|
1
|
Apweiler R, Hermjakob H and Sharon N: On
the frequency of protein glycosylation, as deduced from analysis of
the SWISS-PROT database. Biochim Biophys Acta. 1473:4–8. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Theodoratou E, Thaçi K, Agakov F,
Timofeeva MN, Štambuk J, Pučić-Baković M, Vučković F, Orchard P,
Agakova A, Din FV, et al: Glycosylation of plasma IgG in colorectal
cancer prognosis. Sci Rep. 6:280982016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Vajaria BN and Patel PS: Glycosylation: A
hallmark of cancer. Glycoconj J. 34:147–156. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Munkley J and Elliott DJ: Hallmarks of
glycosylation in cancer. Oncotarget. 7:35478–3589. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Shan A, Lu J, Xu Z, Li X, Xu Y, Li W, Liu
F, Yang F, Sato T, Narimatsu H and Zhang Y: Polypeptide
N-acetylgalactosaminyltransferase 18 non-catalytically regulates
the ER homeostasis and O-glycosylation. Biochim Biophys Acta Gen
Subj. 1863:870–882. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Tian E and Ten Hagen KG: Recent insights
into the biological roles of mucin-type O-glycosylation. Glycoconj
J. 26:325–334. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kudelka MR, Antonopoulos A, Wang Y, Duong
DM, Song X, Seyfried NT, Dell A, Haslam SM, Cummings RD and Ju T:
Cellular O-Glycome Reporter/Amplification to explore O-glycans of
living cells. Nat Methods. 13:81–16. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gupta R, Leon F, Rauth S, Batra SK and
Ponnusamy MP: A Systematic review on the implications of O-linked
glycan branching and truncating enzymes on cancer progression and
metastasis. Cells. 9:4462020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Cervoni GE, Cheng JJ, Stackhouse KA,
Heimburg-Molinaro J and Cummings RD: O-glycan recognition and
function in mice and human cancers. Biochem J. 477:1541–1564. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Joshi HJ, Narimatsu Y, Schjoldager KT,
Tytgat H, Aebi M, Clausen H and Halim A: SnapShot: O-Glycosylation
pathways across kingdoms. Cell. 172:632.e22018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li LX, Ashikov A, Liu H, Griffith CL,
Bakker H and Doering TL: Cryptococcus neoformans UGT1 encodes a
UDP-Galactose/UDP-GalNAc transporter. Glycobiology. 27:87–98. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bennett EP, Mandel U, Clausen H, Gerken
TA, Fritz TA and Tabak LA: Control of mucin-type O-glycosylation: A
classification of the polypeptide GalNAc-transferase gene family.
Glycobiology. 22:736–56. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lin MC, Chien PH, Wu HY, Chen ST, Juan HF,
Lou PJ and Huang MC: C1GALT1 predicts poor prognosis and is a
potential therapeutic target in head and neck cancer. Oncogene.
37:5780–5793. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Saeland E, Belo AI, Mongera S, van Die I,
Meijer GA and van Kooyk Y: Differential glycosylation of MUC1 and
CEACAM5 between normal mucosa and tumour tissue of colon cancer
patients. Int J Cancer. 131:117–128. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ju T, Brewer K, D'Souza A, Cummings RD and
Canfield WM: Cloning and expression of human core 1
beta1,3-galactosyltransferase. J Biol Chem. 277:178–186. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tran DT and Ten Hagen KG: Mucin-type
O-glycosylation during development. J Biol Chem. 288:6921–6929.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tu L and Banfield DK: Localization of
Golgi-resident glycosyltransferases. Cell Mol Life Sci. 67:29–41.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Aryal RP, Ju T and Cummings RD: The
endoplasmic reticulum chaperone Cosmc directly promotes in vitro
folding of T-synthase. J Biol Chem. 285:2456–2462. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Guzman-Aranguez A and Argüeso P: Structure
and biological roles of mucin-type O-glycans at the ocular surface.
Ocul Surf. 8:8–17. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Xia L, Ju T, Westmuckett A, An G, Ivanciu
L, McDaniel JM, Lupu F, Cummings RD and McEver RP: Defective
angiogenesis and fatal embryonic hemorrhage in mice lacking core
1-derived O-glycans. J Cell Biol. 164:451–459. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Fu J, Gerhardt H, McDaniel JM, Xia B, Liu
X, Ivanciu L, Ny A, Hermans K, Silasi-Mansat R, McGee S, et al:
Endothelial cell O-glycan deficiency causes blood/lymphatic
misconnections and consequent fatty liver disease in mice. J Clin
Invest. 118:3725–3737. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Pinho SS and Reis CA: Glycosylation in
cancer: Mechanisms and clinical implications. Nat Rev Cancer.
15:540–555. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chen CH, Wang SW, Chen CW, Huang MR, Hung
JS, Huang HC, Lin HH, Chen RJ, Shyu MK and Huang MC: MUC20
overexpression predicts poor prognosis and enhances EGF-induced
malignant phenotypes via activation of the EGFR-STAT3 pathway in
endometrial cancer. Gynecol Oncol. 128:560–567. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen CH, Hsiao SM, Chang TC, Wu WY and Lin
HH: Clinical and urodynamic effects of baclofen in women with
functional bladder outlet obstruction: Preliminary report. J Obstet
Gynaecol Res. 42:560–565. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang X, Dong W, Zhou H, Li H, Wang N,
Miao X and Jia L: α-2,8-Sialyltransferase is involved in the
development of multidrug resistance via PI3K/Akt pathway in human
chronic myeloid leukemia. IUBMB Life. 67:77–87. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ma H, Miao X, Ma Q, Zheng W, Zhou H and
Jia L: Functional roles of glycogene and N-glycan in multidrug
resistance of human breast cancer cells. IUBMB Life. 65:409–422.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wu YM, Liu CH, Huang MJ, Lai HS, Lee PH,
Hu RH and Huang MC: C1GALT1 enhances proliferation of
hepatocellular carcinoma cells via modulating MET glycosylation and
dimerization. Cancer Res. 73:5580–5590. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lee PC, Chen ST, Kuo TC, Lin TC, Lin MC,
Huang J, Hung JS, Hsu CL, Juan HF, Lee PH and Huang MC: C1GALT1 is
associated with poor survival and promotes soluble Ephrin
A1-mediated cell migration through activation of EPHA2 in gastric
cancer. Oncogene. 39:2724–2740. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu CH, Hu RH, Huang MJ, Lai IR, Chen CH,
Lai HS, Wu YM and Huang MC: C1GALT1 promotes invasive phenotypes of
hepatocellular carcinoma cells by modulating integrin β1
glycosylation and activity. PLoS One. 9:e949952014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chugh S, Barkeer S, Rachagani S,
Nimmakayala RK, Perumal N, Pothuraju R, Atri P, Mahapatra S, Thapa
I, Talmon GA, et al: Disruption of C1galt1 gene promotes
development and metastasis of pancreatic adenocarcinomas in Mice.
Gastroenterology. 155:1608–1624. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu F, Fu J, Bergstrom K, Shan X, McDaniel
JM, McGee S, Bai X, Chen W and Xia L: Core 1-derived mucin-type
O-glycosylation protects against spontaneous gastritis and gastric
cancer. J Exp Med. 217:e201823252020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Alexander WS, Viney EM, Zhang JG, Metcalf
D, Kauppi M, Hyland CD, Carpinelli MR, Stevenson W, Croker BA,
Hilton AA, et al: Thrombocytopenia and kidney disease in mice with
a mutation in the C1galt1 gene. Proc Natl Acad Sci USA.
103:16442–16447. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ju T, Xia B, Aryal RP, Wang W, Wang Y,
Ding X, Mi R, He M and Cummings RD: A novel fluorescent assay for
T-synthase activity. Glycobiology. 21:352–362. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lowe JB and Marth JD: A genetic approach
to Mammalian glycan function. Annu Rev Biochem. 72:643–691. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Soriano P: Abnormal kidney development and
hematological disorders in PDGF beta-receptor mutant mice. Genes
Dev. 8:1888–1896. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ju T and Cummings RD: A unique molecular
chaperone Cosmc required for activity of the mammalian core 1 beta
3-galactosyltransferase. Proc Natl Acad Sci USA. 99:16613–16618.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xia L and McEver RP: Targeted disruption
of the gene encoding core 1 beta1-3-galactosyltransferase
(T-synthase) causes embryonic lethality and defective angiogenesis
in mice. Methods Enzymol. 416:314–331. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Abtahian F, Guerriero A, Sebzda E, Lu MM,
Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA, et al:
Regulation of blood and lymphatic vascular separation by signaling
proteins SLP-76 and Syk. Science. 299:247–251. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Anderson WA and Spielman A: Permeability
of the ovarian follicle of Aedes aegypti mosquitoes. J Cell Biol.
50:201–221. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Batista F, Lu L, Williams SA and Stanley
P: Complex N-glycans are essential, but core 1 and 2 mucin
O-glycans, O-fucose glycans, and NOTCH1 are dispensable, for
mammalian spermatogenesis. Biol Reprod. 86:1792012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Berkholtz CB, Lai BE, Woodruff TK and Shea
LD: Distribution of extracellular matrix proteins type I collagen,
type IV collagen, fibronectin, and laminin in mouse
folliculogenesis. Histochem Cell Biol. 126:583–592. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kudo T, Sato T, Hagiwara K, Kozuma Y,
Yamaguchi T, Ikehara Y, Hamada M, Matsumoto K, Ema M, Murata S,
Ohkohchi N, et al: C1galt1-deficient mice exhibit thrombocytopenia
due to abnormal terminal differentiation of megakaryocytes. Blood.
122:1649–157. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kerjaschki D, Sharkey DJ and Farquhar MG:
Identification and characterization of podocalyxin-the major
sialoprotein of the renal glomerular epithelial cell. J Cell Biol.
98:1591–1596. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Doyonnas R, Kershaw DB, Duhme C, Merkens
H, Chelliah S, Graf T and McNagny KM: Anuria, omphalocele, and
perinatal lethality in mice lacking the CD34-related protein
podocalyxin. J Exp Med. 194:13–27. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pirulli D, Crovella S, Ulivi S, Zadro C,
Bertok S, Rendine S, Scolari F, Foramitti M, Ravani P, Roccatello
D, et al: Genetic variant of C1GalT1 contributes to the
susceptibility to IgA nephropathy. J Nephrol. 22:152–159.
2009.PubMed/NCBI
|
|
46
|
Zhou FD, Zhao MH, Zou WZ, Liu G and Wang
H: The changing spectrum of primary glomerular diseases within 15
years: A survey of 3331 patients in a single Chinese centre.
Nephrol Dial Transplant. 24:870–876. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li LS and Liu ZH: Epidemiologic data of
renal diseases from a single unit in China: Analysis based on
13,519 renal biopsies. Kidney Int. 66:920–923. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Pan X, Xu J, Ren H, Zhang W, Xu Y, Shen P,
Li X, Wang W, Chen X, Wu P, et al: Changing spectrum of
biopsy-proven primary glomerular diseases over the past 15 years: A
single-center study in China. Contrib Nephrol. 181:22–30. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Barratt J and Feehally J: IgA nephropathy.
J Am Soc Nephrol. 16:2088–2097. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
D'Amico G: Natural history of idiopathic
IgA nephropathy and factors predictive of disease outcome. Semin
Nephrol. 24:179–196. 2004. View Article : Google Scholar
|
|
51
|
Zhang C, Deng X, Qiu L, Peng F, Geng S,
Shen L and Luo Z: Knockdown of C1GalT1 inhibits radioresistance of
human esophageal cancer cells through modifying β1-integrin
glycosylation. J Cancer. 9:2666–2677. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Li GS, Zhang H, Lv JC, Shen Y and Wang HY:
Variants of C1GALT1 gene are associated with the genetic
susceptibility to IgA nephropathy. Kidney Int. 71:448–453. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Novak J, Julian BA, Mestecky J and Renfrow
MB: Glycosylation of IgA1 and pathogenesis of IgA nephropathy.
Semin Immunopathol. 34:365–382. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kiryluk K, Moldoveanu Z, Sanders JT, Eison
TM, Suzuki H, Julian BA, Novak J, Gharavi AG and Wyatt RJ: Aberrant
glycosylation of IgA1 is inherited in both pediatric IgA
nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int.
80:79–87. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lomax-Browne HJ, Visconti A, Pusey CD,
Cook HT, Spector TD, Pickering MC and Falchi M: IgA1 glycosylation
is heritable in healthy twins. J Am Soc Nephrol. 28:64–68. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gale DP, Molyneux K, Wimbury D, Higgins P,
Levine AP, Caplin B, Ferlin A, Yin P, Nelson CP, Stanescu H, et al:
Galactosylation of IgA1 is associated with common variation in
C1GALT1. Am Soc Nephrol. 28:2158–2166. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kiryluk K, Li Y, Moldoveanu Z, Suzuki H,
Reily C, Hou P, Xie J, Mladkova N, Prakash S, Fischman C, et al:
GWAS for serum galactose-deficient IgA1 implicates critical genes
of the O-glycosylation pathway. PLoS Genet. 13:e10066092017.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Xing Y, Li L, Zhang Y, Wang F, He D, Liu
Y, Jia J, Yan T and Lin S: C1GALT1 expression is associated with
galactosylation of IgA1 in peripheral B lymphocyte in
immunoglobulin a nephropathy. BMC Nephrol. 21:182020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Xie LS, Qin W, Fan JM, Huang J, Xie XS and
Li Z: The role of C1GALT1C1 in lipopolysaccharide-induced IgA1
aberrant O-glycosylation in IgA nephropathy. Clin Invest Med.
33:E5–E13. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Vainchenker W, Vinci G, Testa U, Henri A,
Tabilio A, Fache MP, Rochant H and Cartron JP: Presence of the Tn
antigen on hematopoietic progenitors from patients with the Tn
syndrome. J Clin Invest. 75:541–546. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Berger EG: Tn-syndrome. Biochim Biophys
Acta. 1455:255–268. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X,
Kudelka MR, Cutler C, Zeng J, Wang J, Sun X, et al: Tn and
sialyl-Tn antigens, aberrant O-glycomics as human disease markers.
Proteomics Clin Appl. 7:618–631. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ju T and Cummings RD: Protein
glycosylation: Chaperone mutation in Tn syndrome. Nature.
437:12522005. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ju T, Lanneau GS, Gautam T, Wang Y, Xia B,
Stowell SR, Willard MT, Wang W, Xia JY, Zuna RE, et al: Human tumor
antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer
Res. 68:1636–1646. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Schietinger A, Philip M, Yoshida BA, Azadi
P, Liu H, Meredith SC and Schreiber H: A mutant chaperone converts
a wild-type protein into a tumor-specific antigen. Science.
314:304–308. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Crew VK, Singleton BK, Green C, Parsons
SF, Daniels G and Anstee DJ: New mutations in C1GALT1C1 in
individuals with Tn positive phenotype. Br J Haematol. 142:657–667.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang Y, Jobe SM, Ding X, Choo H, Archer
DR, Mi R, Ju T and Cummings RD: Platelet biogenesis and functions
require correct protein O-glycosylation. Proc Natl Acad Sci USA.
109:16143–16148. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Springer GF: T and Tn, general carcinoma
autoantigens. Science. 224:1198–1206. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Itzkowitz SH, Yuan M, Montgomery CK,
Kjeldsen T, Takahashi HK, Bigbee WL and Kim YS: Expression of Tn,
sialosyl-Tn, and T antigens in human colon cancer. Cancer Res.
49:197–204. 1989.PubMed/NCBI
|
|
70
|
Tsuchiya A, Kanno M, Kawaguchi T, Endo Y,
Zhang GJ, Ohtake T and Kimijima I I: Prognostic relevance of tn
expression in breast cancer. Breast Cancer. 6:175–180. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Inoue M, Ton SM, Ogawa H and Tanizawa O:
Expression of Tn and sialyl-Tn antigens in tumor tissues of the
ovary. Am J Clin Pathol. 96:711–716. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Terasawa K, Furumoto H, Kamada M and Aono
T: Expression of Tn and sialyl-Tn antigens in the neoplastic
transformation of uterine cervical epithelial cells. Cancer Res.
56:2229–2232. 1996.PubMed/NCBI
|
|
73
|
Perez-Muñoz ME, Bergstrom K, Peng V,
Schmaltz R, Jimenez-Cardona R, Marsteller N, McGee S, Clavel T, Ley
R, Fu J, et al: Discordance between changes in the gut microbiota
and pathogenicity in a mouse model of spontaneous colitis. Gut
Microbes. 5:286–295. 2014. View Article : Google Scholar
|
|
74
|
Johansson ME, Sjövall H and Hansson GC:
The gastrointestinal mucus system in health and disease. Nat Rev
Gastroenterol Hepatol. 10:352–361. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Fu J, Wei B, Wen T, Johansson ME, Liu X,
Bradford E, Thomsson KA, McGee S, Mansour L, Tong M, et al: Loss of
intestinal core 1-derived O-glycans causes spontaneous colitis in
mice. J Clin Invest. 121:1657–1666. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Johansson ME, Gustafsson JK,
Holmén-Larsson J, Jabbar KS, Xia L, Xu H, Ghishan FK, Carvalho FA,
Gewirtz AT, Sjövall H and Hansson GC: Bacteria penetrate the
normally impenetrable inner colon mucus layer in both murine
colitis models and patients with ulcerative colitis. Gut.
63:281–291. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Campbell BJ, Finnie IA, Hounsell EF and
Rhodes JM: Direct demonstration of increased expression of
Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and
ulcerative colitis mucin and its concealment in normal mucin. J
Clin Invest. 95:571–576. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Clamp JR, Fraser G and Read AE: Study of
the carbohydrate content of mucus glycoproteins from normal and
diseased colons. Clin Sci (Lond). 61:229–234. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Larsson JM, Karlsson H, Crespo JG,
Johansson ME, Eklund L, Sjövall H and Hansson GC: Altered
O-glycosylation profile of MUC2 mucin occurs in active ulcerative
colitis and is associated with increased inflammation. Inflamm
Bowel Dis. 17:2299–2307. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Theodoratou E, Campbell H, Ventham NT,
Kolarich D, Pučić-Baković M, Zoldoš V, Fernandes D, Pemberton IK,
Rudan I, Kennedy NA, et al: The role of glycosylation in IBD. Nat
Rev Gastroenterol Hepatol. 11:588–600. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jacobs JP, Lin L, Goudarzi M, Ruegger P,
McGovern DP, Fornace AJ Jr, Borneman J, Xia L and Braun J:
Microbial, metabolomic, and immunologic dynamics in a relapsing
genetic mouse model of colitis induced by T-synthase deficiency.
Gut Microbes. 8:1–16. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ju T, Aryal RP, Kudelka MR, Wang Y and
Cummings RD: The Cosmc connection to the Tn antigen in cancer.
Cancer Biomark. 14:63–81. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hung JS, Huang J, Lin YC, Huang MJ, Lee
PH, Lai HS, Liang JT and Huang MC: C1GALT1 overexpression promotes
the invasive behavior of colon cancer cells through modifying
O-glycosylation of FGFR2. Oncotarget. 5:2096–2106. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Liu SY, Shun CT, Hung KY, Juan HF, Hsu CL,
Huang MC and Lai IR: Mucin glycosylating enzyme GALNT2 suppresses
malignancy in gastric adenocarcinoma by reducing MET
phosphorylation. Oncotarget. 7:11251–11262. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wu YM, Liu CH, Hu RH, Huang MJ, Lee JJ,
Chen CH, Huang J, Lai HS, Lee PH, Hsu WM, et al: Mucin
glycosylating enzyme GALNT2 regulates the malignant character of
hepatocellular carcinoma by modifying the EGF receptor. Cancer Res.
71:7270–7279. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Huang MJ, Hu RH, Chou CH, Hsu CL, Liu YW,
Huang J, Hung JS, Lai IR, Juan HF, Yu SL, et al: Knockdown of
GALNT1 suppresses malignant phenotype of hepatocellular carcinoma
by suppressing EGFR signaling. Oncotarget. 6:5650–5665. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang H, Rao B, Lou J, Li J, Liu Z, Li A,
Cui G, Ren Z and Yu Z: The Function of the HGF/c-Met Axis in
Hepatocellular Carcinoma. Front Cell Dev Biol. 8:552020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK,
Lee BL, Bang YJ and Kim WH: MET in gastric carcinomas: Comparison
between protein expression and gene copy number and impact on
clinical outcome. Br J Cancer. 107:325–333. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Inokuchi M, Otsuki S, Fujimori Y, Sato Y,
Nakagawa M and Kojima K: Clinical significance of MET in gastric
cancer. World J Gastrointest Oncol. 7:317–327. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Toiyama Y, Yasuda H, Saigusa S, Matushita
K, Fujikawa H, Tanaka K, Mohri Y, Inoue Y, Goel A and Kusunoki M:
Co-expression of hepatocyte growth factor and c-Met predicts
peritoneal dissemination established by autocrine hepatocyte growth
factor/c-Met signaling in gastric cancer. Int J Cancer.
130:2912–2921. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Deng N, Goh LK, Wang H, Das K, Tao J, Tan
IB, Zhang S, Lee M, Wu J, Lim KH, et al: A comprehensive survey of
genomic alterations in gastric cancer reveals systematic patterns
of molecular exclusivity and co-occurrence among distinct
therapeutic targets. Gut. 61:673–684. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Bradley CA, Salto-Tellez M, Laurent-Puig
P, Bardelli A, Rolfo C, Tabernero J, Khawaja HA, Lawler M, Johnston
PG and Van Schaeybroeck S; MErCuRIC consortium, : Targeting c-MET
in gastrointestinal tumours: Rationale, opportunities and
challenges. Nat Rev Clin Oncol. 15:1502018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sierra JC, Asim M, Verriere TG, Piazuelo
MB, Suarez G, Romero-Gallo J, Delgado AG, Wroblewski LE, Barry DP,
Peek RM Jr, et al: Epidermal growth factor receptor inhibition
downregulates Helicobacter pylori-induced epithelial inflammatory
responses, DNA damage and gastric carcinogenesis. Gut.
67:1247–1260. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Xi HQ, Wu XS, Wei B and Chen L: Eph
receptors and ephrins as targets for cancer therapy. J Cell Mol
Med. 16:2894–2909. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Vaught D, Brantley-Sieders DM and Chen J:
Eph receptors in breast cancer: Roles in tumor promotion and tumor
suppression. Breast Cancer Res. 10:2172008. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Herath NI and Boyd AW: The role of Eph
receptors and ephrin ligands in colorectal cancer. Int J Cancer.
126:2003-2011.PubMed/NCBI
|
|
97
|
Lisle JE, Mertens-Walker I, Rutkowski R,
Herington AC and Stephenson SA: Eph receptors and their ligands:
Promising molecular biomarkers and therapeutic targets in prostate
cancer. Biochim Biophys Acta. 1835:243–257. 2013.PubMed/NCBI
|
|
98
|
Pasquale EB: Eph receptors and ephrins in
cancer: Bidirectional signalling and beyond. Nat Rev Cancer.
10:165–180. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Boyd AW, Bartlett PF and Lackmann M:
Therapeutic targeting of EPH receptors and their ligands. Nat Rev
Drug Discov. 13:39–62. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wen Q, Chen Z, Chen Z, Chen J, Wang R,
Huang C and Yuan W: EphA2 affects the sensitivity of oxaliplatin by
inducing EMT in oxaliplatin-resistant gastric cancer cells.
Oncotarget. 8:47998–48011. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Huang J, He Y, Mcleod HL, Xie Y, Xiao D,
Hu H, Chen P, Shen L, Zeng S, Yin X, et al: miR-302b inhibits
tumorigenesis by targeting EphA2 via Wnt/ β-catenin/EMT signaling
cascade in gastric cancer. BMC Cancer. 17:8862017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Tsai CH, Tzeng SF, Chao TK, Tsai CY, Yang
YC, Lee MT, Hwang JJ, Chou YC, Tsai MH, Cha TL and Hsiao PW:
Metastatic progression of prostate cancer is mediated by autonomous
binding of Galectin-4-O-glycan to cancer cells. Cancer Res.
76:5756–5767. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Luo H, Guo W, Wang F, You Y, Wang J, Chen
X, Wang J, Wang Y, Du Y, Chen X, et al: miR-1291 targets mucin 1
inhibiting cell proliferation and invasion to promote cell
apoptosis in esophageal squamous cell carcinoma. Oncol Rep.
34:2665–2673. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Shi M, Chen D, Yang D and Liu XY:
CCL21-CCR7 promotes the lymph node metastasis of esophageal
squamous cell carcinoma by up-regulating MUC1. J Exp Clin Cancer
Res. 34:1492015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Su H, Hu N, Yang HH, Wang C, Takikita M,
Wang QH, Giffen C, Clifford R, Hewitt SM, Shou JZ, et al: Global
gene expression profiling and validation in esophageal squamous
cell carcinoma and its association with clinical phenotypes. Clin
Cancer Res. 17:2955–2966. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Agata N, Ahmad R, Kawano T, Raina D,
Kharbanda S and Kufe D: MUC1 oncoprotein blocks death
receptor-mediated apoptosis by inhibiting recruitment of caspase-8.
Cancer Res. 68:6136–6144. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kufe DW: MUC1-C oncoprotein as a target in
breast cancer: Activation of signaling pathways and therapeutic
approaches. Oncogene. 32:1073–1081. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Wang Y, Liao X, Ye Q and Huang L: Clinic
implication of MUC1 O-glycosylation and C1GALT1 in esophagus
squamous cell carcinoma. Sci China Life Sci. 61:1389–1395. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Dong X, Luo Z, Wang Y, Meng L, Duan Q, Qiu
L, Peng F and Shen L: Altered O-glycosylation is associated with
inherent radioresistance and malignancy of human laryngeal
carcinoma. Exp Cell Res. 362:302–310. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Chen P, Chang A, Huang M and Wu Y:
Abstract 1400: C1GALT1 regulates malignant phenotypes of
cholangiocarcinoma cells. Cancer Res. 792019.doi:
10.1158/1538-7445.AM2019-1400. PubMed/NCBI
|
|
111
|
Huang MC, Huang MJ and Wu YM: P0247:
C1GAlT1 is overexpressed in cholangiocarcinoma and C1GAlT1
knockdown inhibits malignant behaviors of cholangiocarcinoma cells.
J Hepatol. 62 (Suppl):S3992015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Lin MC, Huang MJ, Liu CH, Yang TL and
Huang MC: GALNT2 enhances migration and invasion of oral squamous
cell carcinoma by regulating EGFR glycosylation and activity. Oral
Oncol. 50:478–484. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Leemans CR, Snijders P and Brakenhoff RH:
The molecular landscape of head and neck cancer. Nat Rev Cancer.
18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ghazizadeh M, Ogawa H, Sasaki Y, Araki T
and Aihara K: Mucin carbohydrate antigens (T, Tn, and sialyl-Tn) in
human ovarian carcinomas: Relationship with histopathology and
prognosis. Hum Pathol. 28:960–966. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Davidson B, Gotlieb WH, Ben-Baruch G,
Kopolovic J, Goldberg I, Nesland JM, Berner A, Bjåmer A and Bryne
M: Expression of carbohydrate antigens in advanced-stage ovarian
carcinomas and their metastases-A clinicopathologic study. Gynecol
Oncol. 77:35–43. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Chou CH, Huang MJ, Liao YY, Chen CH and
Huang MC: C1GALT1 seems to promote in vitro disease progression in
ovarian cancer. Int J Gynecol Cancer. 27:863–871. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Leach SD: Mouse models of pancreatic
cancer: The fur is finally flying. Cancer Cell. 5:7–11. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Mazur PK and Siveke JT: Genetically
engineered mouse models of pancreatic cancer: Unravelling tumour
biology and progressing translational oncology. Gut. 61:1488–1500.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Muniyan S, Haridas D, Chugh S, Rachagani
S, Lakshmanan I, Gupta S, Seshacharyulu P, Smith LM, Ponnusamy MP
and Batra SK: MUC16 contributes to the metastasis of pancreatic
ductal adenocarcinoma through focal adhesion mediated signaling
mechanism. Genes Cancer. 7:110–124. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Fujita-Yamaguchi Y: Renewed interest in
basic and applied research involving monoclonal antibodies against
an oncofetal Tn-antigen. J Biochem. 154:103–105. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Sun X, Ju T and Cummings RD: Differential
expression of Cosmc, T-synthase and mucins in Tn-positive
colorectal cancers. BMC Cancer. 18:8272018. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Bergstrom K, Fu J, Johansson ME, Liu X,
Gao N, Wu Q, Song J, McDaniel JM, McGee S, Chen W, et al: Core 1-
and 3-derived O-glycans collectively maintain the colonic mucus
barrier and protect against spontaneous colitis in mice. Mucosal
Immunol. 10:91–103. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Dong X, Jiang Y, Liu J, Liu Z, Gao T, An G
and Wen T: T-synthase deficiency enhances oncogenic features in
human colorectal cancer cells via activation of
epithelial-mesenchymal transition. Biomed Res Int.
2018:95323892018. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Scheid E, Major P, Bergeron A, Finn OJ,
Salter RD, Eady R, Yassine-Diab B, Favre D, Peretz Y, Landry C, et
al: Tn-MUC1 DC vaccination of rhesus macaques and a phase I/II
trial in patients with nonmetastatic castrate-resistant prostate
cancer. Cancer Immunol Res. 4:881–892. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Sakai K, Yuasa N, Tsukamoto K,
Takasaki-Matsumoto A, Yajima Y, Sato R, Kawakami H, Mizuno M,
Takayanagi A, Shimizu N, et al: Isolation and characterization of
antibodies against three consecutive Tn-antigen clusters from a
phage library displaying human single-chain variable fragments. J
Biochem. 147:809–817. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Piyush T, Rhodes JM and Yu LG: MUC1
O-glycosylation contributes to anoikis resistance in epithelial
cancer cells. Cell Death Discov. 3:170442017. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Freire-de-Lima L, Gelfenbeyn K, Ding Y,
Mandel U, Clausen H, Handa K and Hakomori SI: Involvement of
O-glycosylation defining oncofetal fibronectin in
epithelial-mesenchymal transition process. Proc Natl Acad Sci USA.
108:17690–17695. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
An G, Wei B, Xia B, McDaniel JM, Ju T,
Cummings RD, Braun J and Xia L: Increased susceptibility to colitis
and colorectal tumors in mice lacking core 3-derived O-glycans. J
Exp Med. 204:1417–1429. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Kudo T, Iwai T, Kubota T, Iwasaki H,
Takayma Y, Hiruma T, Inaba N, Zhang Y, Gotoh M, Togayachi A and
Narimatsu H: Molecular cloning and characterization of a novel
UDP-Gal:GalNAc(alpha) peptide beta 1,3-galactosyltransferase
(C1Gal-T2), an enzyme synthesizing a core 1 structure of O-glycan.
J Biol Chem. 277:47724–47731. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Ju T, Aryal RP, Stowell CJ and Cummings
RD: Regulation of protein O-glycosylation by the endoplasmic
reticulum-localized molecular chaperone Cosmc. J Cell Biol.
182:531–542. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Zeng J, Mi R, Wang Y, Li Y, Lin L, Yao B,
Song L, van Die I, Chapman AB, Cummings RD, et al: Promoters of
Human Cosmc And T-synthase genes are similar in structure, yet
different in epigenetic regulation. J Biol Chem. 290:19018–19033.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Wang Y, Ju T, Ding X, Xia B, Wang W, Xia
L, He M and Cummings RD: Cosmc is an essential chaperone for
correct protein O-glycosylation. Proc Natl Acad Sci USA.
107:9228–9233. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Mi R, Song L, Wang Y, Ding X, Zeng J,
Lehoux S, Aryal RP, Wang J, Crew VK, van Die I, et al: Epigenetic
silencing of the chaperone Cosmc in human leukocytes expressing tn
antigen. J Biol Chem. 287:41523–41533. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Cartron JP and Nurden AT:
Galactosyltransferase and membrane glycoprotein abnormality in
human platelets from Tn-syndrome donors. Nature. 282:621–623. 1979.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Cartron JP, Cartron J, Andreu G, Salmon C
and Bird GW: Selective deficiency of 3-beta-d-galactosyltransferase
(T-transferase) in Tn-polyagglutinable erythrocytes. Lancet.
1:856–857. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Ju T, Otto VI and Cummings RD: The Tn
antigen-structural simplicity and biological complexity. Angew Chem
Int Ed Engl. 50:1770–1791. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Hiki Y: O-linked oligosaccharides of the
IgA1 hinge region: Roles of its aberrant structure in the
occurrence and/or progression of IgA nephropathy. Clin Exp Nephrol.
13:415–423. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Yang D, Tang Y, Fu H, Xu J, Hu Z, Zhang Y
and Cai Q: Integrin β1 promotes gemcitabine resistance in
pancreatic cancer through Cdc42 activation of PI3K p110β signaling.
Biochem Biophys Res Commun. 505:215–221. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Desgrosellier JS and Cheresh DA: Integrins
in cancer: Biological implications and therapeutic opportunities.
Nat Rev Cancer. 10:9–22. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Matsunaga T, Fukai F, Miura S, Nakane Y,
Owaki T, Kodama H, Tanaka M, Nagaya T, Takimoto R, Takayama T and
Niitsu Y: Combination therapy of an anticancer drug with the
FNIII14 peptide of fibronectin effectively overcomes cell
adhesion-mediated drug resistance of acute myelogenous leukemia.
Leukemia. 22:353–360. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Park CC, Zhang H, Pallavicini M, Gray JW,
Baehner F, Park CJ and Bissell MJ: Beta1 integrin inhibitory
antibody induces apoptosis of breast cancer cells, inhibits growth,
and distinguishes malignant from normal phenotype in three
dimensional cultures and in vivo. Cancer Res. 66:1526–1535. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Li Y, Ren Z, Wang Y, Dang YZ, Meng BX,
Wang GD, Zhang J, Wu J and Wen N: ADAM17 promotes cell migration
and invasion through the integrin β1 pathway in hepatocellular
carcinoma. Exp Cell Res. 370:373–382. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Winkler J, Roessler S, Sticht C, DiGuilio
AL, Drucker E, Holzer K, Eiteneuer E, Herpel E, Breuhahn K, Gretz
N, et al: Cellular apoptosis susceptibility (CAS) is linked to
integrin β1 and required for tumor cell migration and invasion in
hepatocellular carcinoma (HCC). Oncotarget. 7:22883–22892. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Fransvea E, Mazzocca A, Antonaci S and
Giannelli G: Targeting transforming growth factor (TGF)-betaRI
inhibits activation of beta1 integrin and blocks vascular invasion
in hepatocellular carcinoma. Hepatology. 49:839–850. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Trusolino L, Bertotti A and Comoglio PM: A
signaling adapter function for alpha6beta4 integrin in the control
of HGF-dependent invasive growth. Cell. 107:643–654. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
McCall-Culbreath KD, Li Z and Zutter MM:
Crosstalk between the alpha2beta1 integrin and c-met/HGF-R
regulates innate immunity. Blood. 111:3562–3570. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Liu Y, Chattopadhyay N, Qin S, Szekeres C,
Vasylyeva T, Mahoney ZX, Taglienti M, Bates CM, Chapman HA, Miner
JH and Kreidberg JA: Coordinate integrin and c-Met signaling
regulate Wnt gene expression during epithelial morphogenesis.
Development. 136:843–853. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Wu J, Li Y, Dang YZ, Gao HX, Jiang JL and
Chen ZN: HAb18G/CD147 promotes radioresistance in hepatocellular
carcinoma cells: A potential role for integrin β1 signaling. Mol
Cancer Ther. 14:553–563. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Eke I, Dickreuter E and Cordes N: Enhanced
radiosensitivity of head and neck squamous cell carcinoma cells by
β1 integrin inhibition. Radiother Oncol. 104:235–242. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Tsubamoto H, Sonoda T, Yamasaki M and
Inoue K: Impact of combination chemotherapy with itraconazole on
survival of patients with refractory ovarian cancer. Anticancer
Res. 34:2481–2487. 2014.PubMed/NCBI
|
|
151
|
Rudin CM, Brahmer JR, Juergens RA, Hann
CL, Ettinger DS, Sebree R, Smith R, Aftab BT, Huang P and Liu JO:
Phase 2 study of pemetrexed and itraconazole as second-line therapy
for metastatic nonsquamous non-small-cell lung cancer. J Thorac
Oncol. 8:619–623. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Antonarakis ES, Heath EI, Smith DC,
Rathkopf D, Blackford AL, Danila DC, King S, Frost A, Ajiboye AS,
Zhao M, et al: Repurposing itraconazole as a treatment for advanced
prostate cancer: A noncomparative randomized phase II trial in men
with metastatic castration-resistant prostate cancer. Oncologist.
18:163–173. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Nguyen-Tan PF, Zhang Q, Ang KK, Weber RS,
Rosenthal DI, Soulieres D, Kim H, Silverman C, Raben A, Galloway
TJ, et al: Randomized phase III trial to test accelerated versus
standard fractionation in combination with concurrent cisplatin for
head and neck carcinomas in the Radiation Therapy Oncology Group
0129 trial: Long-term report of efficacy and toxicity. J Clin
Oncol. 32:3858–3866. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Aryal RP, Ju T and Cummings RD:
Identification of a novel protein binding motif within the
T-synthase for the molecular chaperone Cosmc. J Biol Chem.
289:11630–11641. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Schachter H: The joys of HexNAc. The
synthesis and function of N- and O-glycan branches. Glycoconj J.
17:465–483. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Hakomori S: Glycosylation defining cancer
malignancy: New wine in an old bottle. Proc Natl Acad Sci USA.
99:10231–10233. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Hua D, Shen L, Xu L, Jiang Z, Zhou Y, Yue
A, Zou S, Cheng Z and Wu S: Polypeptide
N-acetylgalactosaminyltransferase 2 regulates cellular
metastasis-associated behavior in gastric cancer. Int J Mol Med.
30:1267–1274. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Kariya Y, Kanno M, Matsumoto-Morita K,
Konno M, Yamaguchi Y and Hashimoto Y: Osteopontin O-glycosylation
contributes to its phosphorylation and cell-adhesion properties.
Biochem J. 463:93–102. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Wang ZQ, Bachvarova M, Morin C, Plante M,
Gregoire J, Renaud MC, Sebastianelli A and Bachvarov D: Role of the
polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer
progression: Possible implications in abnormal mucin
O-glycosylation. Oncotarget. 5:544–560. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Liu B, Pan S, Xiao Y, Liu Q, Xu J and Jia
L: LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer
progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway.
J Exp Clin Cancer Res. 37:3162018. View Article : Google Scholar : PubMed/NCBI
|