisting 9 out of 10 of all lymphoma cases) and Hodgkin lymphoma (HL) (consisting 1 out of 10 of all lymphoma cases) (13). Furthermore, non-Hodgkin lymphomas can be grouped into B- and T-cell NHLs (TNHLs), which account for approximately 90 and 10% of NHLs, respectively (4,5). According to the WHO, two other categories are also considered as types of lymphoid tissue tumors: Multiple myeloma (MM) and immunoproliferative diseases (3).

Epidemiology

According to the WHO, there are the following lymphoma subtypes (WHO 2016): i) Mature B-cell neoplasms; ii) mature T-cell and natural killer (NK) cell neoplasms; iii) precursor lymphoid neoplasms; iv) HL; and v) immunodeficiency-associated lymphoproliferative disorders (4,5).

B-cell NHLs (BCNHLs) are tumors of B-cells that exhibit a heterogeneity that is attributed to the fact that these tumors are derived from different stages of mature B-cell differentiation. The main subtypes of BCNHLs are the following: i) diffuse large B-cell lymphoma (DLBCL); ii) chronic lymphocytic leukemia (CLL); iii) follicular lymphoma (FL); iv) mantle cell lymphoma (MCL); v) Burkitt's lymphoma (BL); vi) marginal zone lymphoma (MZL); and vii) mucosa-associated lymphoid tissue (MALT) (6). The majority of BCNHLs, such as DLBCL and FL, have passed the germinal center (GC) reaction, indicating that their immunoglobulin (IG) genes have been hypermutated. Other subtypes, such as MCL and CLL, are derived from GC-inexperienced B-cells (7).

The most common subtypes of TNHLs and NK-cell NHLS (NK-NHLs) are the following: i) Cutaneous T-cell lymphomas (mycosis fungoides, Sezary syndrome and others); ii) adult T-cell leukemia/lymphoma; iii) angioimmunoblastic T-cell lymphoma; iv) extranodal NK/T-cell lymphoma; nasal type; vi) enteropathy-associated T-cell lymphoma; and vii) anaplastic large cell lymphoma (ALCL) (4).

Risk factors and diagnosis of lymphomas

The most common risk factors for HL are Epstein-Barr virus (EBV) infection and a family history of the disease (8). The most common risk factors for several types of NHLs include the following: i) Autoimmune diseases, such as Sjögren syndrome, celiac disease, rheumatoid arthritis and systemic lupus erythematosus; ii) HIV/AIDS infection; iii) human T-lymphotropic virus infection; iv) Helicobacter pylori infection; v) HHV-8 infection; vi) hepatitis C virus infection; vii) medical treatments (patients who have been previously treated for Hodgkin lymphoma, methotrexate and the tumor necrosis factor-a inhibitors); viii) genetic diseases; and ix) certain chemical agents (benzene and certain herbicides and insecticides; weed- and insect-killing substances) (915). Some environmental agents, such as red meat consumption and tobacco smoking may also play a role in increasing the risk of developing NHL (11,12,16).

The diagnosis of lymphomas can be achieved due to the enlargement of lymph nodes, which can be determined by performing a lymph node biopsy (17). A lymph node biopsy commonly is followed by performing immunophenotyping, flow cytometry, fluorescence in situ hybridization testing, bone marrow aspiration and bone marrow biopsy (18). Imaging via computed tomography of the chest and upper-lower abdomen may then be performed to determine the possible expansion of the lymphoma throughout the human body (17).

Non-coding RNAs (ncRNAs)

ncRNAs are RNAs that are not translated to proteins. Over the past ten years, a number of ncRNAs have been identified. Any of the three RNA polymerases (RNA Pol I, RNA Pol II or RNA Pol III) can perform the transcription of a ncRNA. The ncRNAs are divided into the following two main categories: Small ncRNAs, <200 bp in length and long ncRNAs (lncRNAs), >200 bp in length (19).

In these two categories, several individual categories of ncRNAs also exist. These include housekeeping ncRNAs [transfer RNAs (tRNAs) and some ribosomal RNAs (rRNAs)], which are essential for fundamental principles of cellular biology, small nuclear RNAs (snRNAs), and a number of recently observed RNAs which are associated with the transcription of genes into proteins (20).

MicroRNAs (miRNAs or miRs)

To date, miRNAs are the less extensively studied ncRNAs for their roles in cancer. Over the past years, a number of targeted reviews have been published (2123), which have described a complex basic mechanism through which miRNAs can lead to the silencing of target gene expression; through the formation of a silencing complex induced by RISC-induced RNA, which uses proteins from the Argonaute family (such as AGO2) for the splicing of target mRNAs or for the suspension of the translation of these mRNAs (21). The patterns of expression of miRNAs in different cancer types have been well-observed, and studies have highlighted numerous miRNAs, such as miR-10b, let-7, miR-101 and miR-15a-16 complex-1, which have oncogenic or tumor-suppressive functions (22,23).

lncRNAs

Recent observations of new species of lncRNAs have led to the development of various possible candidates as lncRNAs. Although a number of RNAs have a length of >200 bp, such as repeat sequence transcripts and pseudogenes (24), the term lncRNA (also referred to as lincRNAs, for long transgenic ncRNAs) is not used in the same manner in all cases.

A number of common features of lncRNAs have been indicated to confirm their biological identity, such as the following: i) Epigenetic regulation as in a transcripted gene; ii) transcription performed by RNA polymerase II; iii) poly-adenylation to the 3′-untranslated region (3′-UTR); iv) frequent splicing of multiple exons through specific molecular patterns; v) regulation by classic transcription factors; and vi) frequent tissue-specific expression (24) (Fig. 1).

ncRNAs in normal B-cell differentiation and T-cell development

B-cell differentiation in adult humans begins within the bone marrow (BM) and is continued thereafter in the lymph nodes, tonsils and spleen (25). On the other hand, T-cells a derived from bone marrow hematopoietic stem cells (HSCs), whose progenitors migrate to and colonize the thymus (26).

The most common lncRNAs affecting normal B-cells are the following: i) MYB-AS1, SMAD1-AS1 and LEF1-AS1, located on 6q23.3, 4q31.21 and 4q25, respectively, are involved in early B-cell development; ii) CRNDE, located on 16q12.2-involved in mitotic cell cycle related processes; and iii) RP11-132N15.3/lnc-BCL6-3, located on 3q27.3, and involved in the modulation of the GC reaction. However, data on the roles of lncRNAs in normal T-cells are limited (2731).

miRNAs are also involved in lymphocyte development, as first described in 2004; it was demonstrated that miR-223, miR-181 and miR-142 were highly expressed in B-cells (32). miR-181 can also contribute to the regulation of the levels of CD69, BCL2 and TCR during T-cell development. In addition, miR-155 and miR-181 play key roles in the regulation of GC B-cell differentiation (33).

It is essential knowledge that all ncRNAs may play a vital role as predictive and prognostic biomarkers in the pathogenesis and progression of lymphomas and lymphoid malignancies in general. The main aim of the present review was to provide an up-to-date summary of available information on all the known miRNAs and lncRNAs that participate in the development of all lymphoid disorders, with a main focus on their connection to each lymphoma subtype. Furthermore, these molecular biomarkers may be used, in the near future, in the therapeutic management of the majority of lymphomas. Thus, the present review summarizes all published data to date on ncRNAs, in order to shed light on the future perspectives of lymphoma management.

Literature search

A literature search was performed, including studies published up to August, 2020, using the following databases: Medline (PubMed), Science Direct, Web of Science and Google Scholar.

Systematic reviews, uncontrolled prospective, retrospective and experimental studies were included for each specific subject (total no. of studies, n=235). The following inclusion criteria were applied: Studies concerning ncRNAs, lncRNAs, miRNAs, cancer and lymphomas: HLs, and BCNHLs and TNHLs. All studies concerning the association of lncRNAs and miRNAs with NHLs and HLs were included.

Non-coding RNAs in lymphomas

Over the past years, a number of studies have referred to the significance of lncRNAs and miRNAs in the pathophysiology of lymphomas, particularly B-cell NHLs. There are different non-coding RNAs that play a role in each subtype of lymphoma, and these are referred to the sections and tables below (Figs. 2 and 3).

a) BCNHLs
DLBCL

Diffuse large B-cell lymphoma is the most common form of NHL among adults (34) and it occurs most often in older-aged individuals, with a median age of diagnosis approaching the seventh decade of a patient's life (35). There are 2 different molecular subtypes of DLBCL: GC B-cell like (GC-DLBCL) and activated B-cell like (ABC-DLBCL) (36,37).

Subtypes of DLBCLs with a distinctive morphology or immunophenotype are the following: i) T-cell/histiocyte-rich large B-cell lymphoma; ii) ALK+ large B-cell lymphoma; iii) plasmablastic lymphoma; iv) intravascular large B-cell lymphoma; and v) large B-cell lymphoma with IRF4 rearrangement (38,39).

Subtypes of DLBCLs with distinctive clinical issues are the following: i) Primary mediastinal large B-cell lymphoma; ii) primary cutaneous DLBCL, leg type; iii) primary DLBCL of the central nervous system; iv) DLBCL associated with chronic inflammation; v) lymphomatoid granulomatosis; and vi) primary effusion lymphoma (38,39).

Additionally, there are DLBCLs driven by viruses, such as the following: i) EBV-positive DLBCL, not otherwise specified; and ii) HHV8-positive DLBCL, NOS (Not otherwise specified). There are also DLBCLs driven by disorders related to DLBCL, such as: i) Helicobactor pylori-associated DLBCL; and ii) EBV-positive mucocutaneous ulcer (40,41).

In order for a B-cell to be developed or to progress into a DLBCL type, changes in the following genes need to occur: BCL2 (42), BCL6 (42), MYC (36), EZH2 (43), MYD88 (42), CREBBP (44), CD79A and CD79B (44) and PAX5 (44). Therefore, the neoplastic cells in DLBCL exhibit a pathologically overactivation of the nuclear factor (NF)-κB, phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), B-cell receptor and Toll-like receptor pathways (42).

Concerning miRNAs in DLBCLs, it has been shown than in ABC-type DLBCL lymphoma, there is a high expression of miR-21, miR-146a, miR155, miR-221 and miR-363, while in GCB-type DLBCL, there is a high expression of miR-421 and the miR-17~92 cluster (4550) (Table I). In serum samples of patients with DLBCL, increased levels of miR-21, miR-155 and miR-210 have been identified, along with increased levels of miR-124, miR-532-5p miR-15a, miR-16, miR-29c and miR-155. Decreased levels of miR-122, miR-128, miR-141, miR-145, miR-197, miR-345, miR-424 and miR-425 have been also found in the serum of patients with DLBCL. miR-27a, miR-142, miR-199b, miR-222, miR-302, miR-330, miR-425 and miR-519 seem to be associated with the overall survival of patients with DLBCL (50). In any case, miR-155, miR-34a, miRNA-21, miRNA-23a, miRNA-27b, miRNA-34a, 12-miRNA signature, 15-miRNA signature, 27-miRNA signature, miR-363, miR-518a, miR-181a, miR-590, miR-421 and miR-324-either in serum samples, or in tissue or cell line samples of patients with DLBCL, can be used as diagnostic biomarkers in patients with DLBCL (5071) (Table I and Fig. 3).

Table I.

miRNAs and lncRNAs identified in patients with diffuse large B-cell lymphoma.

Table I.

miRNAs and lncRNAs identified in patients with diffuse large B-cell lymphoma.

miRNA(s)/lncRNAGenome location (if defined)RoleMolecular mechanism/sample(Refs.)
miR-155 Diagnostic biomarkerPresence in serum(51)
miR-34a Diagnostic biomarkerPresence in serum(52)
miR-17/92 cluster Cell survival, prognostic biomarkerSubtyping(53)
miR-21, miR-23a, miR-27b, miR-34a Poor overall survival, diagnostic and prognostic biomarkersPresence in serum(5458)
miR-20a, miR-30d, miR-22, miR-146a Prognostic biomarkersPresence in tissues(59)
miR-21, miR-210 Diagnostic biomarkersPresence in serum(60)
12-miRNA signature, 15-miRNA signature, 27-miRNA signature Diagnostic biomarkersPresence in tissue(6164)
miR-155, miR-221, miR-222, miR-21, miR-363, miR-518a, miR-181a, miR-590, miR-421, miR-324 Diagnostic biomarkersPresence in cell lines(65)
miR-124, miR-532, miR-122, miR-128, miR-141, miR-145, miR-197, miR-345, miR-424, miR-425 Diagnostic biomarkersPresence in plasma and exosomes(66)
miR-34a, miR-323b, miR-431 Diagnostic biomarkersPresence in serum(67)
miR-27a, miR-142, miR-199b, miR-222, miR-302, miR-330, miR-425, miR-519 Predictive biomarkersPresence in tissue(46)
miR-224, miR-455, miR-1236, miR-33a, miR-520d Predictive biomarkersPresence in serum(68)
miR-125b, miR-130a, miR-199a, miR-497, miR-370, miR-381, miR-409 Predictive biomarkersPresence in tissue, blood and cell lines(6971)
lincRNA-p21/TP53COR117p13.1 (mouse) 6p21.2 (human) Tumor-suppressorLink to cyclin D1, CDK4 and p21(7276)
GAS51q25.1 Tumor-suppressorRegulation of mTOR pathway(7786)
LOC28317711q25 UncharacterizedNot described(87)
lnc-RP11-211G3.3.1-13q27.3 UncharacterizedNot described(88)
LUNAR115q26.3oncomiR progenitorNOTCH1 regulation. Enhances IGF1R mRNA expression(89,90)
PEG107q21.3oncomiR progenitorActivated by c-MYC(9193)
HULC6p24.3oncomiR progenitorNot described(9497)
HOTAIR12q13.13oncomiR progenitorRegulation of the PI3K/AKT/NF-κB pathway(98)

[i] lncRNA, long non-coding RNA; miRNA/miR, microRNA.

Concerning lncRNAs in patients with DLBCLs, the following have been observed (Table I): i) lincRNA- p21/TP53COR1, located chromosome on 6p21.2 (human), acting as a tumor suppressor by linking to cyclin D1, CDK4 and p21 (7276); ii) GAS5, located on chromosome 1q25.1, acting as a tumor suppressor by regulating the mTOR pathway (7786); iii) LOC283177, located on chromosome 11q25, with an uncharacterized mode of action (87); iv) lnc-RP11-211G3.3.1-1, located on chromosome 3q27.3, with an uncharacterized mode of action (88); v) LUNAR1, located on chromosome 15q26.3, acting as an oncomiR progenitor by regulating NOTCH1 and enhancing insulin-like growth factor 1 receptor (IGF1R) mRNA expression (89,90); vi) PEG10, located on chromosome 7q21.3, acting as an oncomiR progenitor, and being activated by c-MYC (9193); vii) HULC, located on chromosome 6p24.3, acting as an oncomiR progenitor (9497); viii) HOTAIR, located on chromosome 12q13.13, acting as an oncomiR progenitor, via the regulation the of the PI3K/AKT/NF-κB pathway (98) (Fig. 2).

CLL

CLL is the most common form of leukemia affecting adults (99). In the case that along with CLL, there are enlarged lymph nodes, this clinical condition is referred to as small lymphocytic lymphoma (SLL). The groups of CLL/SLL monoclonal B-cells are the following: Low-count CLL/SLL with a number of monoclonal B-cells <0.5×109 cells/liter (i.e. 0.5×109/l), and high-count CLL/SLL MBL with monoclonal B-cells ≥0.5×109/l but <5×109/l (99). A patient is diagnosed as having CLL if the number of monoclonal B-cells are >5×109/l (100,101). Classical CLL, according to the Matutes score (102), includes the expression of five different markers in the immunophenotype: These are CD5, CD23, FMC7, CD22 and immunoglobulin light chain (102104).

Concerning miRNAs in CLL, miR-15a/16-1 acts as a tumor suppressor in patients with CLL and its expression is therefore found to be decreased (105,106), while miR-7-5p, miR-182-5p and miR-320c/d are regulated by p53, and are increased in patients with CLL (107,108). miR-181b expression is also low in patients with CLL (with a poor outcome) (109). miR-155 is overexpressed in patients with CLL and together with miR-21, lead to higher mortality levels in patients with CLL (110) (Table II and Fig. 3).

Table II.

miRNAs and lncRNAs identified in patients with chronic lymphocytic leukemia.

Table II.

miRNAs and lncRNAs identified in patients with chronic lymphocytic leukemia.

miRNA(s)/lncRNAGenome location (if defined) Role/activationMolecular mechanism/sample(Refs.)
miR-15a/16 cluster, miR-7, miR-182, miR-320c/d, miR-29, miR-192 Diagnostic biomarkersPresence in PBMCs and cell lines(107,108,115,116)
miR-151, miR-34a, miR-31, miR-155, miR-150, miR-15a, miR-29a Diagnostic biomarkersPresence in serum(113114)
miR-181b, miR-21, miR-155, miR-708, miR-17~92 cluster, 13-miRNA signature, miR-150, miR-155 Prognostic biomarkersPresence in PBMCs, cell lines, serum, blood cells(115,133135)
miR-181b, miR-155, miR-21, miR-148a, miR-222 Predictive biomarkersPresence in PBMCs and cell lines(133135)
DLEU213q14.3Tumor suppressorNF-κB activation(117120)
NEAT111q13.1 Tumor-suppressorInduction by p53(121,122)
lincRNA-p21/TP53COR1 (mouse) 6p21.2 (human)17p13.1 Tumor-suppressorInduction by p53(7276)
MIAT22q12.1OncogeneRegulatory loop with OCT4(123126)
ZNF667-AS1/lnc-AC004696.1-119q13.43 UncharacterizedNot described(127,128)
BM74240118q11.2 Tumor-suppressorNot described(129,130)
BIC21q21oncomiR progenitorHost of miR-155-5p and miR-155-3p(131,132)
lnc-IRF2-34q35 UncharacterizedNot described(128)
lnc-KIAA1755-420q11.23 UncharacterizedNot described(128)

[i] lncRNA, long non-coding RNA; miRNA/miR, microRNA; PBMCs, peripheral blood mononuclear cells.

Additionally, patients with CLL are characterized by higher levels of miR-34a, miR-31, miR-155, miR-150, miR-15a and miR-29a; these can be used as diagnostic biomarkers (110115). In particular, miR-192 is expressed in low levels in patients with CLL and can be thus used a diagnostic biomarker for CLL (116) (Table II).

Concerning lncRNAs in patients with CLL, the following have been observed (Table II): i) DLEU2, located on chromosome 13q14.3, acting as tumor suppressor by activating the NF-κB pathway (117120); ii) NEAT1, located on chromosome 11q13.1, acting as a tumor suppressor via induction by p53 (121,122); iii) lincRNA-p21/TP53COR1, located on chromosome p21.2 (human), acting as a tumor suppressor via induction by p53 (7276); iv) MIAT, located on chromosome 22q12.1, acting as an oncogene by forming a regulatory loop with OCT4 (123126); v) ZNF667-AS1/lnc-AC004696.1-1, located on chromosome 19q13.43, with an uncharacterized mode of action (127,128); vi) BM742401, located on chromosome 18q11.2, acting as a tumor suppressor, with an uncharacterized mode of action (129,130); vii) BIC, located on chromosome 21q21, acting as an oncomiR progenitor by being a host of miR-155-5p and miR-155-3p (131,132); viii) lnc-IRF2-3, located on chromosome 4q35 with an uncharacterized mode of action (128); ix) lnc-KIAA1755-4, located on chromosome 20q11.23 with an uncharacterized mode of action (128) (Fig. 2).

Finally, in Table II, references are provided of all the other miRNAs used as predictive and prognostic biomarkers in clinical trials of patients with CLL (133135).

FLs

FL is the second most common type of NHL, and the most common indolent NHL. It derives from the uncontrolled division of centrocytes and centroblasts of the follicles in the GCs of lymph nodes.

The genomic alterations that can be found in FL include the following: i) the t(14:18)(q32:q21.3) translocation (the majority of the cases); ii) 1p36 deletions (second most common genomic alteration in FL) that lead to the loss of TNFAIP3; iii) mutations in PRDM1; and iv) the same mutations observed in in situ FL (ISFL), including KMT2D, CREEBP, BCL2 and EZH2, as well as other mutations (45).

According to the WHO criteria, there are differences, which can be observed under a microscope, which can be used to diagnose and categorize FL into the following 3 grades, with grade 3 comprising A and B subtypes (46): Grade 1, follicles with <5 centroblasts per high-power field (hpf); grade 2, follicles with 6 to 15 centroblasts per hpf; grade 3, follicles with >15 centroblasts per hpf; grade 3A, grade 3 in which the follicles contain predominantly centrocytes; grade 3B, grade 3 in which the follicles consist almost entirely of centroblasts.

Low-grade FLs are grades 1 and 2, as well as grade 3A. Grade 3B is regarded as a highly aggressive FL, which can be easily transformed into a higher grade (46). The transformation of FL into a more aggressive state or other type of aggressive lymphoma is associated with specific genetic alterations, such as in the following genes: CREEBP, KMT2D, STAT6, CARD11, CD79, TNFAIP3, CD58, CDKN2A or CDKN2B, TNFRSF4 and c-MYC (45,46,136138).

Concerning miRNAs in FLs, a number of studies have demonstrated that there is an increase in the levels of 6 particular miRNAs: miR-223, miR-217, miR-222, miR221, let-7i and let-7b in patients with FL, in which their lymphoma underwent a transformation. In addition, the miR-17~92 cluster can be used as a useful diagnostic biomarker found in patients with FL, while miR-20a/b and miR-194 can also be found in patients with FL. Other useful diagnostic biomarkers in patients with FL may be the following: miR-9, miR-155, miR-31, miR-17, miR-217, miR-221, miR-222, miR-223, let-7i, let-7b17-miRNA signature, 44-miRNA signature, miR-494 23-miRNA signature (136140) (Table III and Fig. 3).

Table III.

miRNAs and lncRNAs identified in patients with follicular lymphoma.

Table III.

miRNAs and lncRNAs identified in patients with follicular lymphoma.

miRNA(s)/lncRNAGenome location (if defined) Role/activationMolecular mechanism/sample(Refs.)
RP11-625 L16.312 UncharacterizedNot described(72)
miR-9, miR-155, miR-31, miR-17 Diagnostic biomarkersPresence in tissues(136,137)
miR-217, miR-221, miR-222, miR-223, let-7i, let-7b Diagnostic biomarkersPresence in tissues(138,140)
17-miRNA signature, 44-miRNA signature, miR-494 Diagnostic biomarkersPresence in tissues(138,139)
23-miRNA signature Predictive biomarkersPresence in tissues(139)

[i] lncRNA, long non-coding RNA; miRNA/miR, microRNA.

Concerning lncRNAs in patients with FL, studies have demonstrated that there are 3-fold as many lncRNAs that are upregulated than lncRNAs that are downregulated in patients with FL3A stage disease, without their biological functions being cleared yet. The only lncRNA that seems to be upregulated in patients with FL3A grade disease is RP11-625 L16.3, located on chromosome 12, with an uncharacterized mode of action (72) (Table III and Fig. 2).

MCLs

MCL is recognizable as an aggressive and incurable small B-cell lymphoma. It predominantly affects older-aged males (>60 years old), and sometimes it may be indolent in some patients. MCLs arise from the mantle zone of early B-cells of the lymph node follicle and they possess the t(11;14)(q13;q32) translocation with an overexpression of cyclin D1.MCL cells also exhibit CD5+ and CD23 and surface IgM/D expression (141,142).

Two types of clinically indolent variants have now been identified (140,141). Classical MCL with IGHV-unmutated or minimally mutated B-cells and SOX11 overexpression; usually presented in lymph nodes and other extranodal sites. Additional molecular/cytogenetic abnormalities may be presented in blastoid or pleomorphic MCL. Leukemic non-nodal MCL develops from IGHV-mutated SOX11 B-cells, and is usually presented in peripheral blood, BM and spleen (142).

Concerning miRNAs in MCLs, a number of studies have demonstrated the overexpression of miR-15/16 and miR-17~92 in MCL and that this is associated with an aggressive form of the disease (143,144). In addition, the inhibition of miR-29 has been demonstrated to lead to the progression of MCL (a potential prognostic marker for MCL) (143145). Additionally, the 95-miRNA signature can be a diagnostic biomarker for MCL (145) (Table IV and Fig. 3).

Table IV.

miRNAs and lncRNAs observed in patients with mantle-cell lymphoma.

Table IV.

miRNAs and lncRNAs observed in patients with mantle-cell lymphoma.

miRNA(s)/lncRNAGenome location (if defined) Role/activationMolecular mechanism/sample(Refs.)
MALAT111q13OncogeneRegulation of the bioavailability of TGF-β(146152)
miR-15/16, miR-17/92 Diagnostic biomarkerPresence in cell lines(141,142)
95-miRNA signature Diagnostic biomarkerPresence in tissues(143)
miR-15b, miR-129, miR-135, miR-146a, miR-424, miR-450, miR-222, miR-17, miR-18a, miR-19b, miR-92a (miR-17/92 cluster) Prognostic biomarkersPresence in tissues(144,153)
miR-29, miR-20b, miR-18b Prognostic biomarkersPresence in cell lines and tissues(154156)
miR-223 Prognostic biomarkersPresence in PBMCs and cell lines(157)

[i] lncRNA, long non-coding RNA; miRNA/miR, microRNA; PBMCs, peripheral blood mononuclear cells.

Concerning lncRNAs in patients with MCL, it has been demonstrated that MALAT1 is overexpressed in human MCL tissues and cell lines compared to normal B-cells [a high international prognostic index (IPI) is present], and is associated with the lower overall survival of patients with MCL (146). Thus, MALAT1, located on 11q13 chromosome, can act as an oncogene in patients with MCL (regulation of the bioavailability of TGF-β) (146152) (Table IV and Fig. 2).

Finally, in Table IV, references of all the other miRNAs that have been observed in patients with MCL and used as prognostic biomarkers in clinical trials are presented (153157).

BL

BL is a type of aggressive B-NHL. It may be presented with any of three main clinical variants: Endemic BL, sporadic BL and the immunodeficiency-associated BL (158). In all types of BL, the dysregulation of the c-myc gene is observed (the gene is found at 8q24), presented with any one of the three known chromosomal translocations (159). The most common variant is t(8;14)(q24;q32), which involves c-myc and IGH (159).

The variant at t(2;8)(p12;q24) involves IGK and c-myc (160). The variant at t(8;22)(q24;q11) involves IGL and c-myc (160). In addition, a last variant of three-way translocation, t(8;14;18) has been identified (161).

Concerning miRNAs in patients with BL, it seems that MYC regulates and is regulated by numerous miRNAs (Table V), the most common of which are the following: miR-23a, miR-26a, miR-29b, miR-30d, miR-146a, miR-146b, miR-155, and miR-221 (162165) [widely used as diagnostic biomarkers (166173)] (Table V and Fig. 3).

Table V.

miRNAs and lncRNAs identified in patients with Burkitt's lymphoma.

Table V.

miRNAs and lncRNAs identified in patients with Burkitt's lymphoma.

miRNA(s)/lncRNAGenome location (if defined) Role/activationMolecular mechanism/sample(Refs.)
MINCR8q24.3 UncharacterizedInduction of MYC(173)
miR-23a, miR-26a, miR-29b, miR-30d, miR-146a, miR-146b, miR-155, miR-221 Diagnostic biomarkersPresence in tissues(165)
22-miRNA signature, miR-513a, miR-628, miR-9 Diagnostic biomarkersPresence in tissues(166,167)
39-miRNA signature, 19-miRNA signature, 49-miRNA signature Diagnostic biomarkersPresence in tissues(168171)
miR-34b, miR-29 family, miR-181b Diagnostic biomarkersPresence in cell lines and tissues(167,171173)

[i] lncRNA, long non-coding RNA; miRNA/miR, microRNA.

Concerning lncRNAs in patients with BL, 13 lncRNAs have been identified thus far (173). The most well-identified lncRNA in patients with BL is MINCR, located on chromosome 8q24.3, with an uncharacterized role; but it seems that it causes the induction of myc and modulates its transcriptional program (173).

Other indolent BCNHLs

There are also two other types of BCNHLs which exhibit an indolent course. These are MALT lymphomas and MZL, particularly the splenic type (SMZL).

None of the lncRNAs has been thus far identified as playing a major role in the the activation or progression of a B-cell to transform in any of these types of B-cell lymphomas.

Concerning miRNAs in SMZL, miR-96, miR-129, miR-29a, miR-29b-1, miR-182, miR-183, miR-335 and miR-593 can be used as diagnostic biomarkers, although without sufficient data to date (174) (Table VI and Fig. 3).

Table VI.

miRNAs identified in patients with splenic marginal zone lymphoma B-cell lymphoma and mucosa-associated lymphoid tissue lymphoma.

Table VI.

miRNAs identified in patients with splenic marginal zone lymphoma B-cell lymphoma and mucosa-associated lymphoid tissue lymphoma.

miRNA(s)Disease typeGenome location Role/activationMolecular mechanism/sample(Refs.)
miR-29a, miR-29b-1, miR-96, miR-129, miR-182, miR-183, miR-335, miR-593Splenic marginal zone lymphoma Diagnostic biomarkersPresence in tissues(174)
miR-127, miR-139, miR-335, miR-411, miR-451, miR-486Splenic marginal zone lymphoma Diagnostic biomarkersPresence in tissues(175)
27-miRNA signature, miR-142, miR-155, miR-203Mucosa-associated lymphoid tissue Diagnostic biomarkersPresence in tissues(176,177)
miR-142, miR-155Mucosa-associated lymphoid tissue Prognostic biomarkersPresence in tissues(177)

[i] miRNA/miR, microRNA.

As regards miRNAs in MALT lymphomas, miR-203 primarily, and secondly, miR-150, miR550, miR-124a, miR-518b and miR-539, have been widely recognizable as being present in gastric MALT lymphoma (175). Other miRNAs identified in MALT lymphomas are the following: The 27-miRNA signature, miR-142, miR-155, miR-203 miR-142 and miR-155 (176,177) (Table VI and Fig. 3).

b) HLs

There are two main types of HL: Classical Hodgkin lymphoma (9 out of 10 cases) and nodular lymphocyte predominant Hodgkin lymphoma (1 out of 10 cases) (178,179). There is a differentiation in morphology, phenotype and molecular features between both these types. Furthermore, classical HL alone can be subclassified into 4 more pathologic subtypes: i) Nodular sclerosing HL; ii) mixed-cellularity subtype; iii) lymphocyte-rich; and iv) lymphocyte-depleted HL (180182).

Compared to B-NHLs, only limited data are available on the expression of lncRNAs in HLs. As regards miRNAs in patients with HL Hodgkin, there are studies which show that low miR-135a levels lead to significantly poorer prognostic outcome in Hodgkin patients (183,184). The inhibition of let-7 and miR-9 leads to the prevention of plasma cell differentiation (184). In particular, the inhibition of miR-9 seems to lead to a decrease in cytokine production and a reduced ability in attracting inflammatory cells (185). In addition, miR-155, the 23-miRNA signature and 134- and 100-miRNA signature, 25-miRNA signature and miR-9-2 (methylation) can be used as diagnostic biomarkers in patients with HL (as they are presented in HL cell lines and tissues) (186193) (Table VII and Fig. 3).

Table VII.

miRNAs identified in patients with Hodgkin lymphoma.

Table VII.

miRNAs identified in patients with Hodgkin lymphoma.

miRNA(s)Genome location (if defined) Role/activationMolecular mechanism/sample(Refs.)
miR-155 Diagnostic biomarkersPresence in cell lines(185,186)
23-miRNA signature, 134-miRNA signature, 100-miRNA signature Diagnostic biomarkersPresence in cell lines and tissues(187,188)
25-miRNA signature and miR-9-2 (methylation) Diagnostic biomarkersPresence in tissues(189,190)
miR-135a Prognostic biomarkersPresence in tissues and cell lines(191)
miR-21, miR-30e/d, miR-92b, miR-124a (methylation) Prognostic biomarkersPresence in tissues(192,193)

[i] miRNA/miR, microRNA.

c) T-NHLs and NK-NHLs

T-cell lymphomas affect T-cells and they are divided into 4 major types: i) Extranodal T-cell lymphoma; ii) cutaneous T-cell lymphomas: Sézary syndrome and Mycosis fungoides; iii) anaplastic large cell lymphoma; and iv) angioimmunoblastic T-cell lymphoma. There is also a clinical entity known as aggressive NK-cell leukemia with an aggressive, systemic proliferation of NK cells; it can also be termed aggressive NK-cell lymphoma (194,195).

As regards miRNAs in T-cell and NK-cell lymphomas, very little is known so far. MiRNA-21, miRNA-155, miRNA-150, miRNA-142 and miRNA-494 are present in various forms of cutaneous T-cell lymphomas, compared to related benign disorders (196,197). miRNA-146a and miRNA-155 are also present in patients with cutaneous T-cell lymphomas (1). miRNA-223, miRNA-BART-20, miRNA-BART-8, miRNA-BART-16 and miRNA-BART-9 are EBV-encoded and are associated with the activation of the EBV oncoprotein, LMP-1 (197204) (Table VIII).

Table VIII.

miRNAs and lncRNAs identified in patients with T-cell and NK-cell lymphomas.

Table VIII.

miRNAs and lncRNAs identified in patients with T-cell and NK-cell lymphomas.

miRNA(s)/lncRNADisease typeGenome location (if defined) Role/activationMolecular mechanism/sample(Refs.)
miRNA-21NK-cell lymphoma-derived cell lines primary NKTCLs New biomarker or target in thetreatment of NKTCL.Regulation of apoptosis of NK-cell lymphoma cell lines via the PTEN/AKT signaling pathway(199)
miRNA-155NK-cell lymphoma cell lines Primary NKTCL specimens Potential molecular marker of NKTCLRegulation of inflammation, immune cells, and the differentiation and maturation of tumor cells(200)
miRNA-142Under-expression in NKTCLs lymphomas Two different forms (miRNA-142-3p and miRNA-412-5p) miRNA-142-3p is a potential target of therapyDownregulation of RICTOR(201,202)
miRNA-494NKTCLs Potential target of therapyDownregulation of PTEN(202)
miRNA-223NKTCLs EBV infectionDownregulation of PRDM1(203)
miRNA-16NKTCLs Novel target in NKTCL treatmentDownregulation of CDKN1A(197)
miRNA-BART-20NKTCLs EBV-encodedMaturation of NK-cells(204)
miRNA-BART-8NKTCLs EBV-encodedInduction of apoptosis(204)
miRNA-BART-16NKTCLs EBV-encodedInduction of cell-cell adhesion(204)
miRNA-BART-9NKTCLs EBV-encodedInduction of cell proliferation(204)
MALAT1Various types of T and NK cell lymphomas11q13.1Overexpression Prognostic marker and therapeutic target in T and NK cell lymphomas.Induction of BMI1 activation(195)

[i] lncRNA, long non-coding RNA; miRNA/miR, microRNA; NKTCL, natural-killer/T cell lymphoma.

Concerning lncRNAs in various types of T-cell and NK-cell lymphomas, MALAT1, located on chromosome 11q13.1, has been identified as being overexpressed and leads to the induction of BMI1 activation (197); that is the reason why MALAT1 can be used as prognostic marker and therapeutic target in T- and NK-cell lymphomas (195) (Table VIII).

d) Other common B-cell malignancies

MM, also known as plasma cell myeloma, is a fatal malignant hematological disorder which lead to the proliferation of monoclonal antibody-secreting plasma cells; the main criterion is the presence of clonal plasma cells >10% in bone marrow biopsy or in a biopsy from other tissues (plasmacytoma). MM accounts for 10% of all hematological malignancies (205).

Compared to all types of B-cell Lymphomas, very little is known about miRNA expression in patients with MM. As regards lncRNAs in patients with MM, the following have been observed (Table IX): i) GAS5, located on chromosome 1q25.1, acting as a tumor-suppressor by regulating the mTOR pathway (7786); ii) DLEU2, located on chromosome 13q14.3, acting as a tumor-suppressor by being a host of the miR-15a/16-1 cluster and targeting BCL2 (117120); iii) 3) MALAT1, located on chromosome 11q13, acting as an oncogene by regulating the bioavailability of TGF-β (146152); iv) MEG3, located on chromosome 14q32.2, acting as a tumor-suppressor by interacting with p53 and regulating p53 gene expression (206209); v) TUG1, located on chromosome 22q12.2, acting as an oncogene by being induced by p53 (150,152); vi) lnc-SENP5-4/NCBP2-AS2, located on chromosome 3q29, with an uncharacterized mode of action (85); vii) 7) lnc-CPSF2-2, located on chromosome 14q32, with an uncharacterized mode of action (85); viii) lnc-LRRC47-1/TP73-AS1, located on chromosome 1p36, with an uncharacterized mode of action (85); ix) lnc-ANGPTL1-3, located on chromosome 1q25, with an uncharacterized mode of action (85); x) lnc-WHSC2-2, located on chromosome 4p16.3, with an uncharacterized mode of action (85).

Table IX.

lncRNAs identified in patients with multiple myeloma.

Table IX.

lncRNAs identified in patients with multiple myeloma.

lncRNAGenome location Role/activationMolecular mechanism/sample(Refs.)
GAS51q25.1 Tumor-suppressorRegulation of mTOR pathway(7786)
DLEU213q14.3 Tumor-suppressorHost of miR-15a/16-1 cluster and targeting BCL2(117120)
MALAT111q13OncogeneRegulation of the bioavailability of TGF-β(146152)
MEG314q32.2 Tumor-suppressorInteraction with p53.(206209)
Regulation of P53 gene expression
TUG122q12.2OncogeneInduction by p53(150,152)
lnc-SENP5-4/NCBP2-AS23q29 UncharacterizedNot described(85)
lnc-CPSF2-214q32 UncharacterizedNot described(85)
lnc-LRRC47-1/TP73-AS11p36 UncharacterizedNot described(85)
lnc-ANGPTL1-31q25 UncharacterizedNot described(85)
lnc-WHSC2-24p16.3 UncharacterizedNot described(85)

[i] lncRNA, long non-coding RNA.

Anti-ncRNA therapeutic strategies in lymphoid disorders

There are specific strategies that can be used in order to target ncRNAs in tumor management. These are the following: i) Antisense oligonucleotides (ASOs), which can trigger RNaseH-mediated RNA degradation (210); ii) CRISPR/Cas9 genome editing technique which can effectively silence the transcription of the lncRNA-expressing loci (211,212); iii) viral vectors (adenovirus, lentivirus and retrovirus) which can be used as a RNA interference (RNAi) method and can lead to the knockdown of gene expression by neutralizing the targeted RNA through exogenous double-stranded RNA insertion (213215); and iv) nanomedicine, including lipid-based nanoparticles (liposomes) (216), polymer-based nanoparticles and micelles (217), dendrimers (218), carbon-based nanoparticles (219), and metallic and magnetic nanoparticles, such as gold nanoparticles (220,221).

All these novel therapeutic strategies targeting ncRNAs, have been tested to date in preclinical models with lymphoid disorders. For example, a viral vector carrying miR-28 has been delivered in DLBCL and BL xenografts and in murine models with B-lymphoma, with acceptable prophylactic and therapeutic effects (222).

Furthermore, the ASO strategy, such as LNA-anti-miR-155, has been used in a B-cell lymphoma murine model, exhibiting a significant effect in murine models (223). An anti-miR-155 oligonucleotide with the trademark Cobomarsen is currently being clinically nowadays in patients with cutaneous T-cell lymphoma (224).

Double-stranded RNAi and ASOs are the most commonly used lncRNA-targeted therapies. When the target lncRNA is localized in the nucleus, ASOs are the better therapeutic option (225).

The most important finding, by reviewing the literature, is that either the lncRNA expression signature or miRNA expression may help distinguish between the different lymphoma entities. In addition, as certain ncRNAs may be associated with the progression of lymphoma or drug resistance, these ncRNAs can be used as predictive and prognostic markers (225). However, the ncRNA regulatory network is complex and is not yet fully understood, as the majority of ncRNAs have not yet been thoroughly investigated. Nevertheless, ncRNA-based therapeutics can be combined, in the near future, with other techniques, such as chimeric antigen receptor (CAR) T-cell immunotherapy, the targeting of tumor cells, thus improving their therapeutic efficacy (226,227).

Conclusions and future perspectives

Contemporary developments in biology have been combined with insightful discoveries analyzing the role of ncRNAs, either miRNAs or lncRNAs in human tumors, particularly lymphomas, such as: BCNHLs, HLs, T-cell/NK cell NHLs (T-/NK-cell NHLs) and other B-cell malignancies, such as MM.

The present review aimed to provide a thorough summary of the current understanding of ncRNAs in lymphoid malignancies by summarizing, for the first time, to the best of our knowledge, the whole existing ncRNA (and not into different categories), miRNAs and lncRNAs, which are associated with lymphoid disorders.

The initial data suggest that mostly lncRNAs, play key roles in lymphangiogenesis, as a great number of them are deregulated in B-cell malignancies. However, this particular field is still in its infancy, with insufficient data; thus, further studies need to be performed.

Concerning the role of miRNAs as biomarkers in all lymphoid malignancies, ample data are available, although without immediate use in clinical practice. A number of miRNA biomarker studies to date on B-NHLs, HLs, T-/NK-NHLs and MM are not based on multi-center cooperations, and thus, in most cases, a number of reviews are non-overlapping and even contradictory.

For all the above reasons, further multi-center studies are warranted with the establishment of a standardized approach and the use of the same techniques: RT-qPCR, microarrays or next-generation sequencing (NGS). This is mandatory step in order to explore more thoroughly the role and functions of lncRNAs in normal B-cells and malignant B-cells; as well as to perform a more in-depth miRNA biomarker analysis in order to ensure that these molecules can be effectively used in daily practice. These tasks are both compelling and challenging in the next future for the prognosis and potential therapeutic targeting of all lymphoid malignancies; leading to a better treatment plan.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

Data sharing is not applicable to this article, as no datasets were generated or analyzed during the current study.

Authors' contributions

GD developed, planned, supervised the review and wrote the manuscript. MG created the figure and contributed to the writing of the manuscript. VZ supervised the review, contributed to the writing and revisions of the manuscript. DAS and SA collected relevant literature. VZ and GD confirm the authenticity of all the raw data All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

DAS is the Editor-in-Chief for the journal, but had no personal involvement in the reviewing process, or any influence in terms of adjudicating on the final decision, for this article. The other authors declare that they have no competing interests.

References

1 

Bardia A and Seifter E: Johns Hopkins Patients' Guide to Lymphoma. 1st edition. Jones and Bartlett Publishers, Inc.; pp. 1382010

2 

The Lymphoma Guide, . Information for Patients and Caregivers. Leukemia and Lymphoma Society; New York, USA: 2013

3 

World Health Organization: World Cancer Report 2014. IARC Publications; Lyon, France: pp. 348–528. 2014

4 

Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, Ghielmini M, Salles GA, Zelenetz AD and Jaffe ES: The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 127:2375–2390. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Coiffier B: Monoclonal antibody as therapy for malignant lymphomas. C R Biol. 329:241–254. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Siegel RL, Miller KD and Jemal A: Cancer statistics. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Küppers R, Klein U, Hansmann ML and Rajewsky K: Cellular origin of human B-cell lymphomas. N Engl J Med. 341:1520–1529. 1999. View Article : Google Scholar : PubMed/NCBI

8 

National Cancer Institute, . General information about adult Hodgkin Lymphoma. 2014.

9 

National Cancer Institute, . General Information about adult Non-Hodgkin Lymphoma. 2014.

10 

Hu L, Luo D, Zhou T, Tao Y, Feng J and Mei S: The association between non-Hodgkin lymphoma and organophosphate pesticides exposure: A meta-analysis. Environ Pollut. 231:319–328. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Yang L, Dong J, Jiang S, Shi W, Xu X, Huang H, You X and Liu H: Red and processed meat consumption increases risk for Non-Hodgkin lymphoma: A PRISMA-compliant meta-analysis of observational studies. Medicine. 94:e17292015. View Article : Google Scholar : PubMed/NCBI

12 

Solimini AG, Lombardi AM, Palazzo C and De Giusti M: Meat intake and non-Hodgkin lymphoma: A meta-analysis of observational studies. Cancer Causes Control. 27:595–606. 2016. View Article : Google Scholar : PubMed/NCBI

13 

National Cancer Institute, . Cancer Stat Facts: Non-Hodgkin Lymphoma. 2014.

14 

Marcus R, Sweetenham J and Williams L: Lymphoma: Pathology, diagnosis and treatment (2nd edition). Cambridge Medicine. 3262014.

15 

Tepper JE, Niederhuber JO, Armitage JH, Doroshow MB and Kastan JE: Childhood Lymphoma (5th edition): Abeloff's Clinical Oncology. Chapter. 97. Elsevier Inc.; 2014

16 

Kamper-Jørgensen M, Rostgaard KG, Zahm SH, Cozen W, Smedby KE, Sanjosé S, Chang ET, Zheng T, La Vecchia C, Serraino D, et al: Cigarette smoking and risk of Hodgkin lymphoma and its subtypes: A pooled analysis from the International Lymphoma Epidemiology Consortium (InterLymph). Ann Oncol. 24:2245–2255. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Manli JN, Bennani N and Feldman AL: Lymphoma classification update: T-cell lymphomas, Hodgkin lymphoma, and histiocytic/dendritic cell neoplasms. Expert Rev Hematol. 10:239–249. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Sheikhpour R, Pourhosseini F, Neamatzadeh H and Karimi R: Immunophenotype evaluation of Non-Hodgkin's lymphomas. Med J Islam Repub Iran. 31:1212017. View Article : Google Scholar : PubMed/NCBI

19 

Gibb EA, Brown CJ and Lam WL: The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 10:382011. View Article : Google Scholar : PubMed/NCBI

20 

Taft RJ, Pang KC, Mercer TR, Dinger M and Mattick JS: Non-coding RNAs: Regulators of disease. J Pathol. 220:126–139. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Prensner JR and Chinnaiyan AM: The emergence of lncRNAs in cancer biology. Cancer Discov. 1:391–407. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA and Prensner JR: Coordinated regulation of Polycomb Group Complexes through microRNAs in Cancer. Cancer Cell. 20:187–199. 2011. View Article : Google Scholar : PubMed/NCBI

23 

He Y, Vogelstein B, Velculescu VE, Papadopoulos N and Kinzler KW: The antisense transcriptomes of human cells. Science. 322:1855–1857. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C and Irvine KM: The regulated retrotransposon transcriptome of mammalian cells. Nat Genet. 41:563–571. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Pérez-Vera P, Reyes-León A and Fuentes-Pananá EM: Signaling proteins and transcription factors in normal and malignant early B cell development. Bone Marrow Res. 2011:5027512011. View Article : Google Scholar : PubMed/NCBI

26 

Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P: Molecular Biology of the Cell. T cells and B cells derive their names from the organs in which they develop. T cells develop in the thymus and B cells, in mammals, develop in the bone marrow in adults or the liver in fetuses. Garland Science; New York, NY: pp. pg13672002

27 

Petri A, Dybkaer K, Bogsted M, Thrue CA, Hagedorn PH, Schmitz A, Bodker JS, Johnsen HE and Kauppinen S: Long noncoding RNA expression during Human B-cell development. PLoS One. 10:e01382362015. View Article : Google Scholar : PubMed/NCBI

28 

Herzog S, Reth M and Jumaa H: Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol. 9:195–205. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Graham LD, Pedersen SK, Brown GS, Ho T, Kassir Z, Moynihan AT, Vizgoft EK, Dunne R, Pimlott L, Young GP, et al: Colorectal Neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer. 2:829–840. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Ellis BC, Molloy PL and Graham LD: CRNDE: A long NonCoding RNA involved in CanceR, neurobiology, and development. Front Genet. 3:2702012. View Article : Google Scholar : PubMed/NCBI

31 

Ellis BC, Graham LD and Molloy PL: CRNDE, a long noncoding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim Biophys Acta. 1843:372–386. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Chen CZ, Li L, Lodish HF and Bartel DP: MicroRNAs modulate hematopoietic lineage differentiation. Science. 303:83–86. 2004. View Article : Google Scholar : PubMed/NCBI

33 

de Yebenes VG, Belver L, Pisano DG, Gonzalez S, Villasante A, Croce C, He L and Ramiro AR: miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J Exp Med. 205:2199–206. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Teng G, Hakimpour P, Landgraf P, Rice A, Tuschl T, Casellas R and Papavasiliou FN: MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity. 28:621–629. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Smith A, Howell D, Patmore R, Jack A and Roman E: Incidence of haematological malignancy by sub-type: A report from the Haematological malignancy research network. Br J Cancer. 105:1684–1692. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Li S, Young KH and Medeiros LJ: Diffuse large B-cell lymphoma. Pathology. 50:74–87. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Lenz G, Wright GW, Emre NC, Kohlhammer H, Dave SS, Davis RE, Carty S, Lam LT, Shaffer AL, Xiao W, et al: Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci USA. 105:13520–13525. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Sukswai N, Lyapichev K, Khoury JD and Medeiros LJ: Diffuse large B-cell lymphoma variants: An update. Pathology. 52:53–67. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Shimada K, Hayakawa F and Kiyoi H: Biology and management of primary effusion lymphoma. Blood. 132:1879–1888. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Cheng Y, Xiao Y, Zhou R, Liao Y, Zhou J and Ma X: Prognostic significance of Helicobacter pylori-infection in gastric diffuse large B-cell lymphoma. BMC Cancer. 19:8422019. View Article : Google Scholar : PubMed/NCBI

41 

Kuo SH, Yeh KH, Chen LT, Lin CW, Hsu PN, Hsu C, Wu MS, Tzeng YS, Tsai HJ, Wang HP and Cheng AL: Helicobacter pylori-related diffuse large B-cell lymphoma of the stomach: A distinct entity with lower aggressiveness and higher chemosensitivity. Blood Cancer J. 4:e2202014. View Article : Google Scholar : PubMed/NCBI

42 

Abramson JS: Hitting back at lymphoma: How do modern diagnostics identify high-risk diffuse large B-cell lymphoma subsets and alter treatment? Cancer. 125:3111–3120. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Chavez JC and Locke FL: CAR T cell therapy for B-cell lymphomas. Best Pract Res Clin Haematol. 31:135–146. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Liu Y and Barta SK: Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment. Am J Hematol. 94:604–616. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Roehle A, Hoefig KP, Repsilber D, Thorns C, Ziepert M, Wesche KO, Thiere M, Loeffler M, Klapper W, Pfreundschuh M, et al: MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br J Haematol. 142:732–744. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Lawrie CH, Chi J, Taylor S, Tramonti D, Ballabio E, Palazzo S, Saunders NJ, Pezzella F, Boultwood J, Wainscoat JS and Hatton CS: Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J Cell Mol Med. 13:1248–1260. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Caramuta S, Lee L, Ozata DM, Akçakaya P, Georgii-Hemming P, Xie H, Amini RM, Lawrie CH, Enblad G, Larsson C, et al: Role of microRNAs and microRNA machinery in the pathogenesis of diffuse large B-cell lymphoma. Blood Cancer J. 3:e1522013. View Article : Google Scholar : PubMed/NCBI

48 

Lawrie CH, Saunders NJ, Soneji S, Palazzo S, Dunlop HM, Cooper CD, Brown PJ, Troussard X, Mossafa H, Enver T, et al: MicroRNA expression in lymphocyte development and malignancy. Leukemia. 22:1440–1446. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Zhong H, Xu L, Zhong JH, Xiao F, Liu Q, Huang HH and Chen FY: Clinical and prognostic significance of miR-155 and miR-146a expression levels in formalin-fixed/paraffin-embedded tissue of patients with diffuse large B-cell lymphoma. Exp Ther Med. 3:763–770. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA, Lawrence MS, Roemer MGM, Li AJ, Ziepert M, et al: Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med. 24:679–690. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Zhou K, Feng X, Wang Y, Liu Y, Tian L, Zuo Z, Yi S, Wei X, Song Y and Qiu L: miR-223 is repressed and correlates with inferior clinical features in mantle cell lymphoma through targeting SOX11. Exp Hematol. 58:27–34. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Bouteloup M, Verney A, Rachinel N, Callet-Bauchu E, Ffrench M, Coiffier B, Magaud JP, Berger F, Salles GA and Traverse-Glehen A: MicroRNA expression profile in splenic marginal zone lymphoma. Br J Haematol. 156:279–281. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S, Barbarotto E, Cimmino A, Adair B, Wojcik SE, et al: Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 305:59–67. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM and Sczakiel G: A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 28:655–661. 2010. View Article : Google Scholar : PubMed/NCBI

55 

He M, Gao L, Zhang S, Tao L, Wang J, Yang J and Zhu M: Prognostic significance of miR-34a and its target proteins of FOXP1, p53, and BCL2 in gastric MALT lymphoma and DLBCL. Gastric Cancer. 17:431–441. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Jia YJ, Liu ZB, Wang WG, Sun CB, Wei P, Yang YL, You MJ, Yu BH, Li XQ and Zhou XY: HDAC6 regulates microRNA-27b that suppresses proliferation, promotes apoptosis and target MET in diffuse large B-cell lymphoma. Leukemia. 32:703–711. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Gu L, Song G, Chen L, Nie Z, He B, Pan Y, Xu Y, Li R, Gao T, Cho WC and Wang S: Inhibition of miR-21 induces biological and behavioral alterations in diffuse large B-cell lymphoma. Acta Haematol. 130:87–94. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Zheng Z, Li X, Zhu Y, Gu W, Xie X and Jiang J: Prognostic significance of miRNA in patients with diffuse large B-cell lymphoma: A meta-analysis. Cell Physiol Biochem. 39:1891–1904. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Pillar N, Bairey O, Goldschmidt N, Fellig Y, Rosenblat Y, Shehtman I, Haguel D, Raanani P, Shomron N and Siegal T: MicroRNAs as predictors for CNS relapse of systemic diffuse large B-cell lymphoma. Oncotarget. 8:86020–86030. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, Banham AH, Pezzella F, Boultwood J, Wainscoat JS, et al: Detection of elevated levels of tumourassociated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 141:672–675. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Bomben R, Gobessi S, Dal Bo M, Volinia M, Marconi D, Tissino E, Benedetti D, Zucchetto A, Rossi D, Gaidano G, et al: The miR-17~92 family regulates the response to Toll-like receptor 9 triggering of CLL cells with unmutated IGHV genes. Leukemia. 26:1584–1593. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Calin GA, Ferracin M, Cimmino A, Di Leva GD, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, et al: A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 353:1793–1801. 2005. View Article : Google Scholar : PubMed/NCBI

63 

Ferrajoli A, Shanafelt TD, Ivan C, Ivan C, Shimizu M, Rabe KG, Nouraee N, Ikuo M, Ghosh AK, Lerner S, et al: Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood. 122:1891–1899. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Iqbal J, Shen Y, Huang X, Liu Y, Wake L, Liu C, Deffenbacher K, Lachel CM, Wang C, Rohr J, et al: Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood. 125:1137–1145. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Ferracin M, Zagatti B, Rizzotto L, Cavazzini F, Veronese A, Ciccone M, Saccenti E, Lupini L, Grilli A, De Angeli C, et al: MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia. Mol Cancer. 9:1232010. View Article : Google Scholar : PubMed/NCBI

66 

Khare D, Goldschmidt N, Bardugo A, Gur-Wahnon D, Ben-Dov IZ and Avni B: Plasma microRNA profiling: Exploring better biomarkers for lymphoma surveillance. PLoS One. 12:e01877222017. View Article : Google Scholar : PubMed/NCBI

67 

Meng Y, Quan L and Liu A: Identification of key microRNAs associated with diffuse large B-cell lymphoma by analyzing serum microRNA expressions. Gene. 642:205–211. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Song G, Gu L, Li J, Tang Z, Liu H, Chen B, Sun X, He B, Pan Y, Wang S and Cho WC: Serum microRNA expression profiling predict response to R-CHOP treatment in diffuse large B cell lymphoma patients. Ann Hematol. 93:1735–1743. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Leivonen SK, Icay K, Jäntti K, Siren I, Liu C, Alkodsi A, Cervera A, Ludvigsen M, Hamilton-Dutoit SJ, d'Amore F, et al: MicroRNAs regulate key cell survival pathways and mediate chemosensitivity during progression of diffuse large B-cell lymphoma. Blood Cancer J. 7:6542017. View Article : Google Scholar : PubMed/NCBI

70 

Thompson MA, Edmonds MD, Liang S, McClintock-Treep S, Wang X, Li S and Eischen CM: miR-31 and miR-17-5p levels change during transformation of follicular lymphoma. Human Pathol. 50:118–126. 2016. View Article : Google Scholar

71 

Leich E, Zamo A, Horn H, Haralambieva E, Puppe B, Gascoyne RD, Chan WC, Braziel RM, Rimsza LM, Weisenburger DD, et al: MicroRNA profiles of t(14;18)-negative follicular lymphoma support a late germinal center B-cell phenotype. Blood. 118:5550–5558. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Peng W, Wu J and Feng J: LincRNA-p21 predicts favorable clinical outcome and impairs tumorigenesis in diffuse large B cell lymphoma patients treated with R-CHOP chemotherapy. Clin Exp Med. 17:1–8. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Blume CJ, Hotz-Wagenblatt A, Hullein J, Sellner L, Jethwa A, Stolz T, Slabicki M, Lee K, Sharathchandra A, Benner A, et al: p53-dependent non-coding RNA networks in chronic lymphocytic leukemia. Leukemia. 29:2015–2023. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, et al: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 142:409–419. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG and Gorospe M: LincRNA-p21 suppresses target mRNA translation. Mol Cell. 47:648–655. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Peponi E, Drakos E, Reyes G, Leventaki V, Rassidakis GZ and Medeiros LJ: Activation of mammalian target of rapamycin signaling promotes cell cycle progression and protects cells from apoptosis in mantle cell lymphoma. The Am J Pathol. 169:2171–2180. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Mourtada-Maarabouni M and Williams GT: Role of GAS5 noncoding RNA in mediating the effects of rapamycin and its analogues on mantle cell lymphoma cells. Clin Lymphoma Myeloma Leuk. 14:468–473. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Coccia EM, Cicala C, Charlesworth A, Ciccarelli C, Rossi GB, Philipson L and Sorrentino V: Regulation and expression of a growth arrest-specific gene (gas5) during growth, differentiation, and development. Mol Cell Biol. 12:3514–3521. 1992. View Article : Google Scholar : PubMed/NCBI

79 

Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F and Williams GT: GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 28:195–208. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Nakamura Y, Takahashi N, Kakegawa E, Yoshida K, Ito Y, Kayano H, Niitsu N, Jinnai I and Bessho M: The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t(1;3)(q25;q27) in a patient with B-cell lymphoma. Cancer Genet Cytogenet. 182:144–149. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Qiao HP, Gao WS, Huo JX and Yang ZS: Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prev. 14:1077–1082. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Shi X, Sun M, Liu H, Yao Y, Kong R, Chen F and Song Y: A critical role for the long non-coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer. Mol Carcinog. 54 (Suppl 1):E1–E12. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Williams GT, Mourtada-Maarabouni M and Farzaneh F: A critical role for non-coding RNA GAS5 in growth arrest and rapamycin inhibition in human T-lymphocytes. Biochem Soc Trans. 39:482–486. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Mourtada-Maarabouni M, Hasan AM, Farzaneh F and Williams GT: Inhibition of human T-cell proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA growth-arrest-specific transcript 5 (GAS5). Mol Pharmacol. 78:19–28. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Ronchetti D, Agnelli L, Taiana E, Galletti S, Manzoni M, Todoerti K, Musto P, Strozzi F and Neri A: Distinct lncRNA transcriptional fingerprints characterize progressive stages of multiple myeloma. Oncotarget. 7:14814–14830. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Kino T, Hurt DE, Ichijo T, Nader N and Chrousos GP: Noncoding RNA gas5 is a growth arrest- and starvationassociated repressor of the glucocorticoid receptor. Sci Signal. 3:ra82010. View Article : Google Scholar : PubMed/NCBI

87 

Conde L, Riby J, Zhang J, Bracci PM and Skibola CF: Copy number variation analysis on a non-Hodgkin lymphoma case-control study identifies an 11q25 duplication associated with diffuse large B-cell lymphoma. PLoS One. 9:e1053822014. View Article : Google Scholar : PubMed/NCBI

88 

Lu Z, Pannunzio NR, Greisman HA, Casero D, Parekh C and Lieber MR: Convergent BCL6 and lncRNA promoters demarcate the major breakpoint region for BCL6 translocations. Blood. 126:1730–1731. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Peng W and Feng J: Long noncoding RNA LUNAR1 associates with cell proliferation and predicts a poor prognosis in diffuse large B-cell lymphoma. Biomed Pharmacother. 77:65–71. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Trimarchi T, Bilal E, Ntziachristos P, Fabbri G, DallaFavera R, Tsirigos A and Aifantis I: Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia. Cell. 158:593–606. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Peng W, Fan H, Wu G, Wu J and Feng J: Upregulation of long noncoding RNA PEG10 associates with poor prognosis in diffuse large B cell lymphoma with facilitating tumorigenicity. Clin Exp Med. 16:177–182. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Ono R, Kobayashi S, Wagatsuma H, Aisaka K, Kohda T, Kaneko-Ishino T and Ishino F: A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics. 73:232–237. 2001. View Article : Google Scholar : PubMed/NCBI

93 

Li CM, Margolin AA, Salas M, Memeo L, Mansukhani M, Hibshoosh H, Szabolcs M, Klinakis A and Tycko B: PEG10 is a c-MYC target gene in cancer cells. Cancer Res. 66:665–672. 2006. View Article : Google Scholar : PubMed/NCBI

94 

Peng W, Wu J and Feng J: Long noncoding RNA HULC predicts poor clinical outcome and represents pro-oncogenic activity in diffuse large B-cell lymphoma. Biomed Pharmacother. 79:188–193. 2016. View Article : Google Scholar : PubMed/NCBI

95 

Hammerle M, Gutschner T, Uckelmann H, Ozgur S, Fiskin E, Gross M, Skawran B, Geffers R, Longerich T, Breuhahn K, et al: Posttranscriptional destabilization of the liver-specific long noncoding RNA HULC by the IGF2 mRNA-binding protein 1 (IGF2BP1). Hepatology. 58:1703–1712. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Xie H, Ma H and Zhou D: Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. Biomed Res Int. 2013:1361062013. View Article : Google Scholar : PubMed/NCBI

97 

Peng W, Gao W and Feng J: Long noncoding RNA HULC is a novel biomarker of poor prognosis in patients with pancreatic cancer. Med Oncol. 31:3462014. View Article : Google Scholar : PubMed/NCBI

98 

Yan Y, Han J, Li Z, Yang H, Sui Y and Wang M: Elevated RNA expression of long noncoding HOTAIR promotes cell proliferation and predicts a poor prognosis in patients with diffuse large B cell lymphoma. Mol Med Rep. 13:5125–5131. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Hallek M, Shanafelt TD and Eichhorst B: Chronic lymphocytic leukaemia. Lancet. 391:1524–1537. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Tresckow JV, Eichhorst B, Bahlo J and Hallek M: The treatment of chronic lymphatic leukemia. Dtsch Arztebl Int. 116:41–46. 2019.PubMed/NCBI

101 

Choi SM and O'Malley DP: Diagnostically relevant updates to the WHO classification of lymphoid neoplasms. Ann Diagn Pathol. 37:67–74. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Matutes E, Owusu-Ankomah K, Morilla R, Garcia Marco J, Houlihan A, Que TH and Catovsky D: The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia. 8:1640–1645. 1994.PubMed/NCBI

103 

Hallek M: Chronic lymphocytic leukemia: Update on diagnosis, risk stratification, and treatment. Am J Hematol. 92:946–965. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Deans JP and Polyak MJ: FMC7 is an epitope of CD20. Blood. 111:24922008. View Article : Google Scholar : PubMed/NCBI

105 

Palumbo GA, Parrinello N, Fargione G, Cardillo K, Chiarenza A, Berretta S, Conticello C, Villari L and Di Raimondo F: CD200 expression may help in differential diagnosis between mantle cell lymphoma and B-cell chronic lymphocytic leukemia. Leuk Res. 33:1212–1216. 2009. View Article : Google Scholar : PubMed/NCBI

106 

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI

107 

Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG and Keating MJ: Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood. 119:1162–1172. 2012. View Article : Google Scholar : PubMed/NCBI

108 

Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D, Fabbri M, Lerner S, Barron LL, Rassenti LZ, et al: MicroRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood. 116:945–952. 2010. View Article : Google Scholar : PubMed/NCBI

109 

Visone R, Veronese A, Balatti V and Croce CM: MiR-181b: New perspective to evaluate disease progression in chronic lymphocytic leukemia. Oncotarget. 3:195–202. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Cui B, Chen L, Zhang S, Mraz M, Fecteau JF, Yu J, Ghia EM, Zhang L, Bao L, Rassenti LZ, et al: MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood. 124:546–554. 2014. View Article : Google Scholar : PubMed/NCBI

111 

Caivano A, La Rocca F, Simeon V, Girasole M, Dinarelli S, Laurenzana I, De Stradis A, De Luca L, Trino S, Traficante A, et al: MicroRNA-155 in serum-derived extracellular vesicles as a potential biomarker for hematologic malignancies-a short report. Cell Oncol (Dordr). 40:97–103. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Filip AA, Grenda A, Popek S, Koczkodaj D, Wojnowska MM, Budzyński M, Szczepanek EW, Zmorzyński S, Karczmarczyk A and Giannopoulos K: Expression of circulating miRNAs associated with lymphocyte differentiation and activation in CLL-another piece in the puzzle. Ann Hematol. 96:33–50. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Gaidano G, Foà R and Dalla-Favera R: Molecular pathogenesis of chronic lymphocytic leukemia. J Clin Invest. 122:3432–3438. 2012. View Article : Google Scholar : PubMed/NCBI

114 

Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M and Lichter P: Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 343:1910–1916. 2000. View Article : Google Scholar : PubMed/NCBI

115 

Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, et al: miR-15 and miR16 induce apoptosis by targetinag BCL2. Proc Natl Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI

116 

Fathullahzadeh S, Mirzaei H, Honardoost MA, Sahebkar A and Salehi M: Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther. 23:327–332. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, Ambesi-Impiombato A, Califano A, Migliazza A, Bhagat G and Dalla-Favera R: The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 17:28–40. 2010. View Article : Google Scholar : PubMed/NCBI

118 

Lerner M, Harada M, Loven J, Castro J, Davis Z, Oscier D, Henriksson M, Sangfelt O, Grander D and Corcoran MM: DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp Cell Res. 315:2941–2952. 2009. View Article : Google Scholar : PubMed/NCBI

119 

Garding A, Bhattacharya N, Claus R, Ruppel M, Tschuch C, Filarsky K, Idler I, Zucknick M, Caudron-Herger M, Oakes C, et al: Epigenetic upregulation of lncRNAs at 13q14.3 in leukemia is linked to the In Cis downregulation of a gene cluster that targets NF-kB. PLoS Genet. 9:e10033732013. View Article : Google Scholar : PubMed/NCBI

120 

Baer C, Oakes CC and Ruppert AS: Epigenetic silencing of miR-708 enhances NF-κB signaling in chronic lymphocytic leukemia. Int J Cancer. 137:1352–1361. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A and Lawrence JB: An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 33:717–726. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N and Hirose T: Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J. 31:4020–4034. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Sattari A, Siddiqui H, Moshiri F, Ngankeu A, Nakamura T, Kipps TJ and Croce CM: Upregulation of long noncoding RNA MIAT in aggressive form of chronic lymphocytic leukemias. Oncotarget. 7:54174–54182. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, et al: Identification of a novel noncoding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 51:1087–1099. 2006. View Article : Google Scholar : PubMed/NCBI

125 

Ip JY and Nakagawa S: Long non-coding RNAs in nuclear bodies. Dev Growth Differ. 54:44–54. 2012. View Article : Google Scholar : PubMed/NCBI

126 

Sheik Mohamed J, Gaughwin PM, Lim B, Robson P and Lipovich L: Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA. 16:324–337. 2010. View Article : Google Scholar : PubMed/NCBI

127 

Ferreira PG, Jares P, Rico D, Gomez-López G, Martínez-Trillos A, Villamor N, Ecker S, Gonzalez-Perez A, Knowles DG, Monlong J, et al: Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia. Genome Res. 24:212–226. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Ronchetti D, Manzoni M, Agnelli L and Vinci C: lncRNA profiling in early-stage chronic lymphocytic leukemia identifies transcriptional fingerprints with relevance in clinical outcome. Blood Cancer J. 6:e4682016. View Article : Google Scholar : PubMed/NCBI

129 

Park SM, Park SJ, Kim HJ, Kwon OH, Kang TW, Sohn HA, Kim SK, Moo Noh S, Song KS, Jang SJ, et al: A known expressed sequence tag, BM742401, is a potent lincRNA inhibiting cancer metastasis. Exp Mol Med. 45:e312013. View Article : Google Scholar : PubMed/NCBI

130 

Wang LQ, Wong KY, Li ZH and Chim CS: Epigenetic silencing of tumor suppressor long non-coding RNA BM742401 in chronic lymphocytic leukemia. Oncotarget. 7:82400–82410. 2016. View Article : Google Scholar : PubMed/NCBI

131 

Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E and Dahlberg JE: Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 102:3627–3632. 2005. View Article : Google Scholar : PubMed/NCBI

132 

Tam W: Identification and characterization of human BIC, a gene on chromosome 21 that encodes a noncoding RNA. Gene. 274:157–167. 2001. View Article : Google Scholar : PubMed/NCBI

133 

Elton TS, Selemon H, Elton SM and Parinandi NL: Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 532:1–12. 2013. View Article : Google Scholar : PubMed/NCBI

134 

Stamatopoulos B, Van Damme M, Crompot E, Dessars B, Housni HE, Mineur P, Meuleman N, Bron D and Lagneaux L: Opposite prognostic significance of cellular and serum circulating MicroRNA-150 in patients with chronic lymphocytic leukemia. Mol Med. 21:123–133. 2015. View Article : Google Scholar : PubMed/NCBI

135 

Georgiadis P, Liampa I, Hebels DG, Krauskopf J, Chatziioannou A, Valavanis I, de Kok TMCM, Kleinjans JCS, Bergdahl IA, Melin B, et al: Evolving DNA methylation and gene expression markers of B-cell chronic lymphocytic leukemia are present in pre-diagnostic blood samples more than 10 years prior to diagnosis. BMC Genomics. 18:7282017. View Article : Google Scholar : PubMed/NCBI

136 

Gascoyne RD, Nadel B, Pasqualucci L, Fitzgibbon J, Payton JE, Melnick A, Weigert O, Tarte K, Gribben JG, Friedberg JW, et al: Follicular lymphoma: State-of-the-art ICML workshop in Lugano 2015. Hematological Oncol. 35:397–407. 2017. View Article : Google Scholar

137 

Boughan K and Caimi PF: Follicular lymphoma: Diagnostic and prognostic considerations in initial treatment approach. Curr Oncol Rep. 21:632019. View Article : Google Scholar : PubMed/NCBI

138 

Pan Y, Li H, Guo Y, Luo Y, Li H, Xu Y, Deng J and Sun B: A pilot study of long noncoding RNA expression profiling by microarray in follicular lymphoma. Gene. 577:132–139. 2016. View Article : Google Scholar : PubMed/NCBI

139 

Wang W, Corrigan-Cummins M, Hudson J, Maric I, Simakova O, Neelapu SS, Kwak LW, Janik JE, Gause B, Jaffe ES and Calvo KR: MicroRNA profiling of follicular lymphoma identifies microRNAs related to cell proliferation and tumor response. Haematologica. 97:586–594. 2012. View Article : Google Scholar : PubMed/NCBI

140 

Arribas AJ, Campos-Martín Y, Gómez-Abad C, Algara P, Sánchez-Beato M, Rodriguez-Pinilla MS, Montes-Moreno S, Martinez N, Alves-Ferreira J, Piris MA and Mollejo M: Nodal marginal zone lymphoma: Gene expression and miRNA profiling identify diagnostic markers and potential therapeutic targets. Blood. 119:e9–e21. 2012. View Article : Google Scholar : PubMed/NCBI

141 

Jares P, Colomer D and Campo E: Molecular pathogenesis of mantle cell lymphoma. J Clin Invest. 122:3416–3423. 2012. View Article : Google Scholar : PubMed/NCBI

142 

Carvajal-Cuenca A, Sua LF, Silva NM, Pittaluga S, Royo C, Song JY, Sargent RL, Espinet B, Climent F, Jacobs SA, et al: In situ mantle cell lymphoma: Clinical implications of an incidental finding with indolent clinical behavior. Haematologica. 97:270–278. 2012. View Article : Google Scholar : PubMed/NCBI

143 

Navarro A, Beà S, Fernández V, Prieto M, Salaverria I, Jares P, Hartmann E, Mozos A, López-Guillermo A, Villamor N, et al: MicroRNA expression, chromosomal alterations, and immunoglobulin variable heavy chain hypermutations in Mantle cell lymphomas. Cancer Res. 69:7071–7078. 2009. View Article : Google Scholar : PubMed/NCBI

144 

Chen RW, Bemis LT, Amato CM, Myint H, Tran H, Birks DK, Eckhardt SG and Robinson WA: Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood. 112:822–829. 2008. View Article : Google Scholar : PubMed/NCBI

145 

Iqbal J, Shen Y, Liu Y, Fu K, Jaffe ES, Liu C, Liu Z, Lachel CM, Deffenbacher K, Greiner TC, et al: Genome-wide miRNA profiling of mantle cell lymphoma reveals a distinct subgroup with poor prognosis. Blood. 119:4939–4948. 2012. View Article : Google Scholar : PubMed/NCBI

146 

Wang X, Sehgal L, Jain N, Khashab T, Mathur R and Samaniego F: LncRNA MALAT1 promotes development of mantle cell lymphoma by associating with EZH2. J Transl Med. 14:3462016. View Article : Google Scholar : PubMed/NCBI

147 

Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 39:925–938. 2010. View Article : Google Scholar : PubMed/NCBI

148 

Yang F, Yi F, Han X, Du Q and Liang Z: MALAT-1 interacts with hnRNP C in cell cycle regulation. FEBS Lett. 587:3175–3181. 2013. View Article : Google Scholar : PubMed/NCBI

149 

Cho SF, Chang YC, Chang CS, Lin SF, Liu YC, Hsiao HH, Chang JG and Liu TC: MALAT1 long non-coding RNA is overexpressed in multiple myeloma and may serve as a marker to predict disease progression. BMC Cancer. 14:8092014. View Article : Google Scholar : PubMed/NCBI

150 

Isin M, Ozgur E, Cetin G, Erten N, Aktan M, Gezer U and Dalay N: Investigation of circulating lncRNAs in B-cell neoplasms. Clin Chim Acta. 431:255–259. 2014. View Article : Google Scholar : PubMed/NCBI

151 

Li B, Chen P, Qu J, Shi L and Zhuang W, Fu J, Li J, Zhang X, Sun Y and Zhuang W: Activation of LTBP3 gene by a long noncoding RNA (lncRNA) MALAT1 transcript in mesenchymal stem cells from multiple myeloma. J Biol Chem. 289:29365–29375. 2014. View Article : Google Scholar : PubMed/NCBI

152 

Matsumoto T and Abe M: TGF-β-related mechanisms of bone destruction in multiple myeloma. Bone. 48:129–134. 2011. View Article : Google Scholar : PubMed/NCBI

153 

Arakawa F, Kimura Y, Yoshida N, Miyoshi H, Doi A, Yasuda K, Nakajima K, Kiyasu J, Niino D, Sugita Y, et al: Identification of miR-15b as a transformation-related factor in mantle cell lymphoma. Int J Oncol. 48:485–492. 2016. View Article : Google Scholar : PubMed/NCBI

154 

Roisman A, Huamán Garaicoa F, Metrebian F, Narbaitz M, Kohan D, García Rivello H, Fernandez I, Pavlovsky A, Pavlovsky M, Hernández L and Slavutsky I: SOXC and miR17-92 gene expression profiling defines two subgroups with different clinical outcome in mantle cell lymphoma. Genes Chromosomes Cancer. 55:531–540. 2016. View Article : Google Scholar : PubMed/NCBI

155 

Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W, Dessureault S, Moscinski LC, Rezania D, Dalton WS, et al: microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood. 115:2630–2639. 2010. View Article : Google Scholar : PubMed/NCBI

156 

Di Lisio L, Gomez-López G, Sánchez-Beato M, Gómez-Abad C, Rodrıguez ME, Villuendas R, Ferreira BI, Carro A, Rico D, Mollejo M, et al: Mantle cell lymphoma: Transcriptional regulation by microRNAs. Leukemia. 24:1335–1342. 2010. View Article : Google Scholar : PubMed/NCBI

157 

Husby S, Ralfkiaer U, Garde C, Zandi R, Ek S, Kolstad A, Jerkeman M, Laurell A, Räty R, Pedersen LB, et al: miR-18b overexpression identifies mantle cell lymphoma patients with poor outcome and improves the MIPI-B prognosticator. Blood. 125:2669–2677. 2015. View Article : Google Scholar : PubMed/NCBI

158 

Molyneux E, Rochford R, Griffin B, Newton R, Jackson G, Menon G, Harrison C, Israels T and Bailey S: Burkitt's lymphoma. Lancet. 379:1234–1244. 2012. View Article : Google Scholar : PubMed/NCBI

159 

Hoffman R: Hematology: Basic Principles and Practice (5th edition). Churchill Livingstone/Elsevier; Philadelphia, PA: pp. 1304–1305. 2009

160 

Smardova J, Grochova D, Fabian P, Moulis M, Smarda J, Falkova I, Ravcukova B, Vankova J and Vasova I: An unusual p53 mutation detected in Burkitt's lymphoma: 30 bp duplication. Oncol Rep. 20:773–778. 2008.PubMed/NCBI

161 

Liu D, Shimonov J, Primanneni S, Lai Y, Ahmed T and Seiter K: t(8;14;18): A 3-way chromosome translocation in two patients with Burkitt's lymphoma/leukemia. Mol Cancer. 6:352007. View Article : Google Scholar : PubMed/NCBI

162 

Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF, Di Virgilio M, Reina San-Martin B, Heidkamp G, Schwickert TA, et al: MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity. 28:630–638. 2008. View Article : Google Scholar : PubMed/NCBI

163 

Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT and Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI

164 

Leucci E, Cocco M, Onnis A, De Falco G, van Cleef P, Bellan C, van Rijk A, Nyagol J, Byakika B, Lazzi S, et al: MYC translocation-negative classical Burkitt lymphoma cases: An alternative pathogenetic mechanism involving miRNA deregulation. J Pathol. 216:440–450. 2008. View Article : Google Scholar : PubMed/NCBI

165 

Lenze D, Leoncini L, Hummel M, Volinia S, Liu CG, Amato T, De Falco G, Githanga J, Horn H, Nyagol J, et al: The different epidemiologic subtypes of Burkitt lymphoma share a homogenous micro RNA profile distinct from diffuse large B-cell lymphoma. Leukemia. 25:1869–1876. 2011. View Article : Google Scholar : PubMed/NCBI

166 

Hezaveh K, Kloetgen A, Bernhart SH, Mahapatra KD, Lenze D, Richter J, Haake A, Bergmann AK, Brors B, Burkhardt B, et al: Alterations of microRNA and microRNA-regulated messenger RNA expression in germinal center B-cell lymphomas determined by integrative sequencing analysis. Haematologica. 101:1380–1389. 2016. View Article : Google Scholar : PubMed/NCBI

167 

Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Tikhonenko TA and Mendell JT: Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 40:43–50. 2008. View Article : Google Scholar : PubMed/NCBI

168 

Bueno MJ, Gómez de Cedron M, Gomez-López G, Pérez de Castro I, Di Lisio L, Montes-Moreno S, Martinez N, Guerrero M, Sanchez-Martinez R, Santos J, et al: Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway. Blood. 117:6255–6266. 2011. View Article : Google Scholar : PubMed/NCBI

169 

Oduor CI, Kaymaz Y, Chelimo K, Otieno JA, Ongecha JM, Moormann AM and Bailey JA: Integrative microRNA and mRNA deep-sequencing expression profiling in endemic Burkitt lymphoma. BMC Cancer. 17:7612017. View Article : Google Scholar : PubMed/NCBI

170 

Ott G, Rosenwald A and Campo E: Understanding MYC-driven aggressive B-cell lymphomas: Pathogenesis and classification. Blood. 122:3884–3891. 2013. View Article : Google Scholar : PubMed/NCBI

171 

Robaina MC, Mazzoccoli L, Arruda VO, de Souza Reis FR, Apa AG, de Rezende LMM and Klumb CE: Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis. Exp Molec Pathol. 98:200–207. 2015. View Article : Google Scholar

172 

Li JG, Ding Y, Huang YM, Chen WL, Pan LL, Li Y, Chen XL, Chen Y, Wang SY and Wu XN: FAMLF is a target of miR-181b in Burkitt lymphoma. Braz J Med Biol Res. 50:e56612017. View Article : Google Scholar : PubMed/NCBI

173 

Doose G, Haake A, Bernhart SH, Lopez C, Duggimpudi S, Wojciech F, Bergmann AK, Borkhardt A, Burkhardt B, Claviez A, et al: MINCR is a MYC-induced lncRNA able to modulate MYC's transcriptional network in Burkitt lymphoma cells. Proc Natl Acad Sci USA. 112:E5261–5270. 2015. View Article : Google Scholar : PubMed/NCBI

174 

Watkins AJ, Hamoudi RA, Zeng N, Yan O, Huang Y, Liu H, Zhang J, Braggio E, Fonseca R, de Level L, et al: An integrated genomic and expression analysis of 7q deletion in splenic marginal zone lymphoma. PLoS One. 7:e449972012. View Article : Google Scholar : PubMed/NCBI

175 

Thorns C, Kuba J, Bernard V, Senft A, Szymczak S, Feller AC and Bernd HW: Deregulation of a distinct set of microRNAs is associated with transformation of gastritis into MALT lymphoma. Virchows Arch. 460:371–377. 2012. View Article : Google Scholar : PubMed/NCBI

176 

Fernández C, Bellosillo B, Ferraro M, Seoane A, Sánchez-González B, Pairet S, Pons A, Barranco L, Vela MC, Gimeno E, et al: MicroRNAs 142-3p, miR-155 and miR-203 are deregulated in gastric MALT lymphomas compared to chronic gastritis. Cancer Genomics Proteomics. 14:75–82. 2017. View Article : Google Scholar : PubMed/NCBI

177 

Liu TY, Chen SU, Kuo SH, Cheng AL and Lin CW: E2A-positive gastric MALT lymphoma has weaker plasmacytoid infiltrates and stronger expression of the memory B-cell-associated miR-223: Possible correlation with stage and treatment response. Modern Pathol. 23:1507–1517. 2010. View Article : Google Scholar

178 

McKay P, Fielding P, Gallop-Evans E, Hall GW, Lambert J, Leach M, Marafioti T and McNamara C: Guidelines for the investigation and management of nodular lymphocyte predominant Hodgkin lymphoma. Br J Haematol. 172:32–43. 2016. View Article : Google Scholar : PubMed/NCBI

179 

Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H and Thiele J: WHO classification of tumours of haematopoietic and lymphoid tissues. World Health Organization, International Agency for Research on Cancer (Revised 4th edition). 2018.

180 

Re D, Roman TK, Behringer K and Diehl V: From Hodgkin disease to Hodgkin lymphoma: Biologic insights and therapeutic potential. Blood. 105:4553–4560. 2005. View Article : Google Scholar : PubMed/NCBI

181 

Tan LP, Seinen E, Duns G, de Jong D, Sibon OC, Poppema S, Kroesen BJ, Kok K and van den Berg A: A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res. 37:e1372009. View Article : Google Scholar : PubMed/NCBI

182 

Navarro A, Diaz T, Martinez A, Gaya A, Pons A, Gel B, Codony C, Ferrer G, Martinez C, Montserrat E and Monzo M: Regulation of JAK2 by miR-135a: Prognostic impact in classic Hodgkin lymphoma. Blood. 114:2945–2951. 2009. View Article : Google Scholar : PubMed/NCBI

183 

Nie K, Gomez M, Landgraf P, Garcia JF, Liu Y, Tan LH, Chadburn A, Tuschl T, Knowles DM and Tam W: MicroRNA mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: A potential pathogenetic lesion in Hodgkin lymphomas. Am J Pathol. 173:242–252. 2008. View Article : Google Scholar : PubMed/NCBI

184 

Leucci E, Zriwil A, Gregersen LH, Jensen KT, Obad S, Bellan C, Leoncini L, Kauppinen S and Lund AH: Inhibition of miR-9 de-represses HuR and DICER1 and impairs Hodgkin lymphoma tumour outgrowth in vivo. Oncogene. 31:5081–5089. 2012. View Article : Google Scholar : PubMed/NCBI

185 

van den Berg A, Kroesen BJ, Kooistra K, de Jong D, Briggs J, Blokzijl T, Jacobs S, Kluiver J, Diepstra A, Maggio E and Poppema S: High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer. 37:20–28. 2003. View Article : Google Scholar : PubMed/NCBI

186 

Metzler M, Wilda M, Busch K, Viehmann S and Borkhardt A: High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer. 39:167–169. 2004. View Article : Google Scholar : PubMed/NCBI

187 

Gibcus JH, Tan LP, Harms G, Schakel RN, de Jong D, Blokzijl T, Möller P, Poppema S, Kroesen BJ and van den Berg A: Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile. Neoplasia. 11:167–176. 2009. View Article : Google Scholar : PubMed/NCBI

188 

Navarro A, Gaya A, Martinez A, Urbano-Ispizua A, Pons A, Balagué O, Gel B, Abrisqueta P, Lopez-Guillermo A, Artells R, et al: MicroRNA expression profiling in classic Hodgkin lymphoma. Blood. 111:2825–2832. 2008. View Article : Google Scholar : PubMed/NCBI

189 

Sanchez-Espiridion B, Martin-Moreno AM, Montalban C, Figueroa V, Vega F, Younes A, Medeiros LJ, Alvés FJ, Canales M, Estévez M, et al: MicroRNA signatures and treatment response in patients with advanced classical Hodgkin lymphoma. Br J Haematol. 162:336–347. 2013. View Article : Google Scholar : PubMed/NCBI

190 

Ben Dhiab M, Ziadi S, Louhichi T, Ben Gacem R, Ksiaa F and Trimeche M: Investigation of miR9-1, miR9-2 and miR9-3 methylation in Hodgkin lymphoma. Pathobiology. 82:195–202. 2015. View Article : Google Scholar : PubMed/NCBI

191 

Cao Z, Qiu J, Yang G, Liu Y, Luo W, You L, Zheng L and Zhang T: MiR-135a biogenesis and regulation in malignancy: A new hope for cancer research and therapy. Cancer Biol Med. 17:569–582. 2020.PubMed/NCBI

192 

Solé C, Arnaiz E and Lawrie CH: MicroRNAs as biomarkers of B-cell lymphoma. Biomark Insights. Oct 16–2018.(Epub ahead of print). doi: 10.1177/1177271918806840. View Article : Google Scholar

193 

The Leukemia Lymphoma Society, . Non Hodgkin Lymphoma. 2006.

194 

Vose JM: Peripheral T-cell non-Hodgkin's lymphoma. Hematol Oncol Clin North Am. 22:997–1005. 2008. View Article : Google Scholar : PubMed/NCBI

195 

Mei M and Zhang M: Non-coding RNAs in Natural Killer/T-cell lymphoma. Front Oncol. 9:5152019. View Article : Google Scholar : PubMed/NCBI

196 

Ralfkiaer U, Hagedorn PH, Bangsgaard N, Løvendorf MB, Ahler CB, Svensson L, Kopp KL, Vennegaard MT, Lauenborg B, Zibert JR, et al: Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood. 118:5891–5900. 2011. View Article : Google Scholar : PubMed/NCBI

197 

Yamanaka Y, Tagawa H, Takahashi N, Watanabe A, Guo YM, Iwamoto K, Yamashita Y, Saitoh H, Kameoka Y and Shimizu N: Aberrant overexpression of microRNAs activate AKT signaling via downregulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood. 114:3265–3275. 2009. View Article : Google Scholar : PubMed/NCBI

198 

Zhang X, Ji W, Huang R, Li L, Wang X, Li L, Fu X, Sun Z, Li Z, Chen Q and Zhang M: MicroRNA-155 is a potential molecular marker of natural killer/T-cell lymphoma. Oncotarget. 7:53808–53819. 2016. View Article : Google Scholar : PubMed/NCBI

199 

Motsch N, Alles J, Imig J, Zhu J, Barth S, Reineke T, Tinguely M, Cogliatti S, Dueck A, Meister G, et al: MicroRNA profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS One. 7:e421932012. View Article : Google Scholar : PubMed/NCBI

200 

Chen HH, Huang WT, Yang LW and Lin CW: The PTEN-AKT-mTOR/RICTOR pathway in nasal natural killer cell lymphoma is activated by miR-494-3p via PTEN but inhibited by miR-142-3p via RICTOR. Am J Pathol. 185:1487–1499. 2015. View Article : Google Scholar : PubMed/NCBI

201 

Liang L, Nong L, Zhang S, Zhao J, Ti H, Dong Y, Zhang B and Li T: The downregulation of PRDM1/Blimp-1 is associated with aberrant expression of miR-223 in extranodal NK/T-cell lymphoma, nasal type. J Exp Clin Cancer Res. 33:72014. View Article : Google Scholar : PubMed/NCBI

202 

Huang WT and Lin CW: EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-γ-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am J Pathol. 184:1185–1197. 2014. View Article : Google Scholar : PubMed/NCBI

203 

Alles J, Menegatti J, Motsch N, Hart M, Eichner N, Reinhardt R, Meister G and Grasser FA: miRNA expression profiling of Epstein-Barr virus-associated NKTL cell lines by Illumina deep sequencing. FEBS Open Bio. 6:251–263. 2016. View Article : Google Scholar : PubMed/NCBI

204 

Ramakrishnan R, Donahue H, Garcia D, Tan J, Shimizu N, Rice AP and Ling PD: Epstein-Barr virus BART9 miRNA modulates LMP1 levels and affects growth rate of nasal NK T cell lymphomas. PLoS One. 6:e272712011. View Article : Google Scholar : PubMed/NCBI

205 

Raab MS, Podar K, Breitkreutz I, Richardson PG and Anderson KC: Multiple myeloma. Lancet. 374:324–339. 2009. View Article : Google Scholar : PubMed/NCBI

206 

Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C and Klibanski A: Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 282:24731–24742. 2007. View Article : Google Scholar : PubMed/NCBI

207 

Benetatos L, Dasoula A, Hatzimichael E, Georgiou I, Syrrou M and Bourantas KL: Promoter hypermethylation of the MEG3 (DLK1/MEG3) imprinted gene in multiple myeloma. Clin Lymphoma Myeloma. 8:171–175. 2008. View Article : Google Scholar : PubMed/NCBI

208 

Zhuang W, Ge X, Yang S, Huang M, Zhuang W, Chen P, Zhang X, Fu J, Qu J and Li B: Upregulation of lncRNA MEG3 promotes osteogenic differentiation of mesenchymal stem cells from multiple myeloma patients by targeting BMP4 transcription. Stem Cells. 33:1985–1997. 2015. View Article : Google Scholar : PubMed/NCBI

209 

Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, et al: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 106:11667–11672. 2009. View Article : Google Scholar : PubMed/NCBI

210 

Bennett CF, Baker BF, Pham N, Swayze E and Geary RS: Pharmacology of antisense drugs. Annu Rev Pharmacol Toxicol. 57:81–105. 2017. View Article : Google Scholar : PubMed/NCBI

211 

Koch L: Functional genomics: Screening for lncRNA function. Nat Rev Genet. 18:702017. View Article : Google Scholar

212 

Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, et al: Genome-Scale CRISPR-mediated control of gene repression and activation. Cell. 159:647–661. 2014. View Article : Google Scholar : PubMed/NCBI

213 

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC: Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature. 391:806–811. 1998. View Article : Google Scholar : PubMed/NCBI

214 

Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411:494–498. 2001. View Article : Google Scholar : PubMed/NCBI

215 

Brummelkamp TR, Bernards R and Agami R: A system for stable expression of short interfering RNAs in mammalian cells. Science. 296:550–553. 2002. View Article : Google Scholar : PubMed/NCBI

216 

Mattheolabakis G, Rigas B and Constantinides PP: Nanodelivery strategies in cancer chemotherapy: Biological rationale and pharmaceutical perspectives. Nanomedicine (Lond). 7:1577–1590. 2012. View Article : Google Scholar : PubMed/NCBI

217 

Webster DM, Sundaram P and Byrne ME: Injectable nanomaterials for drug delivery: Carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm. 84:1–20. 2013. View Article : Google Scholar : PubMed/NCBI

218 

Fabbro C, Ali-Boucetta H, Da Ros T, Kostarelos K, Bianco A and Prato M: Targeting carbon nanotubes against cancer. Chem Commun (Camb). 48:3911–3926. 2012. View Article : Google Scholar : PubMed/NCBI

219 

Libutti SK, Paciotti GF, Byrnes AA, Alexander HR Jr, Gannon WE, Walker M, Seidel GD, Yuldasheva N and Tamarkin L: Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 16:6139–6149. 2010. View Article : Google Scholar : PubMed/NCBI

220 

Yang T, Choi MK, Cui FD, Lee SJ, Chung SJ, Shim CK and Kim DD: Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells. Pharm Res. 24:2402–2411. 2007. View Article : Google Scholar : PubMed/NCBI

221 

Markman JL, Rekechenetskiy A, Holler E and Ljubimova JY: Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev. 65:1866–1879. 2013. View Article : Google Scholar : PubMed/NCBI

222 

Bartolomé-Izquierdo N, de Yébenes VG, Álvarez-Prado AF, Mur SM, Lopez Del Olmo JA, Roa S, Vazquez J and Ramiro AR: miR-28 regulates the germinal center reaction and blocks tumor growth in preclinical models of non-Hodgkin lymphoma. Blood. 129:2408–2419. 2017. View Article : Google Scholar : PubMed/NCBI

223 

Zhang Y, Roccaro AM, Rombaoa C, Flores L, Obad S, Fernandes SM, Sacco A, Liu Y, Ngo H, Quang P, et al: LNA-mediated anti-miR-155 silencing in low-grade B-cell lymphomas. Blood. 120:1678–1686. 2012. View Article : Google Scholar : PubMed/NCBI

224 

Seto AG, Beatty X, Lynch JM, Hermreck M, Tetzlaff M, Duvic M and Jackson AL: Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol. 183:428–444. 2018. View Article : Google Scholar : PubMed/NCBI

225 

Li J, Zou J, Wan X, Sun C, Peng F, Chu Z and Hu Y: The role of noncoding RNAs in B-cell lymphoma. Front Oncol. 10:5778902020. View Article : Google Scholar : PubMed/NCBI

226 

Zhang X, Xie K, Zhou H, Wu Y, Li C, Liu Y, Liu Z, Xu Q, Liu S, Xiao D and Tao Y: Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol Cancer. 19:472020. View Article : Google Scholar : PubMed/NCBI

227 

Lin R, Sampson JH, Li QJ and Zhu B: miR-23a blockade enhances adoptive T cell transfer therapy by preserving immune-competence in the tumor microenvironment. Oncoimmunology. 4:e9908032015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May-2021
Volume 21 Issue 5

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Drillis G, Goulielmaki M, Spandidos DA, Aggelaki S and Zoumpourlis V: Non‑coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies (Review). Oncol Lett 21: 393, 2021
APA
Drillis, G., Goulielmaki, M., Spandidos, D.A., Aggelaki, S., & Zoumpourlis, V. (2021). Non‑coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies (Review). Oncology Letters, 21, 393. https://doi.org/10.3892/ol.2021.12654
MLA
Drillis, G., Goulielmaki, M., Spandidos, D. A., Aggelaki, S., Zoumpourlis, V."Non‑coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies (Review)". Oncology Letters 21.5 (2021): 393.
Chicago
Drillis, G., Goulielmaki, M., Spandidos, D. A., Aggelaki, S., Zoumpourlis, V."Non‑coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies (Review)". Oncology Letters 21, no. 5 (2021): 393. https://doi.org/10.3892/ol.2021.12654