|
1
|
Lo JA and Fisher DE: The melanoma
revolution: From UV carcinogenesis to a new era in therapeutics.
Science. 46:945–949. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Holderfield M, Deuker MM, McCormick F and
McMahon M: Targeting RAF kinases for cancer therapy: BRAF-mutated
melanoma and beyond. Nat Rev Cancer. 14:455–467. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chapman PB, Hauschild A, Robert C, Haanen
JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, et
al: Improved survival with vemurafenib in melanoma with BRAF V600E
mutation. N Engl J Med. 364:2507–2516. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Flaherty KT, Robert C, Hersey P, Nathan P,
Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P, et
al: Improved survival with MEK inhibition in BRAF-mutated melanoma.
N Engl J Med. 367:107–114. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Christiansen SA, Khan S and Gibney GT:
Targeted therapies in combination with immune therapies for the
treatment of metastatic melanoma. Cancer J. 23:59–62. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Nandy SB and Lakshmanaswamy R: Cancer stem
cells and metastasis. Prog Mol Biol Transl Sci. 151:137–176. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Parmiani G: Melanoma cancer stem cells:
Markers and functions. Cancers (Basel). 8:342016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fink J, Andersson-Rolf A and Koo BK: Adult
stem cell lineage tracing and deep tissue imaging. BMB Rep.
48:655–667. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ricci E, Mattei E, Dumontet C, Eaton CL,
Hamdy F, van der Pluije G, Cecchini M, Thalmann G, Clezardin P and
Colombel M: Increased expression of putative cancer stem cell
markers in the bone marrow of prostate cancer patients is
associated with bone metastasis progression. Prostate.
73:1738–1746. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Croker AK and Allan AL: Cancer stem cells:
Implications for the progression and treatment of metastatic
disease. J Cell Mol Med. 12:374–390. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li F, Tiede B, Massague J and Kang Y:
Beyond tumorigenesis: Cancer stem cells in metastasis. Cell Res.
17:3–14. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wickremesekera AC, Brasch HD, Lee VM,
Davis PF, Woon K, Johnson R, Tan ST and Itinteang T: Expression of
cancer stem cell markers in metastatic melanoma to the brain. J
Clin Neurosci. 60:112–116. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nguyen N, Couts KL, Luo Y and Fujita M:
Understanding melanoma stem cells. Melanoma Manag. 2:179–188. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Klein WM, Wu BP, Zhao S, Wu H,
Klein-Szanto AJ and Tahan SR: Increased expression of stem cell
markers in malignant melanoma. Mod Pathol. 20:102–107. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Fang D, Nguyen TK, Leishear K, Finko R,
Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE and Herlyn M: A
tumorigenic subpopulation with stem cell properties in melanomas.
Cancer Res. 65:9328–9337. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tirino V, Desiderio V, Paino F, De Rosa A,
Papaccio F, Fazioli F, Pirozzi G and Papaccio G: Human primary bone
sarcomas contain CD133+ cancer stem cells displaying
high tumorigenicity in vivo. FASEB J. 25:2022–2030. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Desiderio V, Papagerakis P, Tirino V,
Zheng L, Matossian M, Prince ME, Paino F, Mele L, Papaccio F,
Montella R, et al: Increased fucosylation has a pivotal role in
invasive and metastatic properties of head and neck cancer stem
cells. Oncotarget. 6:71–84. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Collins AT, Berry PA, Hyde C, Stower MJ
and Maitland NJ: Prospective identification of tumorigenic prostate
cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Marzagalli M, Raimondi M, Fontana F,
Montagnani Marelli M, Moretti RM and Limonta P: Cellular and
molecular biology of cancer stem cells in melanoma: Possible
therapeutic implications. Semin Cancer Biol. 59:221–235. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kumar D, Gorain M, Kundu G and Kundu GC:
Therapeutic implications of cellular and molecular biology of
cancer stem cells in melanoma. Mol Cancer. 16:72017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lee N, Barthel SR and Schatton T: Melanoma
stem cells and metastasis: Mimicking hematopoietic cell
trafficking? Lab Invest. 94:13–30. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shakhova O and Sommer L: Testing the
cancer stem cell hypothesis in melanoma: The clinics will tell.
Cancer Lett. 338:74–81. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ricci-Vitiani L, Lombardi DG, Pilozzi E,
Biffoni M, Todaro M, Peschle C and De Maria R: Identification and
expansion of human colon-cancer-initiating cells. Nature.
445:111–115. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang D, Tang DG and Rycaj K: Cancer stem
cells: Regulation programs, immunological properties and
immunotherapy. Semin Cancer Biol. 52:94–106. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kumar D, Kumar S, Gorain M, Tomar D, Patil
HS, Radharani NNV, Kumar TVS, Patil TV, Thulasiram HV and Kundu GC:
Notch1-MAPK signaling axis regulates CD133(+) cancer stem
cell-mediated melanoma growth and angiogenesis. J Invest Dermatol.
136:2462–2474. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Monzani E, Facchetti F, Galmozzi E,
Corsini E, Benetti A, Cavazzin C, Gritti A, Piccinini A, Porro D,
Santinami M, et al: Melanoma contains CD133 and ABCG2 positive
cells with enhanced tumourigenic potential. Eur J Cancer.
43:935–946. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Rappa G, Fodstad O and Lorico A: The stem
cell-associated antigen CD133 (Prominin-1) is a molecular
therapeutic target for metastatic melanoma. Stem Cells.
26:3008–3017. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Houben R, Wischhusen J, Menaa F, Synwoldt
P, Schrama D, Brocker EB and Becker JC: Melanoma stem cells:
Targets for successful therapy? J Dtsch Dermatol Ges. 6:541–546.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lai CY, Schwartz BE and Hsu MY:
CD133+ melanoma subpopulations contribute to
perivascular niche morphogenesis and tumorigenicity through
vasculogenic mimicry. Cancer Res. 72:5111–5118. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zimmerer RM, Matthiesen P, Kreher F,
Kampmann A, Spalthoff S, Jehn P, Bittermann G, Gellrich NC and
Tavassol F: Putative CD133+ melanoma cancer stem cells
induce initial angiogenesis in vivo. Microvasc Res. 104:46–54.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sharma BK, Manglik V, O'Connell M,
Weeraratna A, McCarron EC, Broussard JN, Divito KA,
Simbulan-Rosenthal CM, Rosenthal DS and Zapas JL: Clonal dominance
of CD133+ subset population as risk factor in tumor
progression and disease recurrence of human cutaneous melanoma. Int
J Oncol. 41:1570–1576. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
El-Khattouti A, Selimovic D, Haikel Y,
Megahed M, Gomez CR and Hassan M: Identification and analysis of
CD133(+) melanoma stem-like cells conferring resistance to taxol:
An insight into the mechanisms of their resistance and response.
Cancer Lett. 343:123–133. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Koshio J, Kagamu H, Nozaki K, Saida Y,
Tanaka T, Shoji S, Igarashi N, Miura S, Okajima M, Watanabe S, et
al: DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3, X-linked is an
immunogenic target of cancer stem cells. Cancer Immunol Immunother.
62:1619–1628. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gedye C, Quirk J, Browning J, Svobodova S,
John T, Sluka P, Dunbar PR, Corbeil D, Cebon J and Davis ID:
Cancer/testis antigens can be immunological targets in clonogenic
CD133+ melanoma cells. Cancer Immunol Immunother.
58:1635–1646. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lang D, Mascarenhas JB and Shea CR:
Melanocytes, melanocyte stem cells, and melanoma stem cells. Clin
Dermatol. 31:166–178. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Schatton T, Murphy GF, Frank NY, Yamaura
K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM,
Weishaupt C, et al: Identification of cells initiating human
melanomas. Nature. 451:345–349. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Begicevic RR and Falasca M: ABC
transporters in cancer stem cells: Beyond chemoresistance. Int J
Mol Sci. 18:23622017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Frank NY, Margaryan A, Huang Y, Schatton
T, Waaga-Gasser AM, Gasser M, Sayegh MH, Sadee W and Frank MH:
ABCB5-mediated doxorubicin transport and chemoresistance in human
malignant melanoma. Cancer Res. 65:4320–4333. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Roesch A, Fukunaga-Kalabis M, Schmidt EC,
Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T
and Herlyn M: A temporarily distinct subpopulation of slow-cycling
melanoma cells is required for continuous tumor growth. Cell.
141:583–594. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang S, Tang L, Lin J, Shen Z, Yao Y, Wang
W, Tao S, Gu C, Ma J, Xie Y and Liu Y: ABCB5 promotes melanoma
metastasis through enhancing NF-κB p65 protein stability. Biochem
Biophys Res Commun. 492:18–26. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Xiao J, Egger ME, McMasters KM and Hao H:
Differential expression of ABCB5 in BRAF inhibitor-resistant
melanoma cell lines. BMC Cancer. 18:6752018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
de Waard NE, Kolovou PE, McGuire SP, Cao
J, Frank NY, Frank MH, Jager MJ and Ksander BR: Expression of
multidrug resistance transporter ABCB5 in a murine model of human
conjunctival melanoma. Ocul Oncol Pathol. 1:182–189. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Vasquez-Moctezuma I, Meraz-Rios MA,
Villanueva-Lopez CG, Magana M, Martinez-Macias R, Sanchez-Gonzalez
DJ, García-Sierra F and Herrera-González NE: ATP-binding cassette
transporter ABCB5 gene is expressed with variability in malignant
melanoma. Actas Dermosifiliogr. 101:341–348. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ma J and Frank MH: Isolation of
circulating melanoma cells. Methods Mol Biol. Sep 29–2015.(Epub
ahead of print). doi: https://doi.org/10.1007/7651_2015_300.
View Article : Google Scholar
|
|
46
|
Frank NY, Schatton T, Kim S, Zhan Q,
Wilson BJ, Ma J, Saab KR, Osherov V, Widlund HR, Gasser M, et al:
VEGFR-1 expressed by malignant melanoma-initiating cells is
required for tumor growth. Cancer Res. 71:1474–1485. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Schatton T, Schutte U, Frank NY, Zhan Q,
Hoerning A, Robles SC, Zhou J, Hodi FS, Spagnoli GC, Murphy GF and
Frank MH: Modulation of T-cell activation by malignant melanoma
initiating cells. Cancer Res. 70:697–708. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Eggermont AM and Robert C: New drugs in
melanoma: It's a whole new world. Eur J Cancer. 47:2150–2157. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Boiko AD, Razorenova OV, van de Rijn M,
Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan
MJ, et al: Human melanoma-initiating cells express neural crest
nerve growth factor receptor CD271. Nature. 466:133–137. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chesa PG, Rettig WJ, Thomson TM, Old LJ
and Melamed MR: Immunohistochemical analysis of nerve growth factor
receptor expression in normal and malignant human tissues. J
Histochem Cytochem. 36:383–389. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Pietra G, Manzini C, Vitale M, Balsamo M,
Ognio E, Boitano M, Queirolo P, Moretta L and Mingari MC: Natural
killer cells kill human melanoma cells with characteristics of
cancer stem cells. Int Immunol. 21:793–801. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Truzzi F, Marconi A, Lotti R, Dallaglio K,
French LE, Hempstead BL and Pincelli C: Neurotrophins and their
receptors stimulate melanoma cell proliferation and migration. J
Invest Dermatol. 128:2031–2040. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Nielsen PS, Riber-Hansen R and Steiniche
T: Immunohis tochemical CD271 expression correlates with melanoma
progress in a case-control study. Pathology. 50:402–410. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Guo R, Fierro-Fine A, Goddard L, Russell
M, Chen J, Liu CZ, Fung KM and Hassell LA: Increased expression of
melanoma stem cell marker CD271 in metastatic melanoma to the
brain. Int J Clin Exp Pathol. 7:8947–8951. 2014.PubMed/NCBI
|
|
55
|
Denkins Y, Reiland J, Roy M,
Sinnappah-Kang ND, Galjour J, Murry BP, Blust J, Aucoin R and
Marchetti D: Brain metastases in melanoma: Roles of neurotrophins.
Neuro Oncol. 6:154–165. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Shaffer SM, Dunagin MC, Torborg SR, Torre
EA, Emert B, Krepler C, Beqiri M, Sproesser K, Brafford PA, Xiao M,
et al: Rare cell variability and drug-induced reprogramming as a
mode of cancer drug resistance. Nature. 546:431–435. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Holzel M and Tuting T:
Inflammation-induced plasticity in melanoma therapy and metastasis.
Trends Immunol. 37:364–374. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Restivo G, Diener J, Cheng PF, Kiowski G,
Bonalli M, Biedermann T, Reichmann E, Levesque MP, Dummer R and
Sommer L: low neurotrophin receptor CD271 regulates phenotype
switching in melanoma. Nat Commun. 8:19882017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Redmer T, Welte Y, Behrens D, Fichtner I,
Przybilla D, Wruck W, Yaspo ML, Lehrach H, Schäfer R and
Regenbrecht CR: The nerve growth factor receptor CD271 is crucial
to maintain tumorigenicity and stem-like properties of melanoma
cells. PLoS One. 9:e925962014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Prasmickaite L, Skrbo N, Hoifodt HK, Suo
Z, Engebraten O, Gullestad HP, Aamdal S, Fodstad Ø and Maelandsmo
GM: Human malignant melanoma harbours a large fraction of highly
clonogenic cells that do not express markers associated with cancer
stem cells. Pigment Cell Melanoma Res. 23:449–451. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lehraiki A, Cerezo M, Rouaud F, Abbe P,
Allegra M, Kluza J, Marchetti P, Imbert V, Cheli Y, Bertolotto C,
et al: Increased CD271 expression by the NF-κB pathway promotes
melanoma cell survival and drives acquired resistance to BRAF
inhibitor vemurafenib. Cell Discov. 1:150302015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Schnegg CI, Yang MH, Ghosh SK and Hsu MY:
Induction of vasculogenic mimicry overrides VEGF-A silencing and
enriches stem-like cancer cells in melanoma. Cancer Res.
75:1682–1690. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Valyi-Nagy K, Kormos B, Ali M, Shukla D
and Valyi-Nagy T: Stem cell marker CD271 is expressed by
vasculogenic mimicry-forming uveal melanoma cells in
three-dimensional cultures. Mol Vis. 18:588–592. 2012.PubMed/NCBI
|
|
64
|
Gray ES, Reid AL, Bowyer S, Calapre L,
Siew K, Pearce R, Cowell L, Frank MH, Millward M and Ziman M:
Circulating melanoma cell subpopulations: Their heterogeneity and
differential responses to treatment. J Invest Dermatol.
135:2040–2048. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Civenni G, Walter A, Kobert N,
Mihic-Probst D, Zipser M, Belloni B, Seifert B, Moch H, Dummer R,
van den Broek M and Sommer L: Human CD271-positive melanoma stem
cells associated with metastasis establish tumor heterogeneity and
long-term growth. Cancer Res. 71:3098–3109. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Furuta J, Inozume T, Harada K and Shimada
S: CD271 on melanoma cell is an IFN-γ-inducible immunosuppressive
factor that mediates downregulation of melanoma antigens. J Invest
Dermatol. 134:1369–1377. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Roesch A: Melanoma stem cells. J Dtsch
Dermatol Ges. 13:118–124. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Clarke MF and Fuller M: Stem cells and
cancer: Two faces of eve. Cell. 124:1111–1115. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Held MA, Curley DP, Dankort D, McMahon M,
Muthusamy V and Bosenberg MW: Characterization of melanoma cells
capable of propagating tumors from a single cell. Cancer Res.
70:388–397. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Frank NY, Schatton T and Frank MH: The
therapeutic promise of the cancer stem cell concept. J Clin Invest.
120:41–50. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Boonyaratanakornkit JB, Yue L, Strachan
LR, Scalapino KJ, LeBoit PE, Lu Y, Leong SP, Smith JE and Ghadially
R: Selection of tumorigenic melanoma cells using ALDH. J Invest
Dermatol. 130:2799–2808. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Pinc A, Somasundaram R, Wagner C, Hormann
M, Karanikas G, Jalili A, Bauer W, Brunner P,
Grabmeier-Pfistershammer K, Gschaider M, et al: Targeting CD20 in
melanoma patients at high risk of disease recurrence. Mol Ther.
20:1056–1062. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Akbulut H, Babahan C, Abgarmi SA, Ocal M
and Besler M: Recent advances in cancer stem cell targeted therapy.
Crit Rev Oncog. 24:1–20. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yaiza JM, Gloria RA, Maria Belen GO, Elena
LR, Gema J, Juan Antonio M, María Ángel GC and Houria B: Melanoma
cancer stem-like cells: Optimization method for culture, enrichment
and maintenance. Tissue Cell. 60:48–59. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Schmidt P, Kopecky C, Hombach A, Zigrino
P, Mauch C and Abken H: Eradication of melanomas by targeted
elimination of a minor subset of tumor cells. Proc Natl Acad Sci
USA. 108:2474–2479. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Murphy GF, Wilson BJ, Girouard SD, Frank
NY and Frank MH: Stem cells and targeted approaches to melanoma
cure. Mol Aspects Med. 39:33–49. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Schlaak M, Schmidt P, Bangard C, Kurschat
P, Mauch C and Abken H: Regression of metastatic melanoma in a
patient by antibody targeting of cancer stem cells. Oncotarget.
3:22–30. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ginestier C, Hur MH, Charafe-Jauffret E,
Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG,
Liu S, et al: ALDH1 is a marker of normal and malignant human
mammary stem cells and a predictor of poor clinical outcome. Cell
Stem Cell. 1:555–567. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Huang EH, Hynes MJ, Zhang T, Ginestier C,
Dontu G, Appelman H, Fields JZ, Wicha MS and Boman BM: Aldehyde
dehydrogenase 1 is a marker for normal and malignant human colonic
stem cells (SC) and tracks SC overpopulation during colon
tumorigenesis. Cancer Res. 69:3382–3389. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Jiang F, Qiu Q, Khanna A, Todd NW, Deepak
J, Xing L, Wang H, Liu Z, Su Y, Stass SA and Katz RL: Aldehyde
dehydrogenase 1 is a tumor stem cell-associated marker in lung
cancer. Mol Cancer Res. 7:330–338. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Carpentino JE, Hynes MJ, Appelman HD,
Zheng T, Steindler DA, Scott EW and Huang EH: Aldehyde
dehydrogenase-expressing colon stem cells contribute to
tumorigenesis in the transition from colitis to cancer. Cancer Res.
69:8208–8215. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Roudi R, Korourian A, Shariftabrizi A and
Madjd Z: Differential expression of cancer stem cell markers ALDH1
and CD133 in various lung cancer subtypes. Cancer Invest.
33:294–302. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yoshida A, Hsu LC and Dave V: Retinal
oxidation activity and biological role of human cytosolic aldehyde
dehydrogenase. Enzyme. 46:239–244. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Singh S, Brocker C, Koppaka V, Chen Y,
Jackson BC, Matsumoto A, Thompson DC and Vasiliou V: Aldehyde
dehydrogenases in cellular responses to oxidative/electrophilic
stress. Free Radic Biol Med. 56:89–101. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Le Moguen K, Lincet H, Deslandes E,
Hubert-Roux M, Lange C, Poulain L, Gauduchon P and Baudin B:
Comparative proteomic analysis of cisplatin sensitive IGROV1
ovarian carcinoma cell line and its resistant counterpart
IGROV1-R10. Proteomics. 6:5183–5192. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Moreb JS, Gabr A, Vartikar GR, Gowda S,
Zucali JR and Mohuczy D: Retinoic acid down-regulates aldehyde
dehydrogenase and increases cytotoxicity of
4-hydroperoxycyclophosphamide and acetaldehyde. J Pharmacol Exp
Ther. 312:339–345. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Santini R, Vinci MC, Pandolfi S,
Penachioni JY, Montagnani V, Olivito B, Gattai R, Pimpinelli N,
Gerlini G, Borgognoni L and Stecca B: Hedgehog-GLI signaling drives
self-renewal and tumorigenicity of human melanoma-initiating cells.
Stem Cells. 30:1808–1818. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Luo Y, Dallaglio K, Chen Y, Robinson WA,
Robinson SE, McCarter MD, Wang J, Gonzalez R, Thompson DC, Norris
DA, et al: ALDH1A isozymes are markers of human melanoma stem cells
and potential therapeutic targets. Stem Cells. 30:2100–2113. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Contador-Troca M, Alvarez-Barrientos A,
Merino JM, Morales-Hernandez A, Rodriguez MI, Rey-Barroso J,
Barrasa E, Cerezo-Guisado MI, Catalina-Fernández I,
Sáenz-Santamaría J, et al: Dioxin receptor regulates aldehyde
dehydrogenase to block melanoma tumorigenesis and metastasis. Mol
Cancer. 14:1482015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yue L, Huang ZM, Fong S, Leong S, Jakowatz
JG, Charruyer-Reinwald A, Wei M and Ghadially R: Targeting ALDH1 to
decrease tumorigenicity, growth and metastasis of human melanoma.
Melanoma Res. 25:138–148. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Willis BC, Johnson G, Wang J and Cohen C:
SOX10: A useful marker for identifying metastatic melanoma in
sentinel lymph nodes. Appl Immunohistochem Mol Morphol. 23:109–112.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Paratore C, Goerich DE, Suter U, Wegner M
and Sommer L: Survival and glial fate acquisition of neural crest
cells are regulated by an interplay between the transcription
factor Sox10 and extrinsic combinatorial signaling. Development.
128:3949–3961. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Shakhova O, Zingg D, Schaefer SM, Hari L,
Civenni G, Blunschi J, Claudinot S, Okoniewski M, Beermann F,
Mihic-Probst D, et al: Sox10 promotes the formation and maintenance
of giant congenital naevi and melanoma. Nat Cell Biol. 14:882–890.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Taghizadeh R, Noh M, Huh YH, Ciusani E,
Sigalotti L, Maio M, Arosio B, Nicotra MR, Natali P, Sherley JL and
La Porta CA: CXCR6, a newly defined biomarker of tissue-specific
stem cell asymmetric self-renewal, identifies more aggressive human
melanoma cancer stem cells. PLoS One. 5:e151832010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhao F, Zhang R, Wang J, Wu D, Pan M, Li
M, Guo M and Dou J: Effective tumor immunity to melanoma mediated
by B16F10 cancer stem cell vaccine. Int Immunopharmacol.
52:238–244. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Dou J, He X, Liu Y, Wang Y, Zhao F, Wang
X, Chen D, Shi F and Wang J: Effect of downregulation of ZEB1 on
vimentin expression, tumour migration and tumourigenicity of
melanoma B16F10 cells and CSCs. Cell Biol Int. 38:452–461. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Le Coz V, Zhu C, Devocelle A, Vazquez A,
Boucheix C, Azzi S, Gallerne C, Eid P, Lecourt S and Giron-Michel
J: IGF-1 contributes to the expansion of melanoma-initiating cells
through an epithelial-mesenchymal transition process. Oncotarget.
7:82511–82527. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
RS K: Tumor angiogenesis. N Engl J Med.
358:2039–2049. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Carmeliet P and Jain RK: Angiogenesis in
cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Rafii S, Lyden D, Benezra R, Hattori K and
Heissig B: Vascular and haematopoietic stem cells: novel targets
for anti-angiogenesis therapy? Nat Rev Cancer. 2:826–835. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Huang WH, Chang MC, Tsai KS, Hung MC, Chen
HL and Hung SC: Mesenchymal stem cells promote growth and
angiogenesis of tumors in mice. Oncogene. 32:4343–4354. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Jeon ES, Lee IH, Heo SC, Shin SH, Choi YJ,
Park JH, Park DY and Kim JH: Mesenchymal stem cells stimulate
angiogenesis in a murine xenograft model of A549 human
adenocarcinoma through an LPA1 receptor-dependent mechanism.
Biochim Biophys Acta. 1801:1205–1213. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Otsu K, Das S, Houser SD, Quadri SK,
Bhattacharya S and Bhattacharya J: Concentration-dependent
inhibition of angiogenesis by mesenchymal stem cells. Blood.
113:4197–4205. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Sun B, Zhang S, Ni C, Zhang D, Liu Y,
Zhang W, Zhao X, Zhao C and Shi M: Correlation between melanoma
angiogenesis and the mesenchymal stem cells and endothelial
progenitor cells derived from bone marrow. Stem Cells Dev.
14:292–298. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bao S, Wu Q, Sathornsumetee S, Hao Y, Li
Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD and Rich JN: Stem
cell-like glioma cells promote tumor angiogenesis through vascular
endothelial growth factor. Cancer Res. 66:7843–7848. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bussolati B, Bruno S, Grange C, Ferrando U
and Camussi G: Identification of a tumor-initiating stem cell
population in human renal carcinomas. FASEB J. 22:3696–3705. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Hendrix MJ, Seftor EA, Hess AR and Seftor
RE: Vasculogenic mimicry and tumour-cell plasticity: Lessons from
melanoma. Nat Rev Cancer. 3:411–421. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Seftor RE, Hess AR, Seftor EA, Kirschmann
DA, Hardy KM, Margaryan NV and Hendrix MJ: Tumor cell vasculogenic
mimicry: From controversy to therapeutic promise. Am J Pathol.
181:1115–1125. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Girouard SD and Murphy GF: Melanoma stem
cells: Not rare, but well done. Lab Invest. 91:647–664. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Vartanian A, Stepanova E, Grigorieva I,
Solomko E, Baryshnikov A and Lichinitser M: VEGFR1 and PKCα
signaling control melanoma vasculogenic mimicry in a VEGFR2
kinase-independent manner. Melanoma Res. 21:91–98. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chao OS, Chang TC, Di Bella MA, Alessandro
R, Anzanello F, Rappa G, Goodman OB and Lorico A: The HDAC6
inhibitor tubacin induces release of CD133(+) extracellular
vesicles from cancer cells. J Cell Biochem. 118:4414–4424. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Alamodi AA, Eshaq AM, Hassan SY, Al Hmada
Y, El Jamal SM, Fothan AM, Arain OM, Hassan SL, Haikel Y, Megahed M
and Hassan M: Cancer stem cell as therapeutic target for melanoma
treatment. Histol Histopathol. 31:1291–1301. 2016.PubMed/NCBI
|
|
113
|
Luo Y, Ellis LZ, Dallaglio K, Takeda M,
Robinson WA, Robinson SE, Liu W, Lewis KD, McCarter MD, Gonzalez R,
et al: Side population cells from human melanoma tumors reveal
diverse mechanisms for chemoresistance. J Invest Dermatol.
132:2440–2450. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yu B, Wang Y, Yu X, Zhang H, Zhu J, Wang
C, Chen F, Liu C, Wang J and Zhu H: Cuprous oxide
nanoparticle-inhibited melanoma progress by targeting melanoma stem
cells. Int J Nanomedicine. 12:2553–2567. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Shidal C, Al-Rayyan N, Yaddanapudi K and
Davis KR: Lunasin is a novel therapeutic agent for targeting
melanoma cancer stem cells. Oncotarget. 7:84128–84141. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Kaushik G, Venugopal A, Ramamoorthy P,
Standing D, Subramaniam D, Umar S, Jensen RA, Anant S and Mammen
JM: Honokiol inhibits melanoma stem cells by targeting notch
signaling. Mol Carcinog. 54:1710–1721. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Bhattacharyya S, Mitra D, Ray S, Biswas N,
Banerjee S, Majumder B, Mustafi SM and Murmu N: Reversing effect of
Lupeol on vasculogenic mimicry in murine melanoma progression.
Microvasc Res. 121:52–62. 2019. View Article : Google Scholar : PubMed/NCBI
|