Open Access

Polysaccharides from sporoderm‑removed spores of Ganoderma lucidum induce apoptosis in human gastric cancer cells via disruption of autophagic flux

  • Authors:
    • Jiayi Zhong
    • Liu Fang
    • Rong Chen
    • Jing Xu
    • Dandan Guo
    • Chengjie Guo
    • Cuiling Guo
    • Jiajun Chen
    • Chaojie Chen
    • Xingya Wang
  • View Affiliations

  • Published online on: March 29, 2021     https://doi.org/10.3892/ol.2021.12686
  • Article Number: 425
  • Copyright: © Zhong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The sporoderm‑broken spores of Ganoderma lucidum (G. lucidum) polysaccharide (BSGLP) have been demonstrated to inhibit carcinogenesis in several types of cancer. However, to the best of our knowledge, the anticancer effects of polysaccharides extracted from the newly developed sporoderm‑removed spores of G. lucidum (RSGLP) have not been assessed. The present study first compared the anticancer effects of RSGLP and BSGLP in three gastric cancer cell lines and it was found that RSGLP was more potent than BSGLP in decreasing gastric cancer cell viability. RSGLP significantly induced apoptosis in AGS cells, accompanied by downregulation of Bcl‑2 and pro‑caspase‑3 expression levels, and upregulation of cleaved‑PARP. Furthermore, RSGLP increased LC3‑II and p62 expression, indicative of induction of autophagy and disruption of autophagic flux in AGS cells. These results were further verified by combined treatment of AGS cells with the late‑stage autophagy inhibitor chloroquine, or early‑stage autophagy inducer rapamycin. Adenoviral transfection with mRFP‑GFP‑LC3 further confirmed that autophagic flux was inhibited by RSGLP in AGS cells. Finally, the present study demonstrated that the RSGLP‑induced autophagy and disruption of autophagic flux disruption was, at least in part, responsible for RSGLP‑induced apoptosis in AGS cells. The results of the present study demonstrated for the first time that RSGLP is more effective than BSGLP in inhibiting gastric cancer cell viability, and RSGLP may serve as a promising autophagy inhibitor in the management of gastric cancer.
View Figures
View References

Related Articles

Journal Cover

May-2021
Volume 21 Issue 5

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zhong J, Fang L, Chen R, Xu J, Guo D, Guo C, Guo C, Chen J, Chen C, Wang X, Wang X, et al: Polysaccharides from sporoderm‑removed spores of <em>Ganoderma lucidum</em> induce apoptosis in human gastric cancer cells via disruption of autophagic flux. Oncol Lett 21: 425, 2021
APA
Zhong, J., Fang, L., Chen, R., Xu, J., Guo, D., Guo, C. ... Wang, X. (2021). Polysaccharides from sporoderm‑removed spores of <em>Ganoderma lucidum</em> induce apoptosis in human gastric cancer cells via disruption of autophagic flux. Oncology Letters, 21, 425. https://doi.org/10.3892/ol.2021.12686
MLA
Zhong, J., Fang, L., Chen, R., Xu, J., Guo, D., Guo, C., Guo, C., Chen, J., Chen, C., Wang, X."Polysaccharides from sporoderm‑removed spores of <em>Ganoderma lucidum</em> induce apoptosis in human gastric cancer cells via disruption of autophagic flux". Oncology Letters 21.5 (2021): 425.
Chicago
Zhong, J., Fang, L., Chen, R., Xu, J., Guo, D., Guo, C., Guo, C., Chen, J., Chen, C., Wang, X."Polysaccharides from sporoderm‑removed spores of <em>Ganoderma lucidum</em> induce apoptosis in human gastric cancer cells via disruption of autophagic flux". Oncology Letters 21, no. 5 (2021): 425. https://doi.org/10.3892/ol.2021.12686