Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Effect of melanoma stem cells on melanoma metastasis (Review)

  • Authors:
    • Qiliang Yin
    • Xiumin Shi
    • Shijie Lan
    • Haofan Jin
    • Di Wu
  • View Affiliations / Copyright

    Affiliations: Department of Tumor Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
    Copyright: © Yin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 566
    |
    Published online on: May 29, 2021
       https://doi.org/10.3892/ol.2021.12827
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer stem cells (CSCs) are involved in the metastatic process, the resistance of many types of cancer to therapeutic treatments and consequently the onset of recurrences. The CSC concept therefore significantly extends our understanding of melanoma biology. More recently, melanoma stem cells (MSCs) have been described in melanoma as expressing specific biomarkers. These primitive melanoma cells are not only capable of self‑renewal and differentiation plasticity, but may also confer virulence via immune evasion and multidrug resistance, and potentially, via vasculogenic mimicry and transition to migratory and metastasizing derivatives. This review will present the specific biomarkers of MSCs, including CD133, ATP binding cassette subfamily B member 5, CD271, CD20 and aldehyde dehydrogenase, which can regulate the transduction of tumor‑related signals. These signal molecules can reversely act on tumor cells and regulate tumor angiogenesis, leading to the occurrence of melanoma metastasis. Targeting these specific biomarkers could inhibit the progression of melanoma and may help the development of novel therapeutic strategies for melanoma.
View Figures

Figure 1

View References

1 

Lo JA and Fisher DE: The melanoma revolution: From UV carcinogenesis to a new era in therapeutics. Science. 46:945–949. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Holderfield M, Deuker MM, McCormick F and McMahon M: Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 14:455–467. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, et al: Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 364:2507–2516. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P, et al: Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 367:107–114. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Christiansen SA, Khan S and Gibney GT: Targeted therapies in combination with immune therapies for the treatment of metastatic melanoma. Cancer J. 23:59–62. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Nandy SB and Lakshmanaswamy R: Cancer stem cells and metastasis. Prog Mol Biol Transl Sci. 151:137–176. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Parmiani G: Melanoma cancer stem cells: Markers and functions. Cancers (Basel). 8:342016. View Article : Google Scholar : PubMed/NCBI

8 

Fink J, Andersson-Rolf A and Koo BK: Adult stem cell lineage tracing and deep tissue imaging. BMB Rep. 48:655–667. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Ricci E, Mattei E, Dumontet C, Eaton CL, Hamdy F, van der Pluije G, Cecchini M, Thalmann G, Clezardin P and Colombel M: Increased expression of putative cancer stem cell markers in the bone marrow of prostate cancer patients is associated with bone metastasis progression. Prostate. 73:1738–1746. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Croker AK and Allan AL: Cancer stem cells: Implications for the progression and treatment of metastatic disease. J Cell Mol Med. 12:374–390. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Li F, Tiede B, Massague J and Kang Y: Beyond tumorigenesis: Cancer stem cells in metastasis. Cell Res. 17:3–14. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Wickremesekera AC, Brasch HD, Lee VM, Davis PF, Woon K, Johnson R, Tan ST and Itinteang T: Expression of cancer stem cell markers in metastatic melanoma to the brain. J Clin Neurosci. 60:112–116. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Nguyen N, Couts KL, Luo Y and Fujita M: Understanding melanoma stem cells. Melanoma Manag. 2:179–188. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ and Tahan SR: Increased expression of stem cell markers in malignant melanoma. Mod Pathol. 20:102–107. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE and Herlyn M: A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65:9328–9337. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, Fazioli F, Pirozzi G and Papaccio G: Human primary bone sarcomas contain CD133+ cancer stem cells displaying high tumorigenicity in vivo. FASEB J. 25:2022–2030. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Desiderio V, Papagerakis P, Tirino V, Zheng L, Matossian M, Prince ME, Paino F, Mele L, Papaccio F, Montella R, et al: Increased fucosylation has a pivotal role in invasive and metastatic properties of head and neck cancer stem cells. Oncotarget. 6:71–84. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Marzagalli M, Raimondi M, Fontana F, Montagnani Marelli M, Moretti RM and Limonta P: Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Semin Cancer Biol. 59:221–235. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Kumar D, Gorain M, Kundu G and Kundu GC: Therapeutic implications of cellular and molecular biology of cancer stem cells in melanoma. Mol Cancer. 16:72017. View Article : Google Scholar : PubMed/NCBI

22 

Lee N, Barthel SR and Schatton T: Melanoma stem cells and metastasis: Mimicking hematopoietic cell trafficking? Lab Invest. 94:13–30. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Shakhova O and Sommer L: Testing the cancer stem cell hypothesis in melanoma: The clinics will tell. Cancer Lett. 338:74–81. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C and De Maria R: Identification and expansion of human colon-cancer-initiating cells. Nature. 445:111–115. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Zhang D, Tang DG and Rycaj K: Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Semin Cancer Biol. 52:94–106. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Kumar D, Kumar S, Gorain M, Tomar D, Patil HS, Radharani NNV, Kumar TVS, Patil TV, Thulasiram HV and Kundu GC: Notch1-MAPK signaling axis regulates CD133(+) cancer stem cell-mediated melanoma growth and angiogenesis. J Invest Dermatol. 136:2462–2474. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccinini A, Porro D, Santinami M, et al: Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 43:935–946. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Rappa G, Fodstad O and Lorico A: The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells. 26:3008–3017. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Houben R, Wischhusen J, Menaa F, Synwoldt P, Schrama D, Brocker EB and Becker JC: Melanoma stem cells: Targets for successful therapy? J Dtsch Dermatol Ges. 6:541–546. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Lai CY, Schwartz BE and Hsu MY: CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res. 72:5111–5118. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Zimmerer RM, Matthiesen P, Kreher F, Kampmann A, Spalthoff S, Jehn P, Bittermann G, Gellrich NC and Tavassol F: Putative CD133+ melanoma cancer stem cells induce initial angiogenesis in vivo. Microvasc Res. 104:46–54. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Sharma BK, Manglik V, O'Connell M, Weeraratna A, McCarron EC, Broussard JN, Divito KA, Simbulan-Rosenthal CM, Rosenthal DS and Zapas JL: Clonal dominance of CD133+ subset population as risk factor in tumor progression and disease recurrence of human cutaneous melanoma. Int J Oncol. 41:1570–1576. 2012. View Article : Google Scholar : PubMed/NCBI

33 

El-Khattouti A, Selimovic D, Haikel Y, Megahed M, Gomez CR and Hassan M: Identification and analysis of CD133(+) melanoma stem-like cells conferring resistance to taxol: An insight into the mechanisms of their resistance and response. Cancer Lett. 343:123–133. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Koshio J, Kagamu H, Nozaki K, Saida Y, Tanaka T, Shoji S, Igarashi N, Miura S, Okajima M, Watanabe S, et al: DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 3, X-linked is an immunogenic target of cancer stem cells. Cancer Immunol Immunother. 62:1619–1628. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Gedye C, Quirk J, Browning J, Svobodova S, John T, Sluka P, Dunbar PR, Corbeil D, Cebon J and Davis ID: Cancer/testis antigens can be immunological targets in clonogenic CD133+ melanoma cells. Cancer Immunol Immunother. 58:1635–1646. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Lang D, Mascarenhas JB and Shea CR: Melanocytes, melanocyte stem cells, and melanoma stem cells. Clin Dermatol. 31:166–178. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, et al: Identification of cells initiating human melanomas. Nature. 451:345–349. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Begicevic RR and Falasca M: ABC transporters in cancer stem cells: Beyond chemoresistance. Int J Mol Sci. 18:23622017. View Article : Google Scholar : PubMed/NCBI

39 

Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, Sayegh MH, Sadee W and Frank MH: ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res. 65:4320–4333. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T and Herlyn M: A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 141:583–594. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Wang S, Tang L, Lin J, Shen Z, Yao Y, Wang W, Tao S, Gu C, Ma J, Xie Y and Liu Y: ABCB5 promotes melanoma metastasis through enhancing NF-κB p65 protein stability. Biochem Biophys Res Commun. 492:18–26. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Xiao J, Egger ME, McMasters KM and Hao H: Differential expression of ABCB5 in BRAF inhibitor-resistant melanoma cell lines. BMC Cancer. 18:6752018. View Article : Google Scholar : PubMed/NCBI

43 

de Waard NE, Kolovou PE, McGuire SP, Cao J, Frank NY, Frank MH, Jager MJ and Ksander BR: Expression of multidrug resistance transporter ABCB5 in a murine model of human conjunctival melanoma. Ocul Oncol Pathol. 1:182–189. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Vasquez-Moctezuma I, Meraz-Rios MA, Villanueva-Lopez CG, Magana M, Martinez-Macias R, Sanchez-Gonzalez DJ, García-Sierra F and Herrera-González NE: ATP-binding cassette transporter ABCB5 gene is expressed with variability in malignant melanoma. Actas Dermosifiliogr. 101:341–348. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Ma J and Frank MH: Isolation of circulating melanoma cells. Methods Mol Biol. Sep 29–2015.(Epub ahead of print). doi: https://doi.org/10.1007/7651_2015_300. View Article : Google Scholar

46 

Frank NY, Schatton T, Kim S, Zhan Q, Wilson BJ, Ma J, Saab KR, Osherov V, Widlund HR, Gasser M, et al: VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res. 71:1474–1485. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Schatton T, Schutte U, Frank NY, Zhan Q, Hoerning A, Robles SC, Zhou J, Hodi FS, Spagnoli GC, Murphy GF and Frank MH: Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res. 70:697–708. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Eggermont AM and Robert C: New drugs in melanoma: It's a whole new world. Eur J Cancer. 47:2150–2157. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ, et al: Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature. 466:133–137. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Chesa PG, Rettig WJ, Thomson TM, Old LJ and Melamed MR: Immunohistochemical analysis of nerve growth factor receptor expression in normal and malignant human tissues. J Histochem Cytochem. 36:383–389. 1988. View Article : Google Scholar : PubMed/NCBI

51 

Pietra G, Manzini C, Vitale M, Balsamo M, Ognio E, Boitano M, Queirolo P, Moretta L and Mingari MC: Natural killer cells kill human melanoma cells with characteristics of cancer stem cells. Int Immunol. 21:793–801. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Truzzi F, Marconi A, Lotti R, Dallaglio K, French LE, Hempstead BL and Pincelli C: Neurotrophins and their receptors stimulate melanoma cell proliferation and migration. J Invest Dermatol. 128:2031–2040. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Nielsen PS, Riber-Hansen R and Steiniche T: Immunohis tochemical CD271 expression correlates with melanoma progress in a case-control study. Pathology. 50:402–410. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Guo R, Fierro-Fine A, Goddard L, Russell M, Chen J, Liu CZ, Fung KM and Hassell LA: Increased expression of melanoma stem cell marker CD271 in metastatic melanoma to the brain. Int J Clin Exp Pathol. 7:8947–8951. 2014.PubMed/NCBI

55 

Denkins Y, Reiland J, Roy M, Sinnappah-Kang ND, Galjour J, Murry BP, Blust J, Aucoin R and Marchetti D: Brain metastases in melanoma: Roles of neurotrophins. Neuro Oncol. 6:154–165. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, Beqiri M, Sproesser K, Brafford PA, Xiao M, et al: Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature. 546:431–435. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Holzel M and Tuting T: Inflammation-induced plasticity in melanoma therapy and metastasis. Trends Immunol. 37:364–374. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Restivo G, Diener J, Cheng PF, Kiowski G, Bonalli M, Biedermann T, Reichmann E, Levesque MP, Dummer R and Sommer L: low neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nat Commun. 8:19882017. View Article : Google Scholar : PubMed/NCBI

59 

Redmer T, Welte Y, Behrens D, Fichtner I, Przybilla D, Wruck W, Yaspo ML, Lehrach H, Schäfer R and Regenbrecht CR: The nerve growth factor receptor CD271 is crucial to maintain tumorigenicity and stem-like properties of melanoma cells. PLoS One. 9:e925962014. View Article : Google Scholar : PubMed/NCBI

60 

Prasmickaite L, Skrbo N, Hoifodt HK, Suo Z, Engebraten O, Gullestad HP, Aamdal S, Fodstad Ø and Maelandsmo GM: Human malignant melanoma harbours a large fraction of highly clonogenic cells that do not express markers associated with cancer stem cells. Pigment Cell Melanoma Res. 23:449–451. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Lehraiki A, Cerezo M, Rouaud F, Abbe P, Allegra M, Kluza J, Marchetti P, Imbert V, Cheli Y, Bertolotto C, et al: Increased CD271 expression by the NF-κB pathway promotes melanoma cell survival and drives acquired resistance to BRAF inhibitor vemurafenib. Cell Discov. 1:150302015. View Article : Google Scholar : PubMed/NCBI

62 

Schnegg CI, Yang MH, Ghosh SK and Hsu MY: Induction of vasculogenic mimicry overrides VEGF-A silencing and enriches stem-like cancer cells in melanoma. Cancer Res. 75:1682–1690. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Valyi-Nagy K, Kormos B, Ali M, Shukla D and Valyi-Nagy T: Stem cell marker CD271 is expressed by vasculogenic mimicry-forming uveal melanoma cells in three-dimensional cultures. Mol Vis. 18:588–592. 2012.PubMed/NCBI

64 

Gray ES, Reid AL, Bowyer S, Calapre L, Siew K, Pearce R, Cowell L, Frank MH, Millward M and Ziman M: Circulating melanoma cell subpopulations: Their heterogeneity and differential responses to treatment. J Invest Dermatol. 135:2040–2048. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Civenni G, Walter A, Kobert N, Mihic-Probst D, Zipser M, Belloni B, Seifert B, Moch H, Dummer R, van den Broek M and Sommer L: Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res. 71:3098–3109. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Furuta J, Inozume T, Harada K and Shimada S: CD271 on melanoma cell is an IFN-γ-inducible immunosuppressive factor that mediates downregulation of melanoma antigens. J Invest Dermatol. 134:1369–1377. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Roesch A: Melanoma stem cells. J Dtsch Dermatol Ges. 13:118–124. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Clarke MF and Fuller M: Stem cells and cancer: Two faces of eve. Cell. 124:1111–1115. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Held MA, Curley DP, Dankort D, McMahon M, Muthusamy V and Bosenberg MW: Characterization of melanoma cells capable of propagating tumors from a single cell. Cancer Res. 70:388–397. 2010. View Article : Google Scholar : PubMed/NCBI

70 

Frank NY, Schatton T and Frank MH: The therapeutic promise of the cancer stem cell concept. J Clin Invest. 120:41–50. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Boonyaratanakornkit JB, Yue L, Strachan LR, Scalapino KJ, LeBoit PE, Lu Y, Leong SP, Smith JE and Ghadially R: Selection of tumorigenic melanoma cells using ALDH. J Invest Dermatol. 130:2799–2808. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Pinc A, Somasundaram R, Wagner C, Hormann M, Karanikas G, Jalili A, Bauer W, Brunner P, Grabmeier-Pfistershammer K, Gschaider M, et al: Targeting CD20 in melanoma patients at high risk of disease recurrence. Mol Ther. 20:1056–1062. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Akbulut H, Babahan C, Abgarmi SA, Ocal M and Besler M: Recent advances in cancer stem cell targeted therapy. Crit Rev Oncog. 24:1–20. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Yaiza JM, Gloria RA, Maria Belen GO, Elena LR, Gema J, Juan Antonio M, María Ángel GC and Houria B: Melanoma cancer stem-like cells: Optimization method for culture, enrichment and maintenance. Tissue Cell. 60:48–59. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Schmidt P, Kopecky C, Hombach A, Zigrino P, Mauch C and Abken H: Eradication of melanomas by targeted elimination of a minor subset of tumor cells. Proc Natl Acad Sci USA. 108:2474–2479. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Murphy GF, Wilson BJ, Girouard SD, Frank NY and Frank MH: Stem cells and targeted approaches to melanoma cure. Mol Aspects Med. 39:33–49. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Schlaak M, Schmidt P, Bangard C, Kurschat P, Mauch C and Abken H: Regression of metastatic melanoma in a patient by antibody targeting of cancer stem cells. Oncotarget. 3:22–30. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 1:555–567. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, Fields JZ, Wicha MS and Boman BM: Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69:3382–3389. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, Wang H, Liu Z, Su Y, Stass SA and Katz RL: Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res. 7:330–338. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Carpentino JE, Hynes MJ, Appelman HD, Zheng T, Steindler DA, Scott EW and Huang EH: Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res. 69:8208–8215. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Roudi R, Korourian A, Shariftabrizi A and Madjd Z: Differential expression of cancer stem cell markers ALDH1 and CD133 in various lung cancer subtypes. Cancer Invest. 33:294–302. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Yoshida A, Hsu LC and Dave V: Retinal oxidation activity and biological role of human cytosolic aldehyde dehydrogenase. Enzyme. 46:239–244. 1992. View Article : Google Scholar : PubMed/NCBI

84 

Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, Thompson DC and Vasiliou V: Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med. 56:89–101. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Le Moguen K, Lincet H, Deslandes E, Hubert-Roux M, Lange C, Poulain L, Gauduchon P and Baudin B: Comparative proteomic analysis of cisplatin sensitive IGROV1 ovarian carcinoma cell line and its resistant counterpart IGROV1-R10. Proteomics. 6:5183–5192. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Moreb JS, Gabr A, Vartikar GR, Gowda S, Zucali JR and Mohuczy D: Retinoic acid down-regulates aldehyde dehydrogenase and increases cytotoxicity of 4-hydroperoxycyclophosphamide and acetaldehyde. J Pharmacol Exp Ther. 312:339–345. 2005. View Article : Google Scholar : PubMed/NCBI

87 

Santini R, Vinci MC, Pandolfi S, Penachioni JY, Montagnani V, Olivito B, Gattai R, Pimpinelli N, Gerlini G, Borgognoni L and Stecca B: Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells. Stem Cells. 30:1808–1818. 2012. View Article : Google Scholar : PubMed/NCBI

88 

Luo Y, Dallaglio K, Chen Y, Robinson WA, Robinson SE, McCarter MD, Wang J, Gonzalez R, Thompson DC, Norris DA, et al: ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells. 30:2100–2113. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Contador-Troca M, Alvarez-Barrientos A, Merino JM, Morales-Hernandez A, Rodriguez MI, Rey-Barroso J, Barrasa E, Cerezo-Guisado MI, Catalina-Fernández I, Sáenz-Santamaría J, et al: Dioxin receptor regulates aldehyde dehydrogenase to block melanoma tumorigenesis and metastasis. Mol Cancer. 14:1482015. View Article : Google Scholar : PubMed/NCBI

90 

Yue L, Huang ZM, Fong S, Leong S, Jakowatz JG, Charruyer-Reinwald A, Wei M and Ghadially R: Targeting ALDH1 to decrease tumorigenicity, growth and metastasis of human melanoma. Melanoma Res. 25:138–148. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Willis BC, Johnson G, Wang J and Cohen C: SOX10: A useful marker for identifying metastatic melanoma in sentinel lymph nodes. Appl Immunohistochem Mol Morphol. 23:109–112. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Paratore C, Goerich DE, Suter U, Wegner M and Sommer L: Survival and glial fate acquisition of neural crest cells are regulated by an interplay between the transcription factor Sox10 and extrinsic combinatorial signaling. Development. 128:3949–3961. 2001. View Article : Google Scholar : PubMed/NCBI

93 

Shakhova O, Zingg D, Schaefer SM, Hari L, Civenni G, Blunschi J, Claudinot S, Okoniewski M, Beermann F, Mihic-Probst D, et al: Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol. 14:882–890. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Taghizadeh R, Noh M, Huh YH, Ciusani E, Sigalotti L, Maio M, Arosio B, Nicotra MR, Natali P, Sherley JL and La Porta CA: CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells. PLoS One. 5:e151832010. View Article : Google Scholar : PubMed/NCBI

95 

Zhao F, Zhang R, Wang J, Wu D, Pan M, Li M, Guo M and Dou J: Effective tumor immunity to melanoma mediated by B16F10 cancer stem cell vaccine. Int Immunopharmacol. 52:238–244. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Dou J, He X, Liu Y, Wang Y, Zhao F, Wang X, Chen D, Shi F and Wang J: Effect of downregulation of ZEB1 on vimentin expression, tumour migration and tumourigenicity of melanoma B16F10 cells and CSCs. Cell Biol Int. 38:452–461. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Le Coz V, Zhu C, Devocelle A, Vazquez A, Boucheix C, Azzi S, Gallerne C, Eid P, Lecourt S and Giron-Michel J: IGF-1 contributes to the expansion of melanoma-initiating cells through an epithelial-mesenchymal transition process. Oncotarget. 7:82511–82527. 2016. View Article : Google Scholar : PubMed/NCBI

98 

RS K: Tumor angiogenesis. N Engl J Med. 358:2039–2049. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Carmeliet P and Jain RK: Angiogenesis in cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI

100 

Rafii S, Lyden D, Benezra R, Hattori K and Heissig B: Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer. 2:826–835. 2002. View Article : Google Scholar : PubMed/NCBI

101 

Huang WH, Chang MC, Tsai KS, Hung MC, Chen HL and Hung SC: Mesenchymal stem cells promote growth and angiogenesis of tumors in mice. Oncogene. 32:4343–4354. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Jeon ES, Lee IH, Heo SC, Shin SH, Choi YJ, Park JH, Park DY and Kim JH: Mesenchymal stem cells stimulate angiogenesis in a murine xenograft model of A549 human adenocarcinoma through an LPA1 receptor-dependent mechanism. Biochim Biophys Acta. 1801:1205–1213. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S and Bhattacharya J: Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 113:4197–4205. 2009. View Article : Google Scholar : PubMed/NCBI

104 

Sun B, Zhang S, Ni C, Zhang D, Liu Y, Zhang W, Zhao X, Zhao C and Shi M: Correlation between melanoma angiogenesis and the mesenchymal stem cells and endothelial progenitor cells derived from bone marrow. Stem Cells Dev. 14:292–298. 2005. View Article : Google Scholar : PubMed/NCBI

105 

Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD and Rich JN: Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66:7843–7848. 2006. View Article : Google Scholar : PubMed/NCBI

106 

Bussolati B, Bruno S, Grange C, Ferrando U and Camussi G: Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J. 22:3696–3705. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Hendrix MJ, Seftor EA, Hess AR and Seftor RE: Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma. Nat Rev Cancer. 3:411–421. 2003. View Article : Google Scholar : PubMed/NCBI

108 

Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV and Hendrix MJ: Tumor cell vasculogenic mimicry: From controversy to therapeutic promise. Am J Pathol. 181:1115–1125. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Girouard SD and Murphy GF: Melanoma stem cells: Not rare, but well done. Lab Invest. 91:647–664. 2011. View Article : Google Scholar : PubMed/NCBI

110 

Vartanian A, Stepanova E, Grigorieva I, Solomko E, Baryshnikov A and Lichinitser M: VEGFR1 and PKCα signaling control melanoma vasculogenic mimicry in a VEGFR2 kinase-independent manner. Melanoma Res. 21:91–98. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Chao OS, Chang TC, Di Bella MA, Alessandro R, Anzanello F, Rappa G, Goodman OB and Lorico A: The HDAC6 inhibitor tubacin induces release of CD133(+) extracellular vesicles from cancer cells. J Cell Biochem. 118:4414–4424. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Alamodi AA, Eshaq AM, Hassan SY, Al Hmada Y, El Jamal SM, Fothan AM, Arain OM, Hassan SL, Haikel Y, Megahed M and Hassan M: Cancer stem cell as therapeutic target for melanoma treatment. Histol Histopathol. 31:1291–1301. 2016.PubMed/NCBI

113 

Luo Y, Ellis LZ, Dallaglio K, Takeda M, Robinson WA, Robinson SE, Liu W, Lewis KD, McCarter MD, Gonzalez R, et al: Side population cells from human melanoma tumors reveal diverse mechanisms for chemoresistance. J Invest Dermatol. 132:2440–2450. 2012. View Article : Google Scholar : PubMed/NCBI

114 

Yu B, Wang Y, Yu X, Zhang H, Zhu J, Wang C, Chen F, Liu C, Wang J and Zhu H: Cuprous oxide nanoparticle-inhibited melanoma progress by targeting melanoma stem cells. Int J Nanomedicine. 12:2553–2567. 2017. View Article : Google Scholar : PubMed/NCBI

115 

Shidal C, Al-Rayyan N, Yaddanapudi K and Davis KR: Lunasin is a novel therapeutic agent for targeting melanoma cancer stem cells. Oncotarget. 7:84128–84141. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Kaushik G, Venugopal A, Ramamoorthy P, Standing D, Subramaniam D, Umar S, Jensen RA, Anant S and Mammen JM: Honokiol inhibits melanoma stem cells by targeting notch signaling. Mol Carcinog. 54:1710–1721. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Bhattacharyya S, Mitra D, Ray S, Biswas N, Banerjee S, Majumder B, Mustafi SM and Murmu N: Reversing effect of Lupeol on vasculogenic mimicry in murine melanoma progression. Microvasc Res. 121:52–62. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yin Q, Shi X, Lan S, Jin H and Wu D: Effect of melanoma stem cells on melanoma metastasis (Review). Oncol Lett 22: 566, 2021.
APA
Yin, Q., Shi, X., Lan, S., Jin, H., & Wu, D. (2021). Effect of melanoma stem cells on melanoma metastasis (Review). Oncology Letters, 22, 566. https://doi.org/10.3892/ol.2021.12827
MLA
Yin, Q., Shi, X., Lan, S., Jin, H., Wu, D."Effect of melanoma stem cells on melanoma metastasis (Review)". Oncology Letters 22.1 (2021): 566.
Chicago
Yin, Q., Shi, X., Lan, S., Jin, H., Wu, D."Effect of melanoma stem cells on melanoma metastasis (Review)". Oncology Letters 22, no. 1 (2021): 566. https://doi.org/10.3892/ol.2021.12827
Copy and paste a formatted citation
x
Spandidos Publications style
Yin Q, Shi X, Lan S, Jin H and Wu D: Effect of melanoma stem cells on melanoma metastasis (Review). Oncol Lett 22: 566, 2021.
APA
Yin, Q., Shi, X., Lan, S., Jin, H., & Wu, D. (2021). Effect of melanoma stem cells on melanoma metastasis (Review). Oncology Letters, 22, 566. https://doi.org/10.3892/ol.2021.12827
MLA
Yin, Q., Shi, X., Lan, S., Jin, H., Wu, D."Effect of melanoma stem cells on melanoma metastasis (Review)". Oncology Letters 22.1 (2021): 566.
Chicago
Yin, Q., Shi, X., Lan, S., Jin, H., Wu, D."Effect of melanoma stem cells on melanoma metastasis (Review)". Oncology Letters 22, no. 1 (2021): 566. https://doi.org/10.3892/ol.2021.12827
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team