|
1
|
Lane DP and Crawford LV: T antigen is
bound to a host protein in SV40-transformed cells. Nature.
278:261–263. 1979. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Linzer DI and Levine AJ: Characterization
of a 54K dalton cellular SV40 tumor antigen present in
SV40-transformed cells and uninfected embryonal carcinoma cells.
Cell. 17:43–52. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Eliyahu D, Michalovitz D, Eliyahu S,
Pinhasi-Kimhi O and Oren M: Wild-type p53 can inhibit
oncogene-mediated focus formation. Proc Natl Acad Sci USA.
86:8763–8767. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Baker SJ, Fearon ER, Nigro JM, Hamilton
SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF,
Nakamura Y, et al: Chromosome 17 deletions and p53 gene mutations
in colorectal carcinomas. Science. 244:217–221. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Canman CE, Lim DS, Cimprich KA, Taya Y,
Tamai K, Sakaguchi K, Appella E, Kastan MB and Siliciano JD:
Activation of the ATM kinase by ionizing radiation and
phosphorylation of p53. Science. 281:1677–1679. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sun Q, Guo Y, Liu X, Czauderna F, Carr MI,
Zenke FT, Blaukat A and Vassilev LT: Therapeutic implications of
p53 status on cancer cell fate following exposure to ionizing
radiation and the DNA-PK inhibitor M3814. Mol Cancer Res.
17:2457–2468. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Cui D, Xiong X, Shu J, Dai X, Sun Y and
Zhao Y: FBXW7 confers radiation survival by targeting p53 for
degradation. Cell Rep. 30:497–509.e4. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Venkata Narayanan I, Paulsen MT, Bedi K,
Berg N, Ljungman EA, Francia S, Veloso A, Magnuson B, di Fagagna
FD, Wilson TE and Ljungman M: Transcriptional and
post-transcriptional regulation of the ionizing radiation response
by ATM and p53. Sci Rep. 7:435982017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Marcel V, Catez F and Diaz JJ: p53, a
translational regulator: Contribution to its tumour-suppressor
activity. Oncogene. 34:5513–5523. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Shirai Y, Shiba H, Iwase R, Haruki K,
Fujiwara Y, Furukawa K, Uwagawa T, Ohashi T and Yanaga K: Dual
inhibition of nuclear factor kappa-B and Mdm2 enhance the antitumor
effect of radiation therapy for pancreatic cancer. Cancer Lett.
370:177–184. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bechill J, Zhong R, Zhang C, Solomaha E
and Spiotto MT: A high-throughput cell-based screen identified a
2-[(E)-2-Phenylvinyl]-8-quinolinol core structure that activates
p53. PLoS One. 11:e01541252016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Uehara I and Tanaka N: Role of p53 in the
regulation of the inflammatory tumor microenvironment and tumor
suppression. Cancers (Basel). 10:2192018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Menon V and Povirk L: Involvement of p53
in the repair of DNA double strand breaks: Multifaceted Roles of
p53 in homologous recombination repair (HRR) and non-homologous end
joining (NHEJ). Subcell Biochem. 85:321–336. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Moulder DE, Hatoum D, Tay E, Lin Y and
McGowan EM: The roles of p53 in mitochondrial dynamics and cancer
metabolism: The pendulum between survival and death in breast
cancer? Cancers (Basel). 10:1892018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Fischbach A, Krüger A, Hampp S, Assmann G,
Rank L, Hufnagel M, Stöckl MT, Fischer JMF, Veith S, Rossatti P, et
al: The C-terminal domain of p53 orchestrates the interplay between
non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1.
Nucleic Acids Res. 46:804–822. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kamp WM, Wang PY and Hwang PM: TP53
mutation, mitochondria and cancer. Curr Opin Genet Dev. 38:16–22.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhu G, Pan C, Bei JX, Li B, Liang C, Xu Y
and Fu X: Mutant p53 in cancer progression and targeted therapies.
Front Oncol. 10:5951872020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Long S, Loureiro JB, Carvalho C, Gales L,
Saraiva L, Pinto MMM, Puthongking P and Sousa E: Semi-synthesis of
small molecules of aminocarbazoles: Tumor growth inhibition and
potential impact on p53. Molecules. 26:16372021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Olotu FA and Soliman MES: Dynamic
perspectives into the mechanisms of mutation-induced p53-DNA
binding loss and inactivation using active perturbation theory:
Structural and molecular insights toward the design of potent
reactivators in cancer therapy. J Cell Biochem. 120:951–966. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Petitjean A, Achatz MI, Borresen-Dale AL,
Hainaut P and Olivier M: TP53 mutations in human cancers:
Functional selection and impact on cancer prognosis and outcomes.
Oncogene. 26:2157–2165. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mantovani F, Collavin L and Del Sal G:
Mutant p53 as a guardian of the cancer cell. Cell Death Differ.
26:199–212. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Milner J, Medcalf EA and Cook AC: Tumor
suppressor p53: Analysis of wild-type and mutant p53 complexes. Mol
Cell Biol. 11:12–19. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Alvarado-Ortiz E, de la Cruz-López KG,
Becerril-Rico J, Sarabia-Sánchez MA, Ortiz-Sánchez E and
García-Carrancá A: Mutant p53 gain-of-function: Role in cancer
development, progression, and therapeutic approaches. Front Cell
Dev Biol. 8:6076702021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li H, Zhang J, Tong JHM, Chan AWH, Yu J,
Kang W and To KF: Targeting the oncogenic p53 mutants in colorectal
cancer and other solid tumors. Int J Mol Sci. 20:59992019.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li Y, Guessous F, Kwon S, Kumar M, Ibidapo
O, Fuller L, Johnson E, Lal B, Hussaini I, Bao Y, et al: PTEN has
tumor-promoting properties in the setting of gain-of-function p53
mutations. Cancer Res. 68:1723–1731. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang F, Li K, Yao X, Wang H, Li W, Wu J,
Li M, Zhou R, Xu L and Zhao L: A miR-567-PIK3AP1-PI3K/AKT-c-Myc
feedback loop regulates tumour growth and chemoresistance in
gastric cancer. EBioMedicine. 44:311–321. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Vaughan CA, Singh S, Windle B, Sankala HM,
Graves PR, Andrew Yeudall W, Deb SP and Deb S: p53 mutants induce
transcription of NF-κB2 in H1299 cells through CBP and STAT binding
on the NF-κB2 promoter and gain of function activity. Arch Biochem
Biophys. 518:79–88. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhang J, Pickering CR, Holst CR, Gauthier
ML and Tlsty TD: p16INK4a modulates p53 in primary human mammary
epithelial cells. Cancer Res. 66:10325–10331. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gaiddon C, Lokshin M, Ahn J, Zhang T and
Prives C: A subset of tumor-derived mutant forms of p53
down-regulate p63 and p73 through a direct interaction with the p53
core domain. Mol Cell Biol. 21:1874–1887. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA,
Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, et
al: Gain of function of a p53 hot spot mutation in a mouse model of
Li-Fraumeni syndrome. Cell. 119:861–872. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Olivier M, Hollstein M and Hainaut P: TP53
mutations in human cancers: Origins, consequences, and clinical
use. Cold Spring Harb Perspect Biol. 2:a0010082010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Marusyk A, Porter CC, Zaberezhnyy V and
DeGregori J: Irradiation selects for p53-deficient hematopoietic
progenitors. PLoS Biol. 8:e10003242010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wouters A, Pauwels B, Lambrechts HA,
Pattyn GG, Ides J, Baay M, Meijnders P, Peeters M, Vermorken JB and
Lardon F: Retention of the in vitro radiosensitizing potential of
gemcitabine under anoxic conditions, in p53 wild-type and
p53-deficient non-small-cell lung carcinoma cells. Int J Radiat
Oncol Biol Phys. 80:558–566. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tchelebi L, Ashamalla H and Graves PR:
Mutant p53 and the response to chemotherapy and radiation. Subcell
Biochem. 85:133–159. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Fuentes-Orrego JM and Sahani DV: Low-dose
CT in clinical diagnostics. Expert Opin Med Diagn. 7:501–510. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Poon DJJ, Tay LM, Ho D, Chua MLK, Chow EK
and Yeo ELL: Improving the therapeutic ratio of radiotherapy
against radioresistant cancers: Leveraging on novel artificial
intelligence-based approaches for drug combination discovery.
Cancer Lett. 511:56–67. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wu C, Guo E, Ming J, Sun W, Nie X, Sun L,
Peng S, Luo M, Liu D, Zhang L, et al: Radiation-induced DNMT3B
promotes radioresistance in nasopharyngeal carcinoma through
methylation of p53 and p21. Mol Ther Oncolytics. 17:306–319. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
da Costa Araldi IC, Bordin FPR, Cadoná FC,
Barbisan F, Azzolin VF, Teixeira CF, Baumhardt T, da Cruz IBM,
Duarte MMMF and Bauermann LF: The in vitro radiosensitizer
potential of resveratrol on MCF-7 breast cancer cells. Chem Biol
Interact. 282:85–92. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fei P and El-Deiry WS: P53 and radiation
responses. Oncogene. 22:5774–5783. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gudkov AV and Komarova EA: The role of p53
in determining sensitivity to radiotherapy. Nat Rev Cancer.
3:117–129. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
41
|
Brachman DG, Beckett M, Graves D, Haraf D,
Vokes E and Weichselbaum RR: p53 mutation does not correlate with
radiosensitivity in 24 head and neck cancer cell lines. Cancer Res.
53:3667–3669. 1993.PubMed/NCBI
|
|
42
|
Hinata N, Shirakawa T, Zhang Z, Matsumoto
A, Fujisawa M, Okada H, Kamidono S and Gotoh A: Radiation induces
p53-dependent cell apoptosis in bladder cancer cells with
wild-type-p53 but not in p53-mutated bladder cancer cells. Urol
Res. 31:387–396. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Williams KJ, Boyle JM, Birch JM, Norton JD
and Scott D: Cell cycle arrest defect in Li-Fraumeni Syndrome: A
mechanism of cancer predisposition? Oncogene. 14:277–282. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ribeiro JC, Barnetson AR, Fisher RJ,
Mameghan H and Russell PJ: Relationship between radiation response
and p53 status in human bladder cancer cells. Int J Radiat Biol.
72:11–20. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Biard DS, Martin M, Rhun YL, Duthu A,
Lefaix JL, May E and May P: Concomitant p53 gene mutation and
increased radiosensitivity in rat lung embryo epithelial cells
during neoplastic development. Cancer Res. 54:3361–3364.
1994.PubMed/NCBI
|
|
46
|
Kawashima K, Mihara K, Usuki H, Shimizu N
and Namba M: Transfected mutant p53 gene increases X-ray-induced
cell killing and mutation in human fibroblasts immortalized with
4-nitroquinoline 1-oxide but does not induce neoplastic
transformation of the cells. Int J Cancer. 61:76–79. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Weber KJ and Wenz F: p53, apoptosis and
radiosensitivity-experimental and clinical data. Onkologie.
25:136–141. 2002.PubMed/NCBI
|
|
48
|
Concin N, Zeillinger C, Stimpfel M,
Schiebel I, Tong D, Wolff U, Reiner A, Leodolter S and Zeillinger
R: p53-dependent radioresistance in ovarian carcinoma cell lines.
Cancer Lett. 150:191–199. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cheng G, Kong D, Hou X, Liang B, He M,
Liang N, Ma S and Liu X: The tumor suppressor, p53, contributes to
radiosensitivity of lung cancer cells by regulating autophagy and
apoptosis. Cancer Biother Radiopharm. 28:153–159. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Pirollo KF, Hao Z, Rait A, Jang YJ, Fee WE
Jr, Ryan P, Chiang Y and Chang EH: p53 mediated sensitization of
squamous cell carcinoma of the head and neck to radiotherapy.
Oncogene. 14:1735–1746. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gallardo D, Drazan KE and McBride WH:
Adenovirus-based transfer of wild-type p53 gene increases ovarian
tumor radiosensitivity. Cancer Res. 56:4891–4893. 1996.PubMed/NCBI
|
|
52
|
Servomaa K, Kiuru A, Grénman R,
Pekkola-Heino K, Pulkkinen JO and Rytömaa T: p53 mutations
associated with increased sensitivity to ionizing radiation in
human head and neck cancer cell lines. Cell Prolif. 29:219–230.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lowe SW, Bodis S, McClatchey A, Remington
L, Ruley HE, Fisher DE, Housman DE and Jacks T: p53 status and the
efficacy of cancer therapy in vivo. Science. 266:807–810. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Merritt AJ, Potten CS, Kemp CJ, Hickman
JA, Balmain A, Lane DP and Hall PA: The role of p53 in spontaneous
and radiation-induced apoptosis in the gastrointestinal tract of
normal and p53-deficient mice. Cancer Res. 54:614–617.
1994.PubMed/NCBI
|
|
55
|
Matsui Y, Tsuchida Y and Keng PC: Effects
of p53 mutations on cellular sensitivity to ionizing radiation. Am
J Clin Oncol. 24:486–490. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Shi Q, Sutariya V, Varghese Gupta S and
Bhatia D: GADD45α-targeted suicide gene therapy driven by synthetic
CArG promoter E9NS sensitizes NSCLC cells to cisplatin,
resveratrol, and radiation regardless of p53 status. Onco Targets
Ther. 12:3161–3170. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cuneo KC, Morgan MA, Davis MA, Parcels LA,
Parcels J, Karnak D, Ryan C, Liu N, Maybaum J and Lawrence TS: Wee1
kinase inhibitor AZD1775 radiosensitizes hepatocellular carcinoma
regardless of TP53 mutational status through induction of
replication stress. Int J Radiat Oncol Biol Phys. 95:782–790. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tada M, Matsumoto R, Iggo RD, Onimaru R,
Shirato H, Sawamura Y and Shinohe Y: Selective sensitivity to
radiation of cerebral glioblastomas harboring p53 mutations. Cancer
Res. 58:1793–1797. 1998.PubMed/NCBI
|
|
59
|
Koch WM, Brennan JA, Zahurak M, Goodman
SN, Westra WH, Schwab D, Yoo GH, Lee DJ, Forastiere AA and
Sidransky D: p53 mutation and locoregional treatment failure in
head and neck squamous cell carcinoma. J Natl Cancer Inst.
88:1580–1586. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mello SS and Attardi LD: Not all p53
gain-of-function mutants are created equal. Cell Death Differ.
20:855–857. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Menendez D, Inga A and Resnick MA: The
biological impact of the human master regulator p53 can be altered
by mutations that change the spectrum and expression of its target
genes. Mol Cell Biol. 26:2297–2308. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Okaichi K, Wang LH, Ihara M and Okumura Y:
Sensitivity to ionizing radiation in Saos-2 cells transfected with
mutant p53 genes depends on the mutation position. J Radiat Res.
39:111–118. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Okaichi K, Nose K, Kotake T, Izumi N and
Kudo T: Phosphorylation of p53 modifies sensitivity to ionizing
radiation. Anticancer Res. 31:2255–2258. 2011.PubMed/NCBI
|
|
64
|
Okaichi K, Ide-Kanematsu M, Izumi N,
Morita N, Okumura Y and Ihara M: Variations in sensitivity to
ionizing radiation in relation to p53 mutation point. Anticancer
Res. 28:2687–2690. 2008.PubMed/NCBI
|
|
65
|
Mazzatti DJ, Lee YJ, Helt CE, O'Reilly MA
and Keng PC: p53 modulates radiation sensitivity independent of p21
transcriptional activation. Am J Clin Oncol. 28:43–50. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Aubrey BJ, Kelly GL, Janic A, Herold MJ
and Strasser A: How does p53 induce apoptosis and how does this
relate to p53-mediated tumour suppression? Cell Death Differ.
25:104–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Brosh R and Rotter V: When mutants gain
new powers: News from the mutant p53 field. Nat Rev Cancer.
9:701–713. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Stein Y, Rotter V and Aloni-Grinstein R:
Gain-of-function mutant p53: All the roads lead to tumorigenesis.
Int J Mol Sci. 20:61972019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bellazzo A, Sicari D, Valentino E, Del Sal
G and Collavin L: Complexes formed by mutant p53 and their roles in
breast cancer. Breast Cancer (Dove Med Press). 10:101–112.
2018.PubMed/NCBI
|
|
70
|
Zhang C, Liu J, Xu D, Zhang T, Hu W and
Feng Z: Gain-of-function mutant p53 in cancer progression and
therapy. J Mol Cell Biol. 12:674–687. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Huang X, Zhang Y, Tang Y, Butler N, Kim J,
Guessous F, Schiff D, Mandell J and Abounader R: A novel
PTEN/mutant p53/c-Myc/Bcl-XL axis mediates context-dependent
oncogenic effects of PTEN with implications for cancer prognosis
and therapy. Neoplasia. 15:952–965. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ganci F, Pulito C, Valsoni S, Sacconi A,
Turco C, Vahabi M, Manciocco V, Mazza EMC, Meens J, Karamboulas C,
et al: PI3K inhibitors curtail MYC-dependent mutant p53
gain-of-function in head and neck squamous cell carcinoma. Clin
Cancer Res. 26:2956–2971. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kim SH, Lee WH, Seong D, An JH, Je HU, Nam
HY, Kim SY, Kim SW and Han MW: The role of CIP2A as a therapeutic
target of rapamycin in radioresistant head and neck cancer with
TP53 mutation. Head Neck. 41:3362–3371. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Matsumoto H, Hayashi S, Hatashita M,
Ohnishi K, Shioura H, Ohtsubo T, Kitai R, Ohnishi T and Kano E:
Induction of radioresistance by a nitric oxide-mediated bystander
effect. Radiat Res. 155:387–396. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Bajan S and Hutvagner G: RNA-based
therapeutics: From antisense oligonucleotides to miRNAs. Cells.
9:1372020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bajan S and Hutvagner G: Regulation of
miRNA processing and miRNA mediated gene repression in cancer.
Microrna. 3:10–17. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Adams BD, Parsons C, Walker L, Zhang WC
and Slack FJ: Targeting noncoding RNAs in disease. J Clin Invest.
127:761–771. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hermeking H: p53 enters the microRNA
world. Cancer Cell. 12:414–418. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Balça-Silva J, Sousa Neves S, Gonçalves
AC, Abrantes AM, Casalta-Lopes J, Botelho MF, Sarmento-Ribeiro AB
and Silva HC: Effect of miR-34b overexpression on the
radiosensitivity of non-small cell lung cancer cell lines.
Anticancer Res. 32:1603–1609. 2012.
|
|
80
|
Liu Y, Xing R, Zhang X, Dong W, Zhang J,
Yan Z, Li W, Cui J and Lu Y: miR-375 targets the p53 gene to
regulate cellular response to ionizing radiation and etoposide in
gastric cancer cells. DNA Repair (Amst). 12:741–750. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
He J, Feng X, Hua J, Wei L, Lu Z, Wei W,
Cai H, Wang B, Shi W, Ding N, et al: miR-300 regulates cellular
radiosensitivity through targeting p53 and apaf1 in human lung
cancer cells. Cell Cycle. 16:1943–1953. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Xu R, Li H, Wu S, Qu J, Yuan H, Zhou Y and
Lu Q: MicroRNA-1246 regulates the radio-sensitizing effect of
curcumin in bladder cancer cells via activating P53. Int Urol
Nephrol. 51:1771–1779. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ye C, Sun NX, Ma Y, Zhao Q, Zhang Q, Xu C,
Wang SB, Sun SH, Wang F and Li W: MicroRNA-145 contributes to
enhancing radiosensitivity of cervical cancer cells. FEBS Lett.
589:702–709. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Song L, Liu S, Zeng S, Zhang L and Li X:
miR-375 modulates radiosensitivity of HR-HPV-positive cervical
cancer cells by targeting UBE3A through the p53 pathway. Med Sci
Monit. 21:2210–2217. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Kumar A and Chandna S: Evidence for a
radiation-responsive ‘p53 gateway’ contributing significantly to
the radioresistance of lepidopteran insect cells. Sci Rep. 8:22018.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Metheetrairut C and Slack FJ: MicroRNAs in
the ionizing radiation response and in radiotherapy. Curr Opin
Genet Dev. 23:12–19. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Johnson SM, Grosshans H, Shingara J, Byrom
M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D and Slack
FJ: RAS is regulated by the let-7 microRNA family. Cell.
120:635–647. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Saleh AD, Savage JE, Cao L, Soule BP, Ly
D, DeGraff W, Harris CC, Mitchell JB and Simone NL: Cellular stress
induced alterations in microRNA let-7a and let-7b expression are
dependent on p53. PLoS One. 6:e244292011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gibb EA, Brown CJ and Lam WL: The
functional role of long non-coding RNA in human carcinomas. Mol
Cancer. 10:382011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang
Z, Yuan J, Shan W, Li C, Hu X, et al: Long noncoding RNA LINP1
regulates repair of DNA double-strand breaks in triple-negative
breast cancer. Nat Struct Mol Biol. 23:522–530. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wang X, Liu H, Shi L, Yu X, Gu Y and Sun
X: LINP1 facilitates DNA damage repair through non-homologous end
joining (NHEJ) pathway and subsequently decreases the sensitivity
of cervical cancer cells to ionizing radiation. Cell Cycle.
17:439–447. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yang P, Yang Y, An W, Xu J, Zhang G, Jie J
and Zhang Q: The long noncoding RNA-ROR promotes the resistance of
radiotherapy for human colorectal cancer cells by targeting the
p53/miR-145 pathway. J Gastroenterol Hepatol. 32:837–845. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang M, Wang L, He X, Zhang J, Zhu Z,
Zhang M and Li X: lncRNA CCAT2 promotes radiotherapy resistance for
human esophageal carcinoma cells via the miR-145/p70S6K1 and p53
pathway. Int J Oncol. 56:327–336. 2020.PubMed/NCBI
|
|
94
|
Beer L, Nemec L, Wagner T, Ristl R,
Altenburger LM, Ankersmit HJ and Mildner M: Ionizing radiation
regulates long non-coding RNAs in human peripheral blood
mononuclear cells. J Radiat Res. 58:201–209. 2017. View Article : Google Scholar : PubMed/NCBI
|