Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
August-2021 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2021 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

C1GALT1 in health and disease (Review)

  • Authors:
    • Xiaojie Sun
    • Mengru Zhan
    • Xun Sun
    • Wanqi Liu
    • Xiangwei Meng
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Department of Hepatobiliary and Pancreatic Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Department of Pathology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
    Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 589
    |
    Published online on: June 6, 2021
       https://doi.org/10.3892/ol.2021.12850
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

O‑linked glycosylation (O‑glycosylation) and N‑linked glycosylation (N‑glycosylation) are the two most important forms of protein glycosylation, which is an important post‑translational modification. The regulation of protein function involves numerous mechanisms, among which protein glycosylation is one of the most important. Core 1 synthase glycoprotein‑N‑acetylgalactosamine 3‑β‑galactosyltransferase 1 (C1GALT1) serves an important role in the regulation of O‑glycosylation and is an essential enzyme for synthesizing the core 1 structure of mucin‑type O‑glycans. Furthermore, C1GALT1 serves a vital role in a number of biological functions, such as angiogenesis, platelet production and kidney development. Impaired C1GALT1 expression activity has been associated with different types of human diseases, including inflammatory or immune‑mediated diseases, and cancer. O‑glycosylation exists in normal tissues, as well as in tumor tissues. Previous studies have revealed that changes in the level of glycosyltransferase in different types of cancer may be used as potential therapeutic targets. Currently, numerous studies have reported the dual role of C1GALT1 in tumors (carcinogenesis and cancer suppression). The present review reports the role of C1GALT1 in normal development and human diseases. Since the mechanism and regulation of C1GALT1 and O‑glycosylation remain elusive, further studies are required to elucidate their effects on development and disease.
View Figures

Figure 1

Figure 2

View References

1 

Apweiler R, Hermjakob H and Sharon N: On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta. 1473:4–8. 1999. View Article : Google Scholar : PubMed/NCBI

2 

Theodoratou E, Thaçi K, Agakov F, Timofeeva MN, Štambuk J, Pučić-Baković M, Vučković F, Orchard P, Agakova A, Din FV, et al: Glycosylation of plasma IgG in colorectal cancer prognosis. Sci Rep. 6:280982016. View Article : Google Scholar : PubMed/NCBI

3 

Vajaria BN and Patel PS: Glycosylation: A hallmark of cancer. Glycoconj J. 34:147–156. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Munkley J and Elliott DJ: Hallmarks of glycosylation in cancer. Oncotarget. 7:35478–3589. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Shan A, Lu J, Xu Z, Li X, Xu Y, Li W, Liu F, Yang F, Sato T, Narimatsu H and Zhang Y: Polypeptide N-acetylgalactosaminyltransferase 18 non-catalytically regulates the ER homeostasis and O-glycosylation. Biochim Biophys Acta Gen Subj. 1863:870–882. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Tian E and Ten Hagen KG: Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj J. 26:325–334. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Kudelka MR, Antonopoulos A, Wang Y, Duong DM, Song X, Seyfried NT, Dell A, Haslam SM, Cummings RD and Ju T: Cellular O-Glycome Reporter/Amplification to explore O-glycans of living cells. Nat Methods. 13:81–16. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Gupta R, Leon F, Rauth S, Batra SK and Ponnusamy MP: A Systematic review on the implications of O-linked glycan branching and truncating enzymes on cancer progression and metastasis. Cells. 9:4462020. View Article : Google Scholar : PubMed/NCBI

9 

Cervoni GE, Cheng JJ, Stackhouse KA, Heimburg-Molinaro J and Cummings RD: O-glycan recognition and function in mice and human cancers. Biochem J. 477:1541–1564. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Joshi HJ, Narimatsu Y, Schjoldager KT, Tytgat H, Aebi M, Clausen H and Halim A: SnapShot: O-Glycosylation pathways across kingdoms. Cell. 172:632.e22018. View Article : Google Scholar : PubMed/NCBI

11 

Li LX, Ashikov A, Liu H, Griffith CL, Bakker H and Doering TL: Cryptococcus neoformans UGT1 encodes a UDP-Galactose/UDP-GalNAc transporter. Glycobiology. 27:87–98. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA and Tabak LA: Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 22:736–56. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Lin MC, Chien PH, Wu HY, Chen ST, Juan HF, Lou PJ and Huang MC: C1GALT1 predicts poor prognosis and is a potential therapeutic target in head and neck cancer. Oncogene. 37:5780–5793. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Saeland E, Belo AI, Mongera S, van Die I, Meijer GA and van Kooyk Y: Differential glycosylation of MUC1 and CEACAM5 between normal mucosa and tumour tissue of colon cancer patients. Int J Cancer. 131:117–128. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Ju T, Brewer K, D'Souza A, Cummings RD and Canfield WM: Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem. 277:178–186. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Tran DT and Ten Hagen KG: Mucin-type O-glycosylation during development. J Biol Chem. 288:6921–6929. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Tu L and Banfield DK: Localization of Golgi-resident glycosyltransferases. Cell Mol Life Sci. 67:29–41. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Aryal RP, Ju T and Cummings RD: The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J Biol Chem. 285:2456–2462. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Guzman-Aranguez A and Argüeso P: Structure and biological roles of mucin-type O-glycans at the ocular surface. Ocul Surf. 8:8–17. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Xia L, Ju T, Westmuckett A, An G, Ivanciu L, McDaniel JM, Lupu F, Cummings RD and McEver RP: Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol. 164:451–459. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Fu J, Gerhardt H, McDaniel JM, Xia B, Liu X, Ivanciu L, Ny A, Hermans K, Silasi-Mansat R, McGee S, et al: Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest. 118:3725–3737. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Pinho SS and Reis CA: Glycosylation in cancer: Mechanisms and clinical implications. Nat Rev Cancer. 15:540–555. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Chen CH, Wang SW, Chen CW, Huang MR, Hung JS, Huang HC, Lin HH, Chen RJ, Shyu MK and Huang MC: MUC20 overexpression predicts poor prognosis and enhances EGF-induced malignant phenotypes via activation of the EGFR-STAT3 pathway in endometrial cancer. Gynecol Oncol. 128:560–567. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Chen CH, Hsiao SM, Chang TC, Wu WY and Lin HH: Clinical and urodynamic effects of baclofen in women with functional bladder outlet obstruction: Preliminary report. J Obstet Gynaecol Res. 42:560–565. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Zhang X, Dong W, Zhou H, Li H, Wang N, Miao X and Jia L: α-2,8-Sialyltransferase is involved in the development of multidrug resistance via PI3K/Akt pathway in human chronic myeloid leukemia. IUBMB Life. 67:77–87. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Ma H, Miao X, Ma Q, Zheng W, Zhou H and Jia L: Functional roles of glycogene and N-glycan in multidrug resistance of human breast cancer cells. IUBMB Life. 65:409–422. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Wu YM, Liu CH, Huang MJ, Lai HS, Lee PH, Hu RH and Huang MC: C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization. Cancer Res. 73:5580–5590. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Lee PC, Chen ST, Kuo TC, Lin TC, Lin MC, Huang J, Hung JS, Hsu CL, Juan HF, Lee PH and Huang MC: C1GALT1 is associated with poor survival and promotes soluble Ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer. Oncogene. 39:2724–2740. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Liu CH, Hu RH, Huang MJ, Lai IR, Chen CH, Lai HS, Wu YM and Huang MC: C1GALT1 promotes invasive phenotypes of hepatocellular carcinoma cells by modulating integrin β1 glycosylation and activity. PLoS One. 9:e949952014. View Article : Google Scholar : PubMed/NCBI

30 

Chugh S, Barkeer S, Rachagani S, Nimmakayala RK, Perumal N, Pothuraju R, Atri P, Mahapatra S, Thapa I, Talmon GA, et al: Disruption of C1galt1 gene promotes development and metastasis of pancreatic adenocarcinomas in Mice. Gastroenterology. 155:1608–1624. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Liu F, Fu J, Bergstrom K, Shan X, McDaniel JM, McGee S, Bai X, Chen W and Xia L: Core 1-derived mucin-type O-glycosylation protects against spontaneous gastritis and gastric cancer. J Exp Med. 217:e201823252020. View Article : Google Scholar : PubMed/NCBI

32 

Alexander WS, Viney EM, Zhang JG, Metcalf D, Kauppi M, Hyland CD, Carpinelli MR, Stevenson W, Croker BA, Hilton AA, et al: Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene. Proc Natl Acad Sci USA. 103:16442–16447. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Ju T, Xia B, Aryal RP, Wang W, Wang Y, Ding X, Mi R, He M and Cummings RD: A novel fluorescent assay for T-synthase activity. Glycobiology. 21:352–362. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Lowe JB and Marth JD: A genetic approach to Mammalian glycan function. Annu Rev Biochem. 72:643–691. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Soriano P: Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 8:1888–1896. 1994. View Article : Google Scholar : PubMed/NCBI

36 

Ju T and Cummings RD: A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci USA. 99:16613–16618. 2002. View Article : Google Scholar : PubMed/NCBI

37 

Xia L and McEver RP: Targeted disruption of the gene encoding core 1 beta1-3-galactosyltransferase (T-synthase) causes embryonic lethality and defective angiogenesis in mice. Methods Enzymol. 416:314–331. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Abtahian F, Guerriero A, Sebzda E, Lu MM, Zhou R, Mocsai A, Myers EE, Huang B, Jackson DG, Ferrari VA, et al: Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science. 299:247–251. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Anderson WA and Spielman A: Permeability of the ovarian follicle of Aedes aegypti mosquitoes. J Cell Biol. 50:201–221. 1971. View Article : Google Scholar : PubMed/NCBI

40 

Batista F, Lu L, Williams SA and Stanley P: Complex N-glycans are essential, but core 1 and 2 mucin O-glycans, O-fucose glycans, and NOTCH1 are dispensable, for mammalian spermatogenesis. Biol Reprod. 86:1792012. View Article : Google Scholar : PubMed/NCBI

41 

Berkholtz CB, Lai BE, Woodruff TK and Shea LD: Distribution of extracellular matrix proteins type I collagen, type IV collagen, fibronectin, and laminin in mouse folliculogenesis. Histochem Cell Biol. 126:583–592. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Kudo T, Sato T, Hagiwara K, Kozuma Y, Yamaguchi T, Ikehara Y, Hamada M, Matsumoto K, Ema M, Murata S, Ohkohchi N, et al: C1galt1-deficient mice exhibit thrombocytopenia due to abnormal terminal differentiation of megakaryocytes. Blood. 122:1649–157. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Kerjaschki D, Sharkey DJ and Farquhar MG: Identification and characterization of podocalyxin-the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol. 98:1591–1596. 1984. View Article : Google Scholar : PubMed/NCBI

44 

Doyonnas R, Kershaw DB, Duhme C, Merkens H, Chelliah S, Graf T and McNagny KM: Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J Exp Med. 194:13–27. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Pirulli D, Crovella S, Ulivi S, Zadro C, Bertok S, Rendine S, Scolari F, Foramitti M, Ravani P, Roccatello D, et al: Genetic variant of C1GalT1 contributes to the susceptibility to IgA nephropathy. J Nephrol. 22:152–159. 2009.PubMed/NCBI

46 

Zhou FD, Zhao MH, Zou WZ, Liu G and Wang H: The changing spectrum of primary glomerular diseases within 15 years: A survey of 3331 patients in a single Chinese centre. Nephrol Dial Transplant. 24:870–876. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Li LS and Liu ZH: Epidemiologic data of renal diseases from a single unit in China: Analysis based on 13,519 renal biopsies. Kidney Int. 66:920–923. 2004. View Article : Google Scholar : PubMed/NCBI

48 

Pan X, Xu J, Ren H, Zhang W, Xu Y, Shen P, Li X, Wang W, Chen X, Wu P, et al: Changing spectrum of biopsy-proven primary glomerular diseases over the past 15 years: A single-center study in China. Contrib Nephrol. 181:22–30. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Barratt J and Feehally J: IgA nephropathy. J Am Soc Nephrol. 16:2088–2097. 2005. View Article : Google Scholar : PubMed/NCBI

50 

D'Amico G: Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol. 24:179–196. 2004. View Article : Google Scholar

51 

Zhang C, Deng X, Qiu L, Peng F, Geng S, Shen L and Luo Z: Knockdown of C1GalT1 inhibits radioresistance of human esophageal cancer cells through modifying β1-integrin glycosylation. J Cancer. 9:2666–2677. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Li GS, Zhang H, Lv JC, Shen Y and Wang HY: Variants of C1GALT1 gene are associated with the genetic susceptibility to IgA nephropathy. Kidney Int. 71:448–453. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Novak J, Julian BA, Mestecky J and Renfrow MB: Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol. 34:365–382. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Kiryluk K, Moldoveanu Z, Sanders JT, Eison TM, Suzuki H, Julian BA, Novak J, Gharavi AG and Wyatt RJ: Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int. 80:79–87. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Lomax-Browne HJ, Visconti A, Pusey CD, Cook HT, Spector TD, Pickering MC and Falchi M: IgA1 glycosylation is heritable in healthy twins. J Am Soc Nephrol. 28:64–68. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, Caplin B, Ferlin A, Yin P, Nelson CP, Stanescu H, et al: Galactosylation of IgA1 is associated with common variation in C1GALT1. Am Soc Nephrol. 28:2158–2166. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Kiryluk K, Li Y, Moldoveanu Z, Suzuki H, Reily C, Hou P, Xie J, Mladkova N, Prakash S, Fischman C, et al: GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 13:e10066092017. View Article : Google Scholar : PubMed/NCBI

58 

Xing Y, Li L, Zhang Y, Wang F, He D, Liu Y, Jia J, Yan T and Lin S: C1GALT1 expression is associated with galactosylation of IgA1 in peripheral B lymphocyte in immunoglobulin a nephropathy. BMC Nephrol. 21:182020. View Article : Google Scholar : PubMed/NCBI

59 

Xie LS, Qin W, Fan JM, Huang J, Xie XS and Li Z: The role of C1GALT1C1 in lipopolysaccharide-induced IgA1 aberrant O-glycosylation in IgA nephropathy. Clin Invest Med. 33:E5–E13. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Vainchenker W, Vinci G, Testa U, Henri A, Tabilio A, Fache MP, Rochant H and Cartron JP: Presence of the Tn antigen on hematopoietic progenitors from patients with the Tn syndrome. J Clin Invest. 75:541–546. 1985. View Article : Google Scholar : PubMed/NCBI

61 

Berger EG: Tn-syndrome. Biochim Biophys Acta. 1455:255–268. 1999. View Article : Google Scholar : PubMed/NCBI

62 

Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR, Cutler C, Zeng J, Wang J, Sun X, et al: Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin Appl. 7:618–631. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Ju T and Cummings RD: Protein glycosylation: Chaperone mutation in Tn syndrome. Nature. 437:12522005. View Article : Google Scholar : PubMed/NCBI

64 

Ju T, Lanneau GS, Gautam T, Wang Y, Xia B, Stowell SR, Willard MT, Wang W, Xia JY, Zuna RE, et al: Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 68:1636–1646. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC and Schreiber H: A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science. 314:304–308. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Crew VK, Singleton BK, Green C, Parsons SF, Daniels G and Anstee DJ: New mutations in C1GALT1C1 in individuals with Tn positive phenotype. Br J Haematol. 142:657–667. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Wang Y, Jobe SM, Ding X, Choo H, Archer DR, Mi R, Ju T and Cummings RD: Platelet biogenesis and functions require correct protein O-glycosylation. Proc Natl Acad Sci USA. 109:16143–16148. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Springer GF: T and Tn, general carcinoma autoantigens. Science. 224:1198–1206. 1984. View Article : Google Scholar : PubMed/NCBI

69 

Itzkowitz SH, Yuan M, Montgomery CK, Kjeldsen T, Takahashi HK, Bigbee WL and Kim YS: Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res. 49:197–204. 1989.PubMed/NCBI

70 

Tsuchiya A, Kanno M, Kawaguchi T, Endo Y, Zhang GJ, Ohtake T and Kimijima I I: Prognostic relevance of tn expression in breast cancer. Breast Cancer. 6:175–180. 1999. View Article : Google Scholar : PubMed/NCBI

71 

Inoue M, Ton SM, Ogawa H and Tanizawa O: Expression of Tn and sialyl-Tn antigens in tumor tissues of the ovary. Am J Clin Pathol. 96:711–716. 1991. View Article : Google Scholar : PubMed/NCBI

72 

Terasawa K, Furumoto H, Kamada M and Aono T: Expression of Tn and sialyl-Tn antigens in the neoplastic transformation of uterine cervical epithelial cells. Cancer Res. 56:2229–2232. 1996.PubMed/NCBI

73 

Perez-Muñoz ME, Bergstrom K, Peng V, Schmaltz R, Jimenez-Cardona R, Marsteller N, McGee S, Clavel T, Ley R, Fu J, et al: Discordance between changes in the gut microbiota and pathogenicity in a mouse model of spontaneous colitis. Gut Microbes. 5:286–295. 2014. View Article : Google Scholar

74 

Johansson ME, Sjövall H and Hansson GC: The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 10:352–361. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Fu J, Wei B, Wen T, Johansson ME, Liu X, Bradford E, Thomsson KA, McGee S, Mansour L, Tong M, et al: Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J Clin Invest. 121:1657–1666. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Johansson ME, Gustafsson JK, Holmén-Larsson J, Jabbar KS, Xia L, Xu H, Ghishan FK, Carvalho FA, Gewirtz AT, Sjövall H and Hansson GC: Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 63:281–291. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Campbell BJ, Finnie IA, Hounsell EF and Rhodes JM: Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin. J Clin Invest. 95:571–576. 1995. View Article : Google Scholar : PubMed/NCBI

78 

Clamp JR, Fraser G and Read AE: Study of the carbohydrate content of mucus glycoproteins from normal and diseased colons. Clin Sci (Lond). 61:229–234. 1981. View Article : Google Scholar : PubMed/NCBI

79 

Larsson JM, Karlsson H, Crespo JG, Johansson ME, Eklund L, Sjövall H and Hansson GC: Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm Bowel Dis. 17:2299–2307. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Theodoratou E, Campbell H, Ventham NT, Kolarich D, Pučić-Baković M, Zoldoš V, Fernandes D, Pemberton IK, Rudan I, Kennedy NA, et al: The role of glycosylation in IBD. Nat Rev Gastroenterol Hepatol. 11:588–600. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Jacobs JP, Lin L, Goudarzi M, Ruegger P, McGovern DP, Fornace AJ Jr, Borneman J, Xia L and Braun J: Microbial, metabolomic, and immunologic dynamics in a relapsing genetic mouse model of colitis induced by T-synthase deficiency. Gut Microbes. 8:1–16. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Ju T, Aryal RP, Kudelka MR, Wang Y and Cummings RD: The Cosmc connection to the Tn antigen in cancer. Cancer Biomark. 14:63–81. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Hung JS, Huang J, Lin YC, Huang MJ, Lee PH, Lai HS, Liang JT and Huang MC: C1GALT1 overexpression promotes the invasive behavior of colon cancer cells through modifying O-glycosylation of FGFR2. Oncotarget. 5:2096–2106. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Liu SY, Shun CT, Hung KY, Juan HF, Hsu CL, Huang MC and Lai IR: Mucin glycosylating enzyme GALNT2 suppresses malignancy in gastric adenocarcinoma by reducing MET phosphorylation. Oncotarget. 7:11251–11262. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Wu YM, Liu CH, Hu RH, Huang MJ, Lee JJ, Chen CH, Huang J, Lai HS, Lee PH, Hsu WM, et al: Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor. Cancer Res. 71:7270–7279. 2011. View Article : Google Scholar : PubMed/NCBI

86 

Huang MJ, Hu RH, Chou CH, Hsu CL, Liu YW, Huang J, Hung JS, Lai IR, Juan HF, Yu SL, et al: Knockdown of GALNT1 suppresses malignant phenotype of hepatocellular carcinoma by suppressing EGFR signaling. Oncotarget. 6:5650–5665. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Wang H, Rao B, Lou J, Li J, Liu Z, Li A, Cui G, Ren Z and Yu Z: The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma. Front Cell Dev Biol. 8:552020. View Article : Google Scholar : PubMed/NCBI

88 

Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK, Lee BL, Bang YJ and Kim WH: MET in gastric carcinomas: Comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 107:325–333. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Inokuchi M, Otsuki S, Fujimori Y, Sato Y, Nakagawa M and Kojima K: Clinical significance of MET in gastric cancer. World J Gastrointest Oncol. 7:317–327. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Toiyama Y, Yasuda H, Saigusa S, Matushita K, Fujikawa H, Tanaka K, Mohri Y, Inoue Y, Goel A and Kusunoki M: Co-expression of hepatocyte growth factor and c-Met predicts peritoneal dissemination established by autocrine hepatocyte growth factor/c-Met signaling in gastric cancer. Int J Cancer. 130:2912–2921. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Deng N, Goh LK, Wang H, Das K, Tao J, Tan IB, Zhang S, Lee M, Wu J, Lim KH, et al: A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut. 61:673–684. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Bradley CA, Salto-Tellez M, Laurent-Puig P, Bardelli A, Rolfo C, Tabernero J, Khawaja HA, Lawler M, Johnston PG and Van Schaeybroeck S; MErCuRIC consortium, : Targeting c-MET in gastrointestinal tumours: Rationale, opportunities and challenges. Nat Rev Clin Oncol. 15:1502018. View Article : Google Scholar : PubMed/NCBI

93 

Sierra JC, Asim M, Verriere TG, Piazuelo MB, Suarez G, Romero-Gallo J, Delgado AG, Wroblewski LE, Barry DP, Peek RM Jr, et al: Epidermal growth factor receptor inhibition downregulates Helicobacter pylori-induced epithelial inflammatory responses, DNA damage and gastric carcinogenesis. Gut. 67:1247–1260. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Xi HQ, Wu XS, Wei B and Chen L: Eph receptors and ephrins as targets for cancer therapy. J Cell Mol Med. 16:2894–2909. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Vaught D, Brantley-Sieders DM and Chen J: Eph receptors in breast cancer: Roles in tumor promotion and tumor suppression. Breast Cancer Res. 10:2172008. View Article : Google Scholar : PubMed/NCBI

96 

Herath NI and Boyd AW: The role of Eph receptors and ephrin ligands in colorectal cancer. Int J Cancer. 126:2003-2011.PubMed/NCBI

97 

Lisle JE, Mertens-Walker I, Rutkowski R, Herington AC and Stephenson SA: Eph receptors and their ligands: Promising molecular biomarkers and therapeutic targets in prostate cancer. Biochim Biophys Acta. 1835:243–257. 2013.PubMed/NCBI

98 

Pasquale EB: Eph receptors and ephrins in cancer: Bidirectional signalling and beyond. Nat Rev Cancer. 10:165–180. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Boyd AW, Bartlett PF and Lackmann M: Therapeutic targeting of EPH receptors and their ligands. Nat Rev Drug Discov. 13:39–62. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Wen Q, Chen Z, Chen Z, Chen J, Wang R, Huang C and Yuan W: EphA2 affects the sensitivity of oxaliplatin by inducing EMT in oxaliplatin-resistant gastric cancer cells. Oncotarget. 8:47998–48011. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Huang J, He Y, Mcleod HL, Xie Y, Xiao D, Hu H, Chen P, Shen L, Zeng S, Yin X, et al: miR-302b inhibits tumorigenesis by targeting EphA2 via Wnt/ β-catenin/EMT signaling cascade in gastric cancer. BMC Cancer. 17:8862017. View Article : Google Scholar : PubMed/NCBI

102 

Tsai CH, Tzeng SF, Chao TK, Tsai CY, Yang YC, Lee MT, Hwang JJ, Chou YC, Tsai MH, Cha TL and Hsiao PW: Metastatic progression of prostate cancer is mediated by autonomous binding of Galectin-4-O-glycan to cancer cells. Cancer Res. 76:5756–5767. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Luo H, Guo W, Wang F, You Y, Wang J, Chen X, Wang J, Wang Y, Du Y, Chen X, et al: miR-1291 targets mucin 1 inhibiting cell proliferation and invasion to promote cell apoptosis in esophageal squamous cell carcinoma. Oncol Rep. 34:2665–2673. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Shi M, Chen D, Yang D and Liu XY: CCL21-CCR7 promotes the lymph node metastasis of esophageal squamous cell carcinoma by up-regulating MUC1. J Exp Clin Cancer Res. 34:1492015. View Article : Google Scholar : PubMed/NCBI

105 

Su H, Hu N, Yang HH, Wang C, Takikita M, Wang QH, Giffen C, Clifford R, Hewitt SM, Shou JZ, et al: Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin Cancer Res. 17:2955–2966. 2011. View Article : Google Scholar : PubMed/NCBI

106 

Agata N, Ahmad R, Kawano T, Raina D, Kharbanda S and Kufe D: MUC1 oncoprotein blocks death receptor-mediated apoptosis by inhibiting recruitment of caspase-8. Cancer Res. 68:6136–6144. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Kufe DW: MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches. Oncogene. 32:1073–1081. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Wang Y, Liao X, Ye Q and Huang L: Clinic implication of MUC1 O-glycosylation and C1GALT1 in esophagus squamous cell carcinoma. Sci China Life Sci. 61:1389–1395. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Dong X, Luo Z, Wang Y, Meng L, Duan Q, Qiu L, Peng F and Shen L: Altered O-glycosylation is associated with inherent radioresistance and malignancy of human laryngeal carcinoma. Exp Cell Res. 362:302–310. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Chen P, Chang A, Huang M and Wu Y: Abstract 1400: C1GALT1 regulates malignant phenotypes of cholangiocarcinoma cells. Cancer Res. 792019.doi: 10.1158/1538-7445.AM2019-1400. PubMed/NCBI

111 

Huang MC, Huang MJ and Wu YM: P0247: C1GAlT1 is overexpressed in cholangiocarcinoma and C1GAlT1 knockdown inhibits malignant behaviors of cholangiocarcinoma cells. J Hepatol. 62 (Suppl):S3992015. View Article : Google Scholar : PubMed/NCBI

112 

Lin MC, Huang MJ, Liu CH, Yang TL and Huang MC: GALNT2 enhances migration and invasion of oral squamous cell carcinoma by regulating EGFR glycosylation and activity. Oral Oncol. 50:478–484. 2014. View Article : Google Scholar : PubMed/NCBI

113 

Leemans CR, Snijders P and Brakenhoff RH: The molecular landscape of head and neck cancer. Nat Rev Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Ghazizadeh M, Ogawa H, Sasaki Y, Araki T and Aihara K: Mucin carbohydrate antigens (T, Tn, and sialyl-Tn) in human ovarian carcinomas: Relationship with histopathology and prognosis. Hum Pathol. 28:960–966. 1997. View Article : Google Scholar : PubMed/NCBI

115 

Davidson B, Gotlieb WH, Ben-Baruch G, Kopolovic J, Goldberg I, Nesland JM, Berner A, Bjåmer A and Bryne M: Expression of carbohydrate antigens in advanced-stage ovarian carcinomas and their metastases-A clinicopathologic study. Gynecol Oncol. 77:35–43. 2000. View Article : Google Scholar : PubMed/NCBI

116 

Chou CH, Huang MJ, Liao YY, Chen CH and Huang MC: C1GALT1 seems to promote in vitro disease progression in ovarian cancer. Int J Gynecol Cancer. 27:863–871. 2017. View Article : Google Scholar : PubMed/NCBI

117 

Leach SD: Mouse models of pancreatic cancer: The fur is finally flying. Cancer Cell. 5:7–11. 2004. View Article : Google Scholar : PubMed/NCBI

118 

Mazur PK and Siveke JT: Genetically engineered mouse models of pancreatic cancer: Unravelling tumour biology and progressing translational oncology. Gut. 61:1488–1500. 2012. View Article : Google Scholar : PubMed/NCBI

119 

Muniyan S, Haridas D, Chugh S, Rachagani S, Lakshmanan I, Gupta S, Seshacharyulu P, Smith LM, Ponnusamy MP and Batra SK: MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes Cancer. 7:110–124. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Fujita-Yamaguchi Y: Renewed interest in basic and applied research involving monoclonal antibodies against an oncofetal Tn-antigen. J Biochem. 154:103–105. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Sun X, Ju T and Cummings RD: Differential expression of Cosmc, T-synthase and mucins in Tn-positive colorectal cancers. BMC Cancer. 18:8272018. View Article : Google Scholar : PubMed/NCBI

122 

Bergstrom K, Fu J, Johansson ME, Liu X, Gao N, Wu Q, Song J, McDaniel JM, McGee S, Chen W, et al: Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunol. 10:91–103. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Dong X, Jiang Y, Liu J, Liu Z, Gao T, An G and Wen T: T-synthase deficiency enhances oncogenic features in human colorectal cancer cells via activation of epithelial-mesenchymal transition. Biomed Res Int. 2018:95323892018. View Article : Google Scholar : PubMed/NCBI

124 

Scheid E, Major P, Bergeron A, Finn OJ, Salter RD, Eady R, Yassine-Diab B, Favre D, Peretz Y, Landry C, et al: Tn-MUC1 DC vaccination of rhesus macaques and a phase I/II trial in patients with nonmetastatic castrate-resistant prostate cancer. Cancer Immunol Res. 4:881–892. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Sakai K, Yuasa N, Tsukamoto K, Takasaki-Matsumoto A, Yajima Y, Sato R, Kawakami H, Mizuno M, Takayanagi A, Shimizu N, et al: Isolation and characterization of antibodies against three consecutive Tn-antigen clusters from a phage library displaying human single-chain variable fragments. J Biochem. 147:809–817. 2010. View Article : Google Scholar : PubMed/NCBI

126 

Piyush T, Rhodes JM and Yu LG: MUC1 O-glycosylation contributes to anoikis resistance in epithelial cancer cells. Cell Death Discov. 3:170442017. View Article : Google Scholar : PubMed/NCBI

127 

Freire-de-Lima L, Gelfenbeyn K, Ding Y, Mandel U, Clausen H, Handa K and Hakomori SI: Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process. Proc Natl Acad Sci USA. 108:17690–17695. 2011. View Article : Google Scholar : PubMed/NCBI

128 

An G, Wei B, Xia B, McDaniel JM, Ju T, Cummings RD, Braun J and Xia L: Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med. 204:1417–1429. 2007. View Article : Google Scholar : PubMed/NCBI

129 

Kudo T, Iwai T, Kubota T, Iwasaki H, Takayma Y, Hiruma T, Inaba N, Zhang Y, Gotoh M, Togayachi A and Narimatsu H: Molecular cloning and characterization of a novel UDP-Gal:GalNAc(alpha) peptide beta 1,3-galactosyltransferase (C1Gal-T2), an enzyme synthesizing a core 1 structure of O-glycan. J Biol Chem. 277:47724–47731. 2002. View Article : Google Scholar : PubMed/NCBI

130 

Ju T, Aryal RP, Stowell CJ and Cummings RD: Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J Cell Biol. 182:531–542. 2008. View Article : Google Scholar : PubMed/NCBI

131 

Zeng J, Mi R, Wang Y, Li Y, Lin L, Yao B, Song L, van Die I, Chapman AB, Cummings RD, et al: Promoters of Human Cosmc And T-synthase genes are similar in structure, yet different in epigenetic regulation. J Biol Chem. 290:19018–19033. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Wang Y, Ju T, Ding X, Xia B, Wang W, Xia L, He M and Cummings RD: Cosmc is an essential chaperone for correct protein O-glycosylation. Proc Natl Acad Sci USA. 107:9228–9233. 2010. View Article : Google Scholar : PubMed/NCBI

133 

Mi R, Song L, Wang Y, Ding X, Zeng J, Lehoux S, Aryal RP, Wang J, Crew VK, van Die I, et al: Epigenetic silencing of the chaperone Cosmc in human leukocytes expressing tn antigen. J Biol Chem. 287:41523–41533. 2012. View Article : Google Scholar : PubMed/NCBI

134 

Cartron JP and Nurden AT: Galactosyltransferase and membrane glycoprotein abnormality in human platelets from Tn-syndrome donors. Nature. 282:621–623. 1979. View Article : Google Scholar : PubMed/NCBI

135 

Cartron JP, Cartron J, Andreu G, Salmon C and Bird GW: Selective deficiency of 3-beta-d-galactosyltransferase (T-transferase) in Tn-polyagglutinable erythrocytes. Lancet. 1:856–857. 1978. View Article : Google Scholar : PubMed/NCBI

136 

Ju T, Otto VI and Cummings RD: The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl. 50:1770–1791. 2011. View Article : Google Scholar : PubMed/NCBI

137 

Hiki Y: O-linked oligosaccharides of the IgA1 hinge region: Roles of its aberrant structure in the occurrence and/or progression of IgA nephropathy. Clin Exp Nephrol. 13:415–423. 2009. View Article : Google Scholar : PubMed/NCBI

138 

Yang D, Tang Y, Fu H, Xu J, Hu Z, Zhang Y and Cai Q: Integrin β1 promotes gemcitabine resistance in pancreatic cancer through Cdc42 activation of PI3K p110β signaling. Biochem Biophys Res Commun. 505:215–221. 2018. View Article : Google Scholar : PubMed/NCBI

139 

Desgrosellier JS and Cheresh DA: Integrins in cancer: Biological implications and therapeutic opportunities. Nat Rev Cancer. 10:9–22. 2010. View Article : Google Scholar : PubMed/NCBI

140 

Matsunaga T, Fukai F, Miura S, Nakane Y, Owaki T, Kodama H, Tanaka M, Nagaya T, Takimoto R, Takayama T and Niitsu Y: Combination therapy of an anticancer drug with the FNIII14 peptide of fibronectin effectively overcomes cell adhesion-mediated drug resistance of acute myelogenous leukemia. Leukemia. 22:353–360. 2008. View Article : Google Scholar : PubMed/NCBI

141 

Park CC, Zhang H, Pallavicini M, Gray JW, Baehner F, Park CJ and Bissell MJ: Beta1 integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res. 66:1526–1535. 2006. View Article : Google Scholar : PubMed/NCBI

142 

Li Y, Ren Z, Wang Y, Dang YZ, Meng BX, Wang GD, Zhang J, Wu J and Wen N: ADAM17 promotes cell migration and invasion through the integrin β1 pathway in hepatocellular carcinoma. Exp Cell Res. 370:373–382. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Winkler J, Roessler S, Sticht C, DiGuilio AL, Drucker E, Holzer K, Eiteneuer E, Herpel E, Breuhahn K, Gretz N, et al: Cellular apoptosis susceptibility (CAS) is linked to integrin β1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC). Oncotarget. 7:22883–22892. 2016. View Article : Google Scholar : PubMed/NCBI

144 

Fransvea E, Mazzocca A, Antonaci S and Giannelli G: Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology. 49:839–850. 2009. View Article : Google Scholar : PubMed/NCBI

145 

Trusolino L, Bertotti A and Comoglio PM: A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell. 107:643–654. 2001. View Article : Google Scholar : PubMed/NCBI

146 

McCall-Culbreath KD, Li Z and Zutter MM: Crosstalk between the alpha2beta1 integrin and c-met/HGF-R regulates innate immunity. Blood. 111:3562–3570. 2008. View Article : Google Scholar : PubMed/NCBI

147 

Liu Y, Chattopadhyay N, Qin S, Szekeres C, Vasylyeva T, Mahoney ZX, Taglienti M, Bates CM, Chapman HA, Miner JH and Kreidberg JA: Coordinate integrin and c-Met signaling regulate Wnt gene expression during epithelial morphogenesis. Development. 136:843–853. 2009. View Article : Google Scholar : PubMed/NCBI

148 

Wu J, Li Y, Dang YZ, Gao HX, Jiang JL and Chen ZN: HAb18G/CD147 promotes radioresistance in hepatocellular carcinoma cells: A potential role for integrin β1 signaling. Mol Cancer Ther. 14:553–563. 2015. View Article : Google Scholar : PubMed/NCBI

149 

Eke I, Dickreuter E and Cordes N: Enhanced radiosensitivity of head and neck squamous cell carcinoma cells by β1 integrin inhibition. Radiother Oncol. 104:235–242. 2012. View Article : Google Scholar : PubMed/NCBI

150 

Tsubamoto H, Sonoda T, Yamasaki M and Inoue K: Impact of combination chemotherapy with itraconazole on survival of patients with refractory ovarian cancer. Anticancer Res. 34:2481–2487. 2014.PubMed/NCBI

151 

Rudin CM, Brahmer JR, Juergens RA, Hann CL, Ettinger DS, Sebree R, Smith R, Aftab BT, Huang P and Liu JO: Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non-small-cell lung cancer. J Thorac Oncol. 8:619–623. 2013. View Article : Google Scholar : PubMed/NCBI

152 

Antonarakis ES, Heath EI, Smith DC, Rathkopf D, Blackford AL, Danila DC, King S, Frost A, Ajiboye AS, Zhao M, et al: Repurposing itraconazole as a treatment for advanced prostate cancer: A noncomparative randomized phase II trial in men with metastatic castration-resistant prostate cancer. Oncologist. 18:163–173. 2013. View Article : Google Scholar : PubMed/NCBI

153 

Nguyen-Tan PF, Zhang Q, Ang KK, Weber RS, Rosenthal DI, Soulieres D, Kim H, Silverman C, Raben A, Galloway TJ, et al: Randomized phase III trial to test accelerated versus standard fractionation in combination with concurrent cisplatin for head and neck carcinomas in the Radiation Therapy Oncology Group 0129 trial: Long-term report of efficacy and toxicity. J Clin Oncol. 32:3858–3866. 2014. View Article : Google Scholar : PubMed/NCBI

154 

Aryal RP, Ju T and Cummings RD: Identification of a novel protein binding motif within the T-synthase for the molecular chaperone Cosmc. J Biol Chem. 289:11630–11641. 2014. View Article : Google Scholar : PubMed/NCBI

155 

Schachter H: The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Glycoconj J. 17:465–483. 2000. View Article : Google Scholar : PubMed/NCBI

156 

Hakomori S: Glycosylation defining cancer malignancy: New wine in an old bottle. Proc Natl Acad Sci USA. 99:10231–10233. 2002. View Article : Google Scholar : PubMed/NCBI

157 

Hua D, Shen L, Xu L, Jiang Z, Zhou Y, Yue A, Zou S, Cheng Z and Wu S: Polypeptide N-acetylgalactosaminyltransferase 2 regulates cellular metastasis-associated behavior in gastric cancer. Int J Mol Med. 30:1267–1274. 2012. View Article : Google Scholar : PubMed/NCBI

158 

Kariya Y, Kanno M, Matsumoto-Morita K, Konno M, Yamaguchi Y and Hashimoto Y: Osteopontin O-glycosylation contributes to its phosphorylation and cell-adhesion properties. Biochem J. 463:93–102. 2014. View Article : Google Scholar : PubMed/NCBI

159 

Wang ZQ, Bachvarova M, Morin C, Plante M, Gregoire J, Renaud MC, Sebastianelli A and Bachvarov D: Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: Possible implications in abnormal mucin O-glycosylation. Oncotarget. 5:544–560. 2014. View Article : Google Scholar : PubMed/NCBI

160 

Liu B, Pan S, Xiao Y, Liu Q, Xu J and Jia L: LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway. J Exp Clin Cancer Res. 37:3162018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sun X, Zhan M, Sun X, Liu W and Meng X: C1GALT1 in health and disease (Review). Oncol Lett 22: 589, 2021.
APA
Sun, X., Zhan, M., Sun, X., Liu, W., & Meng, X. (2021). C1GALT1 in health and disease (Review). Oncology Letters, 22, 589. https://doi.org/10.3892/ol.2021.12850
MLA
Sun, X., Zhan, M., Sun, X., Liu, W., Meng, X."C1GALT1 in health and disease (Review)". Oncology Letters 22.2 (2021): 589.
Chicago
Sun, X., Zhan, M., Sun, X., Liu, W., Meng, X."C1GALT1 in health and disease (Review)". Oncology Letters 22, no. 2 (2021): 589. https://doi.org/10.3892/ol.2021.12850
Copy and paste a formatted citation
x
Spandidos Publications style
Sun X, Zhan M, Sun X, Liu W and Meng X: C1GALT1 in health and disease (Review). Oncol Lett 22: 589, 2021.
APA
Sun, X., Zhan, M., Sun, X., Liu, W., & Meng, X. (2021). C1GALT1 in health and disease (Review). Oncology Letters, 22, 589. https://doi.org/10.3892/ol.2021.12850
MLA
Sun, X., Zhan, M., Sun, X., Liu, W., Meng, X."C1GALT1 in health and disease (Review)". Oncology Letters 22.2 (2021): 589.
Chicago
Sun, X., Zhan, M., Sun, X., Liu, W., Meng, X."C1GALT1 in health and disease (Review)". Oncology Letters 22, no. 2 (2021): 589. https://doi.org/10.3892/ol.2021.12850
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team