|
1
|
Li N, Zhang W and Cao X: Identification of
human homologue of mouse IFN-gamma induced protein from human
dendritic cells. Immunol Lett. 74:221–224. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Brandariz-Nuñez A, Valle-Casuso JC, White
TE, Laguette N, Benkirane M, Brojatsch J and Diaz-Griffero F: Role
of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac.
Retrovirology. 9:492012. View Article : Google Scholar
|
|
3
|
Wei W, Guo H, Han X, Liu X, Zhou X, Zhang
W and Yu XF: A novel DCAF1-binding motif required for Vpx-mediated
degradation of nuclear SAMHD1 and Vpr-induced G2 arrest. Cell
Microbiol. 14:1745–1756. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Rice GI, Bond J, Asipu A, Brunette RL,
Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, et
al: Mutations involved in Aicardi-Goutieres syndrome implicate
SAMHD1 as regulator of the innate immune response. Nat Genet.
41:829–832. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Laguette N, Sobhian B, Casartelli N,
Ringeard M, Chable-Bessia C, Ségéral E, Yatim A, Emiliani S,
Schwartz O and Benkirane M: SAMHD1 is the dendritic- and
myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx.
Nature. 474:654–657. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Goldstone DC, Ennis-Adeniran V, Hedden JJ,
Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF,
Yap MW, et al: HIV-1 restriction factor SAMHD1 is a deoxynucleoside
triphosphate triphosphohydrolase. Nature. 480:379–382. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chen Z, Zhu M, Pan X, Zhu Y, Yan H, Jiang
T, Shen Y, Dong X, Zheng N, Lu J, et al: Inhibition of Hepatitis B
virus replication by SAMHD1. Biochem Biophys Res Commun.
450:1462–1468. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Jeong GU, Park IH, Ahn K and Ahn BY:
Inhibition of hepatitis B virus replication by a dNTPase-dependent
function of the host restriction factor SAMHD1. Virology.
495:71–78. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kim ET, White TE, Brandariz-Núñez A,
Diaz-Griffero F and Weitzman MD: SAMHD1 restricts herpes simplex
virus 1 in macrophages by limiting DNA replication. J Virol.
87:12949–12956. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Buj R and Aird KM: Deoxyribonucleotide
Triphosphate Metabolism in Cancer and Metabolic Disease. Front
Endocrinol (Lausanne). 9:1772018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ji X, Wu Y, Yan J, Mehrens J, Yang H,
DeLucia M, Hao C, Gronenborn AM, Skowronski J, Ahn J and Xiong Y:
Mechanism of allosteric activation of SAMHD1 by dGTP. Nat Struct
Mol Biol. 20:1304–1309. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Franzolin E, Pontarin G, Rampazzo C,
Miazzi C, Ferraro P, Palumbo E, Reichard P and Bianchi V: The
deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of
DNA precursor pools in mammalian cells. Proc Natl Acad Sci USA.
110:14272–14277. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Clifford R, Louis T, Robbe P, Ackroyd S,
Burns A, Timbs AT, Wright Colopy G, Dreau H, Sigaux F, et al:
SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and
is involved in response to DNA damage. Blood. 123:1021–1031. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang JL, Lu FZ, Shen XY, Wu Y and Zhao LT:
SAMHD1 is down regulated in lung cancer by methylation and inhibits
tumor cell proliferation. Biochem Biophys Res Commun. 455:229–233.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Rentoft M, Lindell K, Tran P, Chabes AL,
Buckland RJ, Watt DL, Marjavaara L, Nilsson AK, Melin B, Trygg J,
et al: Heterozygous colon cancer-associated mutations of SAMHD1
have functional significance. Proc Natl Acad Sci USA.
113:4723–4728. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lee EJ, Seo JH, Park JH, Vo TTL, An S, Bae
SJ, Le H, Lee HS, Wee HJ, Lee D, et al: SAMHD1 acetylation enhances
its deoxynucleotide triphosphohydrolase activity and promotes
cancer cell proliferation. Oncotarget. 8:68517–68529. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tramentozzi E, Ferraro P, Hossain M,
Stillman B, Bianchi V and Pontarin G: The dNTP triphosphohydrolase
activity of SAMHD1 persists during S-phase when the enzyme is
phosphorylated at T592. Cell Cycle. 17:1102–1114. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Coquel F, Silva MJ, Técher H, Zadorozhny
K, Sharma S, Nieminuszczy J, Mettling C, Dardillac E, Barthe A,
Schmitz AL, et al: SAMHD1 acts at stalled replication forks to
prevent interferon induction. Nature. 557:57–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhao K, Du J, Han X, Goodier JL, Li P,
Zhou X, Wei W, Evans SL, Li L, Zhang W, et al: Modulation of LINE-1
and Alu/SVA retrotransposition by Aicardi-Goutieres
syndrome-related SAMHD1. Cell Rep. 4:1108–1115. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gao W, Li G, Bian X, Rui Y, Zhai C, Liu P,
Su J, Wang H, Zhu C, Du Y, et al: Defective modulation of LINE-1
retrotransposition by cancer-associated SAMHD1 mutants. Biochem
Biophys Res Commun. 519:213–219. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Herold N, Rudd SG, Ljungblad L, Sanjiv K,
Myrberg IH, Paulin CB, Heshmati Y, Hagenkort A, Kutzner J, Page BD,
et al: Targeting SAMHD1 with the Vpx protein to improve cytarabine
therapy for hematological malignancies. Nat Med. 23:256–263. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Herold N, Rudd SG, Sanjiv K, Kutzner J,
Bladh J, Paulin CBJ, Helleday T, Henter JI and Schaller T: SAMHD1
protects cancer cells from various nucleoside-based
antimetabolites. Cell Cycle. 16:1029–1038. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
de Silva S, Hoy H, Hake TS, Wong HK, Porcu
P and Wu L: Promoter methylation regulates SAMHD1 gene expression
in human CD4+ T cells. J Biol Chem. 288:9284–9292. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
de Silva S, Wang F, Hake TS, Porcu P, Wong
HK and Wu L: Downregulation of SAMHD1 expression correlates with
promoter DNA methylation in Sezary syndrome patients. J Invest
Dermatol. 134:562–565. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen W, Cheng P, Jiang J, Ren Y, Wu D and
Xue D: Epigenomic and genomic analysis of transcriptome modulation
in skin cutaneous melanoma. Aging (Albany NY). 12:12703–12725.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Oellerich T, Schneider C, Thomas D, Knecht
KM, Buzovetsky O, Kaderali L, Schliemann C, Bohnenberger H,
Angenendt L, Hartmann W, et al: Selective inactivation of
hypomethylating agents by SAMHD1 provides a rationale for
therapeutic stratification in AML. Nat Commun. 10:34752019.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
White TE, Brandariz-Nuñez A, Valle-Casuso
JC, Amie S, Nguyen LA, Kim B, Tuzova M and Diaz-Griffero F: The
retroviral restriction ability of SAMHD1, but not its
deoxynucleotide triphosphohydrolase activity, is regulated by
phosphorylation. Cell Host Microbe. 13:441–451. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Welbourn S, Dutta SM, Semmes OJ and
Strebel K: Restriction of virus infection but not catalytic dNTPase
activity is regulated by phosphorylation of SAMHD1. J Virol.
87:11516–11524. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hochegger H, Takeda S and Hunt T:
Cyclin-dependent kinases and cell-cycle transitions: Does one fit
all? Nat Rev Mol Cell Biol. 9:910–916. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Takeda DY, Wohlschlegel JA and Dutta A: A
bipartite substrate recognition motif for cyclin-dependent kinases.
J Biol Chem. 276:1993–1997. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cribier A, Descours B, Valadão AL,
Laguette N and Benkirane M: Phosphorylation of SAMHD1 by cyclin
A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep.
3:1036–1043. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kretschmer S, Wolf C, König N, Staroske W,
Guck J, Häusler M, Luksch H, Nguyen LA, Kim B, Alexopoulou D, et
al: SAMHD1 prevents autoimmunity by maintaining genome stability.
Ann Rheum Dis. 74:e172015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yan J, Hao C, DeLucia M, Swanson S,
Florens L, Washburn MP, Ahn J and Skowronski J:
CyclinA2-cyclin-dependent kinase regulates SAMHD1 protein
phosphohydrolase domain. J Biol Chem. 290:13279–13292. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hu J, Qiao M, Chen Y, Tang H, Zhang W,
Tang D, Pi S, Dai J, Tang N, Huang A and Hu Y: Cyclin E2-CDK2
mediates SAMHD1 phosphorylation to abrogate its restriction of HBV
replication in hepatoma cells. FEBS Lett. 592:1893–1904. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Pauls E, Badia R, Torres-Torronteras J,
Ruiz A, Permanyer M, Riveira-Muñoz E, Clotet B, Marti R, Ballana E
and Esté JA: Palbociclib, a selective inhibitor of cyclin-dependent
kinase4/6, blocks HIV-1 reverse transcription through the control
of sterile alpha motif and HD domain-containing protein-1 (SAMHD1)
activity. AIDS. 28:2213–2222. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Badia R, Angulo G, Riveira-Muñoz E,
Pujantell M, Puig T, Ramirez C, Torres-Torronteras J, Martí R,
Pauls E, Clotet B, et al: Inhibition of herpes simplex virus type 1
by the CDK6 inhibitor PD-0332991 (palbociclib) through the control
of SAMHD1. J Antimicrob Chemother. 71:387–394. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Allouch A, David A, Amie SM, Lahouassa H,
Chartier L, Margottin-Goguet F, Barré-Sinoussi F, Kim B,
Sáez-Cirión A and Pancino G: p21-mediated RNR2 repression restricts
HIV-1 replication in macrophages by inhibiting dNTP biosynthesis
pathway. Proc Natl Acad Sci USA. 110:E3997–E4006. 2013. View Article : Google Scholar
|
|
38
|
Pauls E, Ruiz A, Riveira-Muñoz E,
Permanyer M, Badia R, Clotet B, Keppler OT, Ballana E and Este JA:
p21 regulates the HIV-1 restriction factor SAMHD1. Proc Natl Acad
Sci USA. 111:E1322–E1324. 2014. View Article : Google Scholar
|
|
39
|
Osei Kuffour E, Schott K, Jaguva Vasudevan
AA, Holler J, Schulz WA, Lang PA, Lang KS, Kim B, Häussinger D,
König R and Münk C: USP18 (UBP43) abrogates p21-mediated inhibition
of HIV-1. J Virol. 92:e00592–18. 2018. View Article : Google Scholar
|
|
40
|
Schott K, Fuchs NV, Derua R, Mahboubi B,
Schnellbächer E, Seifried J, Tondera C, Schmitz H, Shepard C,
Brandariz-Nuñez A, et al: Dephosphorylation of the HIV-1
restriction factor SAMHD1 is mediated by PP2A-B55alpha holoenzymes
during mitotic exit. Nat Commun. 9:22272018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kueck T, Cassella E, Holler J, Kim B and
Bieniasz PD: The aryl hydrocarbon receptor and interferon gamma
generate antiviral states via transcriptional repression. Elife.
7:e388672018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bonifati S, Daly MB, St Gelais C, Kim SH,
Hollenbaugh JA, Shepard C, Kennedy EM, Kim DH, Schinazi RF, Kim B
and Wu L: SAMHD1 controls cell cycle status, apoptosis and HIV-1
infection in monocytic THP-1 cells. Virology. 495:92–100. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kodigepalli KM, Li M, Liu SL and Wu L:
Exogenous expression of SAMHD1 inhibits proliferation and induces
apoptosis in cutaneous T-cell lymphoma-derived HuT78 cells. Cell
Cycle. 16:179–188. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Welbourn S, Miyagi E, White TE,
Diaz-Griffero F and Strebel K: Identification and characterization
of naturally occurring splice variants of SAMHD1. Retrovirology.
9:862012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kodigepalli KM, Bonifati S, Tirumuru N and
Wu L: SAMHD1 modulates in vitro proliferation of acute myeloid
leukemia-derived THP-1 cells through the PI3K-Akt-p27 axis. Cell
Cycle. 17:1124–1137. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Feng Q, Moran JV, Kazazian HH Jr and Boeke
JD: Human L1 retrotransposon encodes a conserved endonuclease
required for retrotransposition. Cell. 87:905–916. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Burns KH: Transposable elements in cancer.
Nat Rev Cancer. 17:415–424. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
White TE, Brandariz-Nuñez A, Valle-Casuso
JC, Knowlton C, Kim B, Sawyer SL and Diaz-Griffero F: Effects of
human SAMHD1 polymorphisms on HIV-1 susceptibility. Virology.
460-461:34–44. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
White TE, Brandariz-Nuñez A, Valle-Casuso
JC, Amie S, Nguyen L, Kim B, Brojatsch J and Diaz-Griffero F:
Contribution of SAM and HD domains to retroviral restriction
mediated by human SAMHD1. Virology. 436:81–90. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Du J, Peng Y, Wang S, Hou J, Wang Y, Sun T
and Zhao K: Nucleocytoplasmic shuttling of SAMHD1 is important for
LINE-1 suppression. Biochem Biophys Res Commun. 510:551–557. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Herrmann A, Wittmann S, Thomas D, Shepard
CN, Kim B, Ferreirós N and Gramberg T: The SAMHD1-mediated block of
LINE-1 retroelements is regulated by phosphorylation. Mobile DNA.
9:112018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hu S, Li J, Xu F, Mei S, Le Duff Y, Yin L,
Pang X, Cen S, Jin Q, Liang C and Guo F: SAMHD1 inhibits LINE-1
retrotransposition by promoting stress granule formation. PLoS
Genetics. 11:e10053672015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ha°kansson P, Hofer A and Thelander L:
Regulation of mammalian ribonucleotide reduction and dNTP pools
after DNA damage and in resting cells. J Biol Chem. 281:7834–7841.
2006. View Article : Google Scholar
|
|
54
|
Jauregui P and Landau NR: DNA damage
induces a SAMHD1-mediated block to the infection of macrophages by
HIV-1. Sci Rep. 8:41532018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Daddacha W, Koyen AE, Bastien AJ, Head PE,
Dhere VR, Nabeta GN, Connolly EC, Werner E, Madden MZ, Daly MB, et
al: SAMHD1 promotes DNA end resection to facilitate DNA repair by
homologous recombination. Cell Rep. 20:1921–1935. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ballana E, Badia R, Terradas G,
Torres-Torronteras J, Ruiz A, Pauls E, Riveira-Muñoz E, Clotet B,
Martí R and Esté JA: SAMHD1 specifically affects the antiviral
potency of thymidine analog HIV reverse transcriptase inhibitors.
Antimicrob Agents Chemother. 58:4804–4813. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Guièze R, Robbe P, Clifford R, de Guibert
S, Pereira B, Timbs A, Dilhuydy MS, Cabes M, Ysebaert L, Burns A,
et al: Presence of multiple recurrent mutations confers poor trial
outcome of relapsed/refractory CLL. Blood. 126:2110–2117. 2015.
View Article : Google Scholar
|
|
58
|
Grant S: Ara-C: Cellular and molecular
pharmacology. Adv Cancer Res. 72:197–233. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Schneider C, Oellerich T, Baldauf HM,
Schwarz SM, Thomas D, Flick R, Bohnenberger H, Kaderali L, Stegmann
L, Cremer A, et al: SAMHD1 is a biomarker for cytarabine response
and a therapeutic target in acute myeloid leukemia. Nat Med.
23:250–255. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Arnold LH, Kunzelmann S, Webb MR and
Taylor IA: A continuous enzyme-coupled assay for
triphosphohydrolase activity of HIV-1 restriction factor SAMHD1.
Antimicrob Agents Chemother. 59:186–192. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Knecht KM, Buzovetsky O, Schneider C,
Thomas D, Srikanth V, Kaderali L, Tofoleanu F, Reiss K, Ferreirós
N, Geisslinger G, et al: The structural basis for cancer drug
interactions with the catalytic and allosteric sites of SAMHD1.
Proc Natl Acad Sci USA. 115:E10022–E10031. 2018. View Article : Google Scholar
|
|
62
|
Rassidakis GZ, Herold N, Myrberg IH,
Tsesmetzis N, Rudd SG, Henter JI, Schaller T, Ng SB, Chng WJ, Yan
B, et al: Low-level expression of SAMHD1 in acute myeloid leukemia
(AML) blasts correlates with improved outcome upon consolidation
chemotherapy with high-dose cytarabine-based regimens. Blood Cancer
J. 8:982018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang YT, Yuan B, Chen HD, Xu L, Tian YN,
Zhang A, He JX and Miao ZH: Acquired resistance of phosphatase and
tensin homolog-deficient cells to poly(ADP-ribose) polymerase
inhibitor and Ara-C mediated by 53BP1 loss and SAMHD1
overexpression. Cancer Sci. 109:821–831. 2017. View Article : Google Scholar
|
|
64
|
Rudd SG, Tsesmetzis N, Sanjiv K, Paulin
CB, Sandhow L, Kutzner J, Hed Myrberg I, Bunten SS, Axelsson H,
Zhang SM, et al: Ribonucleotide reductase inhibitors suppress
SAMHD1 ara-CTPase activity enhancing cytarabine efficacy. EMBO Mol
Med. 12:e104192020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hollenbaugh JA, Shelton J, Tao S,
Amiralaei S, Liu P, Lu X, Goetze RW, Zhou L, Nettles JH, Schinazi
RF and Kim B: Substrates and Inhibitors of SAMHD1. PLoS One.
12:e01690522017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jones S, Zhang X, Parsons DW, Lin JC,
Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, et
al: Core signaling pathways in human pancreatic cancers revealed by
global genomic analyses. Science. 321:1801–1806. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kohnken R, Kodigepalli KM and Wu L:
Regulation of deoxynucleotide metabolism in cancer: Novel
mechanisms and therapeutic implications. Mol Cancer. 14:1762015.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
James CD, Prabhakar AT, Otoa R, Evans MR,
Wang X, Bristol ML, Zhang K, Li R and Morgan IM: SAMHD1 regulates
human papillomavirus 16-induced cell proliferation and viral
replication during differentiation of keratinocytes. mSphere.
4:e00448–19. 2019. View Article : Google Scholar
|
|
69
|
Stanland LJ and Luftig MA: The role of
EBV-induced hypermethylation in gastric cancer tumorigenesis.
Viruses. 12:12222020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Cruz-Gregorio A, Aranda-Rivera AK and
Pedraza-Chaverri J: Human papillomavirus-related cancers and
mitochondria. Virus Res. 286:1980162020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Cabello-Lobato MJ, Wang S and Schmidt CK:
SAMHD1 sheds moonlight on DNA double-strand break repair. Trends
Genet. 33:895–897. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Seamon KJ and Stivers JT: A
high-throughput enzyme-coupled assay for SAMHD1 dNTPase. J Biomol
Screen. 20:801–809. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Mauney CH, Perrino FW and Hollis T:
Identification of inhibitors of the dNTP triphosphohydrolase SAMHD1
using a novel and direct high-throughput assay. Biochemistry.
57:6624–6636. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jiang H, Li C, Liu Z and Shengjing
Hospital; Hu: Expression and relationship of SAMHD1 with other
apoptotic and autophagic genes in acute myeloid leukemia patients.
Acta Haematol. 143:51–59. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kodigepalli KM, Li M, Bonifati S, Panfil
AR, Green PL, Liu SL and Wu L: SAMHD1 inhibits epithelial cell
transformation in vitro and affects leukemia development in
xenograft mice. Cell Cycle. 17:2564–2576. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Herold N, Rudd SG, Sanjiv K, Kutzner J,
Myrberg IH, Paulin CBJ, Olsen TK, Helleday T, Henter JI and
Schaller T: With me or against me: Tumor suppressor and drug
resistance activities of SAMHD1. Exp Hematol. 52:32–39. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Rothenburger T, McLaughlin KM, Herold T,
Schneider C, Oellerich T, Rothweiler F, Feber A, Fenton TR, Wass
MN, Keppler OT, et al: SAMHD1 is a key regulator of the
lineage-specific response of acute lymphoblastic leukaemias to
nelarabine. Commun Biol. 3:3242020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yang CA, Huang HY, Chang YS, Lin CL, Lai
IL and Chang JG: DNA-sensing and nuclease gene expressions as
markers for colorectal cancer progression. Oncology. 92:115–124.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Shang Z, Qian L, Liu S, Niu X, Qiao Z, Sun
Y, Zhang Y, Fan LY, Guan X, Cao CX and Xiao H: Graphene
oxide-facilitated comprehensive analysis of cellular nucleic acid
binding proteins for lung cancer. ACS Appl Mater Interfaces.
10:17756–17770. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Shi Y, Lv G, Chu Z, Piao L, Liu X, Wang T,
Jiang Y and Zhang P: Identification of natural splice variants of
SAMHD1 in virus-infected HCC. Oncol Rep. 31:687–692. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Merati M, Buethe DJ, Cooper KD, Honda KS,
Wang H and Gerstenblith MR: Aggressive CD8(+) epidermotropic
cutaneous T-cell lymphoma associated with homozygous mutation in
SAMHD1. JAAD Case Rep. 1:227–229. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Amin NA, Seymour E, Saiya-Cork K, Parkin
B, Shedden K and Malek SN: A quantitative analysis of subclonal and
clonal gene mutations before and after therapy in chronic
lymphocytic leukemia. Clin Cancer Res. 22:4525–4535. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhu KW, Chen P, Zhang DY, Yan H, Liu H,
Cen LN, Liu YL, Cao S, Zhou G, Zeng H, et al: Association of
genetic polymorphisms in genes involved in Ara-C and dNTP
metabolism pathway with chemosensitivity and prognosis of adult
acute myeloid leukemia (AML). J Transl Med. 16:902018. View Article : Google Scholar : PubMed/NCBI
|