Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
September-2021 Volume 22 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2021 Volume 22 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Relationship between p53 status and the bioeffect of ionizing radiation (Review)

  • Authors:
    • Xiaohan Kong
    • Dehai Yu
    • Zhaoyi Wang
    • Sijie Li
  • View Affiliations / Copyright

    Affiliations: Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China, Department of Gastrointestinal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
    Copyright: © Kong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 661
    |
    Published online on: July 14, 2021
       https://doi.org/10.3892/ol.2021.12922
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Radiotherapy is widely used in the clinical treatment of cancer patients and it may be used alone or in combination with surgery or chemotherapy to inhibit tumor development. However, radiotherapy may at times not kill all cancer cells completely, as certain cells may develop radioresistance that counteracts the effects of radiation. The emergence of radioresistance is associated with the genetic background and epigenetic regulation of cells. p53 is an important tumor suppressor gene that is expressed at low levels in cells. However, when cells are subjected to stress‑induced stimulation, the expression level of p53 increases, thereby preventing genomic disruption. This mechanism has important roles in maintaining cell stability and inhibiting carcinogenesis. However, mutation and deletion destroy the anticancer function of p53 and may induce carcinogenesis. In tumor radiotherapy, the status of p53 expression in cancer cells has a close relationship with radiotherapeutic efficacy. Therefore, understanding how p53 expression affects the cellular response to radiation is of great significance for solving the problem of radioresistance and improving radiotherapeutic outcomes. For the present review, the literature was searched for studies published between 1979 and 2021 using the PubMed database (https://pubmed.ncbi.nlm.nih.gov/) with the following key words: Wild‑type p53, mutant‑type p53, long non‑coding RNA, microRNA, gene mutation, radioresistance and radiosensitivity. From the relevant studies retrieved, the association between different p53 mutants and cellular radiosensitivity, as well as the molecular mechanisms of p53 affecting the radiosensitivity of cells, were summarized. The aim of the present study was to provide useful information for understanding and resolving radioresistance, to help clinical researchers develop more accurate treatment strategies and to improve radiotherapeutic outcomes for cancer patients with p53 mutations.
View Figures

Figure 1

View References

1 

Lane DP and Crawford LV: T antigen is bound to a host protein in SV40-transformed cells. Nature. 278:261–263. 1979. View Article : Google Scholar : PubMed/NCBI

2 

Linzer DI and Levine AJ: Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 17:43–52. 1979. View Article : Google Scholar : PubMed/NCBI

3 

Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O and Oren M: Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA. 86:8763–8767. 1989. View Article : Google Scholar : PubMed/NCBI

4 

Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y, et al: Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 244:217–221. 1989. View Article : Google Scholar : PubMed/NCBI

5 

Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, Appella E, Kastan MB and Siliciano JD: Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 281:1677–1679. 1998. View Article : Google Scholar : PubMed/NCBI

6 

Sun Q, Guo Y, Liu X, Czauderna F, Carr MI, Zenke FT, Blaukat A and Vassilev LT: Therapeutic implications of p53 status on cancer cell fate following exposure to ionizing radiation and the DNA-PK inhibitor M3814. Mol Cancer Res. 17:2457–2468. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Cui D, Xiong X, Shu J, Dai X, Sun Y and Zhao Y: FBXW7 confers radiation survival by targeting p53 for degradation. Cell Rep. 30:497–509.e4. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Venkata Narayanan I, Paulsen MT, Bedi K, Berg N, Ljungman EA, Francia S, Veloso A, Magnuson B, di Fagagna FD, Wilson TE and Ljungman M: Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53. Sci Rep. 7:435982017. View Article : Google Scholar : PubMed/NCBI

9 

Marcel V, Catez F and Diaz JJ: p53, a translational regulator: Contribution to its tumour-suppressor activity. Oncogene. 34:5513–5523. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Shirai Y, Shiba H, Iwase R, Haruki K, Fujiwara Y, Furukawa K, Uwagawa T, Ohashi T and Yanaga K: Dual inhibition of nuclear factor kappa-B and Mdm2 enhance the antitumor effect of radiation therapy for pancreatic cancer. Cancer Lett. 370:177–184. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Bechill J, Zhong R, Zhang C, Solomaha E and Spiotto MT: A high-throughput cell-based screen identified a 2-[(E)-2-Phenylvinyl]-8-quinolinol core structure that activates p53. PLoS One. 11:e01541252016. View Article : Google Scholar : PubMed/NCBI

12 

Uehara I and Tanaka N: Role of p53 in the regulation of the inflammatory tumor microenvironment and tumor suppression. Cancers (Basel). 10:2192018. View Article : Google Scholar : PubMed/NCBI

13 

Menon V and Povirk L: Involvement of p53 in the repair of DNA double strand breaks: Multifaceted Roles of p53 in homologous recombination repair (HRR) and non-homologous end joining (NHEJ). Subcell Biochem. 85:321–336. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Moulder DE, Hatoum D, Tay E, Lin Y and McGowan EM: The roles of p53 in mitochondrial dynamics and cancer metabolism: The pendulum between survival and death in breast cancer? Cancers (Basel). 10:1892018. View Article : Google Scholar : PubMed/NCBI

15 

Fischbach A, Krüger A, Hampp S, Assmann G, Rank L, Hufnagel M, Stöckl MT, Fischer JMF, Veith S, Rossatti P, et al: The C-terminal domain of p53 orchestrates the interplay between non-covalent and covalent poly(ADP-ribosyl)ation of p53 by PARP1. Nucleic Acids Res. 46:804–822. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Kamp WM, Wang PY and Hwang PM: TP53 mutation, mitochondria and cancer. Curr Opin Genet Dev. 38:16–22. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Zhu G, Pan C, Bei JX, Li B, Liang C, Xu Y and Fu X: Mutant p53 in cancer progression and targeted therapies. Front Oncol. 10:5951872020. View Article : Google Scholar : PubMed/NCBI

18 

Long S, Loureiro JB, Carvalho C, Gales L, Saraiva L, Pinto MMM, Puthongking P and Sousa E: Semi-synthesis of small molecules of aminocarbazoles: Tumor growth inhibition and potential impact on p53. Molecules. 26:16372021. View Article : Google Scholar : PubMed/NCBI

19 

Olotu FA and Soliman MES: Dynamic perspectives into the mechanisms of mutation-induced p53-DNA binding loss and inactivation using active perturbation theory: Structural and molecular insights toward the design of potent reactivators in cancer therapy. J Cell Biochem. 120:951–966. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P and Olivier M: TP53 mutations in human cancers: Functional selection and impact on cancer prognosis and outcomes. Oncogene. 26:2157–2165. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Mantovani F, Collavin L and Del Sal G: Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 26:199–212. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Milner J, Medcalf EA and Cook AC: Tumor suppressor p53: Analysis of wild-type and mutant p53 complexes. Mol Cell Biol. 11:12–19. 1991. View Article : Google Scholar : PubMed/NCBI

23 

Alvarado-Ortiz E, de la Cruz-López KG, Becerril-Rico J, Sarabia-Sánchez MA, Ortiz-Sánchez E and García-Carrancá A: Mutant p53 gain-of-function: Role in cancer development, progression, and therapeutic approaches. Front Cell Dev Biol. 8:6076702021. View Article : Google Scholar : PubMed/NCBI

24 

Li H, Zhang J, Tong JHM, Chan AWH, Yu J, Kang W and To KF: Targeting the oncogenic p53 mutants in colorectal cancer and other solid tumors. Int J Mol Sci. 20:59992019. View Article : Google Scholar : PubMed/NCBI

25 

Li Y, Guessous F, Kwon S, Kumar M, Ibidapo O, Fuller L, Johnson E, Lal B, Hussaini I, Bao Y, et al: PTEN has tumor-promoting properties in the setting of gain-of-function p53 mutations. Cancer Res. 68:1723–1731. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Zhang F, Li K, Yao X, Wang H, Li W, Wu J, Li M, Zhou R, Xu L and Zhao L: A miR-567-PIK3AP1-PI3K/AKT-c-Myc feedback loop regulates tumour growth and chemoresistance in gastric cancer. EBioMedicine. 44:311–321. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Vaughan CA, Singh S, Windle B, Sankala HM, Graves PR, Andrew Yeudall W, Deb SP and Deb S: p53 mutants induce transcription of NF-κB2 in H1299 cells through CBP and STAT binding on the NF-κB2 promoter and gain of function activity. Arch Biochem Biophys. 518:79–88. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Zhang J, Pickering CR, Holst CR, Gauthier ML and Tlsty TD: p16INK4a modulates p53 in primary human mammary epithelial cells. Cancer Res. 66:10325–10331. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Gaiddon C, Lokshin M, Ahn J, Zhang T and Prives C: A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol. 21:1874–1887. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM, Valentin-Vega YA, Terzian T, Caldwell LC, Strong LC, et al: Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 119:861–872. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Olivier M, Hollstein M and Hainaut P: TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2:a0010082010. View Article : Google Scholar : PubMed/NCBI

32 

Marusyk A, Porter CC, Zaberezhnyy V and DeGregori J: Irradiation selects for p53-deficient hematopoietic progenitors. PLoS Biol. 8:e10003242010. View Article : Google Scholar : PubMed/NCBI

33 

Wouters A, Pauwels B, Lambrechts HA, Pattyn GG, Ides J, Baay M, Meijnders P, Peeters M, Vermorken JB and Lardon F: Retention of the in vitro radiosensitizing potential of gemcitabine under anoxic conditions, in p53 wild-type and p53-deficient non-small-cell lung carcinoma cells. Int J Radiat Oncol Biol Phys. 80:558–566. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Tchelebi L, Ashamalla H and Graves PR: Mutant p53 and the response to chemotherapy and radiation. Subcell Biochem. 85:133–159. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Fuentes-Orrego JM and Sahani DV: Low-dose CT in clinical diagnostics. Expert Opin Med Diagn. 7:501–510. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Poon DJJ, Tay LM, Ho D, Chua MLK, Chow EK and Yeo ELL: Improving the therapeutic ratio of radiotherapy against radioresistant cancers: Leveraging on novel artificial intelligence-based approaches for drug combination discovery. Cancer Lett. 511:56–67. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Wu C, Guo E, Ming J, Sun W, Nie X, Sun L, Peng S, Luo M, Liu D, Zhang L, et al: Radiation-induced DNMT3B promotes radioresistance in nasopharyngeal carcinoma through methylation of p53 and p21. Mol Ther Oncolytics. 17:306–319. 2020. View Article : Google Scholar : PubMed/NCBI

38 

da Costa Araldi IC, Bordin FPR, Cadoná FC, Barbisan F, Azzolin VF, Teixeira CF, Baumhardt T, da Cruz IBM, Duarte MMMF and Bauermann LF: The in vitro radiosensitizer potential of resveratrol on MCF-7 breast cancer cells. Chem Biol Interact. 282:85–92. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Fei P and El-Deiry WS: P53 and radiation responses. Oncogene. 22:5774–5783. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Gudkov AV and Komarova EA: The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer. 3:117–129. 2003. View Article : Google Scholar : PubMed/NCBI

41 

Brachman DG, Beckett M, Graves D, Haraf D, Vokes E and Weichselbaum RR: p53 mutation does not correlate with radiosensitivity in 24 head and neck cancer cell lines. Cancer Res. 53:3667–3669. 1993.PubMed/NCBI

42 

Hinata N, Shirakawa T, Zhang Z, Matsumoto A, Fujisawa M, Okada H, Kamidono S and Gotoh A: Radiation induces p53-dependent cell apoptosis in bladder cancer cells with wild-type-p53 but not in p53-mutated bladder cancer cells. Urol Res. 31:387–396. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Williams KJ, Boyle JM, Birch JM, Norton JD and Scott D: Cell cycle arrest defect in Li-Fraumeni Syndrome: A mechanism of cancer predisposition? Oncogene. 14:277–282. 1997. View Article : Google Scholar : PubMed/NCBI

44 

Ribeiro JC, Barnetson AR, Fisher RJ, Mameghan H and Russell PJ: Relationship between radiation response and p53 status in human bladder cancer cells. Int J Radiat Biol. 72:11–20. 1997. View Article : Google Scholar : PubMed/NCBI

45 

Biard DS, Martin M, Rhun YL, Duthu A, Lefaix JL, May E and May P: Concomitant p53 gene mutation and increased radiosensitivity in rat lung embryo epithelial cells during neoplastic development. Cancer Res. 54:3361–3364. 1994.PubMed/NCBI

46 

Kawashima K, Mihara K, Usuki H, Shimizu N and Namba M: Transfected mutant p53 gene increases X-ray-induced cell killing and mutation in human fibroblasts immortalized with 4-nitroquinoline 1-oxide but does not induce neoplastic transformation of the cells. Int J Cancer. 61:76–79. 1995. View Article : Google Scholar : PubMed/NCBI

47 

Weber KJ and Wenz F: p53, apoptosis and radiosensitivity-experimental and clinical data. Onkologie. 25:136–141. 2002.PubMed/NCBI

48 

Concin N, Zeillinger C, Stimpfel M, Schiebel I, Tong D, Wolff U, Reiner A, Leodolter S and Zeillinger R: p53-dependent radioresistance in ovarian carcinoma cell lines. Cancer Lett. 150:191–199. 2000. View Article : Google Scholar : PubMed/NCBI

49 

Cheng G, Kong D, Hou X, Liang B, He M, Liang N, Ma S and Liu X: The tumor suppressor, p53, contributes to radiosensitivity of lung cancer cells by regulating autophagy and apoptosis. Cancer Biother Radiopharm. 28:153–159. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Pirollo KF, Hao Z, Rait A, Jang YJ, Fee WE Jr, Ryan P, Chiang Y and Chang EH: p53 mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene. 14:1735–1746. 1997. View Article : Google Scholar : PubMed/NCBI

51 

Gallardo D, Drazan KE and McBride WH: Adenovirus-based transfer of wild-type p53 gene increases ovarian tumor radiosensitivity. Cancer Res. 56:4891–4893. 1996.PubMed/NCBI

52 

Servomaa K, Kiuru A, Grénman R, Pekkola-Heino K, Pulkkinen JO and Rytömaa T: p53 mutations associated with increased sensitivity to ionizing radiation in human head and neck cancer cell lines. Cell Prolif. 29:219–230. 1996. View Article : Google Scholar : PubMed/NCBI

53 

Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE and Jacks T: p53 status and the efficacy of cancer therapy in vivo. Science. 266:807–810. 1994. View Article : Google Scholar : PubMed/NCBI

54 

Merritt AJ, Potten CS, Kemp CJ, Hickman JA, Balmain A, Lane DP and Hall PA: The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res. 54:614–617. 1994.PubMed/NCBI

55 

Matsui Y, Tsuchida Y and Keng PC: Effects of p53 mutations on cellular sensitivity to ionizing radiation. Am J Clin Oncol. 24:486–490. 2001. View Article : Google Scholar : PubMed/NCBI

56 

Shi Q, Sutariya V, Varghese Gupta S and Bhatia D: GADD45α-targeted suicide gene therapy driven by synthetic CArG promoter E9NS sensitizes NSCLC cells to cisplatin, resveratrol, and radiation regardless of p53 status. Onco Targets Ther. 12:3161–3170. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Cuneo KC, Morgan MA, Davis MA, Parcels LA, Parcels J, Karnak D, Ryan C, Liu N, Maybaum J and Lawrence TS: Wee1 kinase inhibitor AZD1775 radiosensitizes hepatocellular carcinoma regardless of TP53 mutational status through induction of replication stress. Int J Radiat Oncol Biol Phys. 95:782–790. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Tada M, Matsumoto R, Iggo RD, Onimaru R, Shirato H, Sawamura Y and Shinohe Y: Selective sensitivity to radiation of cerebral glioblastomas harboring p53 mutations. Cancer Res. 58:1793–1797. 1998.PubMed/NCBI

59 

Koch WM, Brennan JA, Zahurak M, Goodman SN, Westra WH, Schwab D, Yoo GH, Lee DJ, Forastiere AA and Sidransky D: p53 mutation and locoregional treatment failure in head and neck squamous cell carcinoma. J Natl Cancer Inst. 88:1580–1586. 1996. View Article : Google Scholar : PubMed/NCBI

60 

Mello SS and Attardi LD: Not all p53 gain-of-function mutants are created equal. Cell Death Differ. 20:855–857. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Menendez D, Inga A and Resnick MA: The biological impact of the human master regulator p53 can be altered by mutations that change the spectrum and expression of its target genes. Mol Cell Biol. 26:2297–2308. 2006. View Article : Google Scholar : PubMed/NCBI

62 

Okaichi K, Wang LH, Ihara M and Okumura Y: Sensitivity to ionizing radiation in Saos-2 cells transfected with mutant p53 genes depends on the mutation position. J Radiat Res. 39:111–118. 1998. View Article : Google Scholar : PubMed/NCBI

63 

Okaichi K, Nose K, Kotake T, Izumi N and Kudo T: Phosphorylation of p53 modifies sensitivity to ionizing radiation. Anticancer Res. 31:2255–2258. 2011.PubMed/NCBI

64 

Okaichi K, Ide-Kanematsu M, Izumi N, Morita N, Okumura Y and Ihara M: Variations in sensitivity to ionizing radiation in relation to p53 mutation point. Anticancer Res. 28:2687–2690. 2008.PubMed/NCBI

65 

Mazzatti DJ, Lee YJ, Helt CE, O'Reilly MA and Keng PC: p53 modulates radiation sensitivity independent of p21 transcriptional activation. Am J Clin Oncol. 28:43–50. 2005. View Article : Google Scholar : PubMed/NCBI

66 

Aubrey BJ, Kelly GL, Janic A, Herold MJ and Strasser A: How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25:104–113. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Brosh R and Rotter V: When mutants gain new powers: News from the mutant p53 field. Nat Rev Cancer. 9:701–713. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Stein Y, Rotter V and Aloni-Grinstein R: Gain-of-function mutant p53: All the roads lead to tumorigenesis. Int J Mol Sci. 20:61972019. View Article : Google Scholar : PubMed/NCBI

69 

Bellazzo A, Sicari D, Valentino E, Del Sal G and Collavin L: Complexes formed by mutant p53 and their roles in breast cancer. Breast Cancer (Dove Med Press). 10:101–112. 2018.PubMed/NCBI

70 

Zhang C, Liu J, Xu D, Zhang T, Hu W and Feng Z: Gain-of-function mutant p53 in cancer progression and therapy. J Mol Cell Biol. 12:674–687. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Huang X, Zhang Y, Tang Y, Butler N, Kim J, Guessous F, Schiff D, Mandell J and Abounader R: A novel PTEN/mutant p53/c-Myc/Bcl-XL axis mediates context-dependent oncogenic effects of PTEN with implications for cancer prognosis and therapy. Neoplasia. 15:952–965. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Ganci F, Pulito C, Valsoni S, Sacconi A, Turco C, Vahabi M, Manciocco V, Mazza EMC, Meens J, Karamboulas C, et al: PI3K inhibitors curtail MYC-dependent mutant p53 gain-of-function in head and neck squamous cell carcinoma. Clin Cancer Res. 26:2956–2971. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Kim SH, Lee WH, Seong D, An JH, Je HU, Nam HY, Kim SY, Kim SW and Han MW: The role of CIP2A as a therapeutic target of rapamycin in radioresistant head and neck cancer with TP53 mutation. Head Neck. 41:3362–3371. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T, Kitai R, Ohnishi T and Kano E: Induction of radioresistance by a nitric oxide-mediated bystander effect. Radiat Res. 155:387–396. 2001. View Article : Google Scholar : PubMed/NCBI

75 

Bajan S and Hutvagner G: RNA-based therapeutics: From antisense oligonucleotides to miRNAs. Cells. 9:1372020. View Article : Google Scholar : PubMed/NCBI

76 

Bajan S and Hutvagner G: Regulation of miRNA processing and miRNA mediated gene repression in cancer. Microrna. 3:10–17. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Adams BD, Parsons C, Walker L, Zhang WC and Slack FJ: Targeting noncoding RNAs in disease. J Clin Invest. 127:761–771. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Hermeking H: p53 enters the microRNA world. Cancer Cell. 12:414–418. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Balça-Silva J, Sousa Neves S, Gonçalves AC, Abrantes AM, Casalta-Lopes J, Botelho MF, Sarmento-Ribeiro AB and Silva HC: Effect of miR-34b overexpression on the radiosensitivity of non-small cell lung cancer cell lines. Anticancer Res. 32:1603–1609. 2012.

80 

Liu Y, Xing R, Zhang X, Dong W, Zhang J, Yan Z, Li W, Cui J and Lu Y: miR-375 targets the p53 gene to regulate cellular response to ionizing radiation and etoposide in gastric cancer cells. DNA Repair (Amst). 12:741–750. 2013. View Article : Google Scholar : PubMed/NCBI

81 

He J, Feng X, Hua J, Wei L, Lu Z, Wei W, Cai H, Wang B, Shi W, Ding N, et al: miR-300 regulates cellular radiosensitivity through targeting p53 and apaf1 in human lung cancer cells. Cell Cycle. 16:1943–1953. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Xu R, Li H, Wu S, Qu J, Yuan H, Zhou Y and Lu Q: MicroRNA-1246 regulates the radio-sensitizing effect of curcumin in bladder cancer cells via activating P53. Int Urol Nephrol. 51:1771–1779. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Ye C, Sun NX, Ma Y, Zhao Q, Zhang Q, Xu C, Wang SB, Sun SH, Wang F and Li W: MicroRNA-145 contributes to enhancing radiosensitivity of cervical cancer cells. FEBS Lett. 589:702–709. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Song L, Liu S, Zeng S, Zhang L and Li X: miR-375 modulates radiosensitivity of HR-HPV-positive cervical cancer cells by targeting UBE3A through the p53 pathway. Med Sci Monit. 21:2210–2217. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Kumar A and Chandna S: Evidence for a radiation-responsive ‘p53 gateway’ contributing significantly to the radioresistance of lepidopteran insect cells. Sci Rep. 8:22018. View Article : Google Scholar : PubMed/NCBI

86 

Metheetrairut C and Slack FJ: MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev. 23:12–19. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D and Slack FJ: RAS is regulated by the let-7 microRNA family. Cell. 120:635–647. 2005. View Article : Google Scholar : PubMed/NCBI

88 

Saleh AD, Savage JE, Cao L, Soule BP, Ly D, DeGraff W, Harris CC, Mitchell JB and Simone NL: Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53. PLoS One. 6:e244292011. View Article : Google Scholar : PubMed/NCBI

89 

Gibb EA, Brown CJ and Lam WL: The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 10:382011. View Article : Google Scholar : PubMed/NCBI

90 

Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z, Yuan J, Shan W, Li C, Hu X, et al: Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol. 23:522–530. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Wang X, Liu H, Shi L, Yu X, Gu Y and Sun X: LINP1 facilitates DNA damage repair through non-homologous end joining (NHEJ) pathway and subsequently decreases the sensitivity of cervical cancer cells to ionizing radiation. Cell Cycle. 17:439–447. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Yang P, Yang Y, An W, Xu J, Zhang G, Jie J and Zhang Q: The long noncoding RNA-ROR promotes the resistance of radiotherapy for human colorectal cancer cells by targeting the p53/miR-145 pathway. J Gastroenterol Hepatol. 32:837–845. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Wang M, Wang L, He X, Zhang J, Zhu Z, Zhang M and Li X: lncRNA CCAT2 promotes radiotherapy resistance for human esophageal carcinoma cells via the miR-145/p70S6K1 and p53 pathway. Int J Oncol. 56:327–336. 2020.PubMed/NCBI

94 

Beer L, Nemec L, Wagner T, Ristl R, Altenburger LM, Ankersmit HJ and Mildner M: Ionizing radiation regulates long non-coding RNAs in human peripheral blood mononuclear cells. J Radiat Res. 58:201–209. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kong X, Yu D, Wang Z and Li S: Relationship between p53 status and the bioeffect of ionizing radiation (Review). Oncol Lett 22: 661, 2021.
APA
Kong, X., Yu, D., Wang, Z., & Li, S. (2021). Relationship between p53 status and the bioeffect of ionizing radiation (Review). Oncology Letters, 22, 661. https://doi.org/10.3892/ol.2021.12922
MLA
Kong, X., Yu, D., Wang, Z., Li, S."Relationship between p53 status and the bioeffect of ionizing radiation (Review)". Oncology Letters 22.3 (2021): 661.
Chicago
Kong, X., Yu, D., Wang, Z., Li, S."Relationship between p53 status and the bioeffect of ionizing radiation (Review)". Oncology Letters 22, no. 3 (2021): 661. https://doi.org/10.3892/ol.2021.12922
Copy and paste a formatted citation
x
Spandidos Publications style
Kong X, Yu D, Wang Z and Li S: Relationship between p53 status and the bioeffect of ionizing radiation (Review). Oncol Lett 22: 661, 2021.
APA
Kong, X., Yu, D., Wang, Z., & Li, S. (2021). Relationship between p53 status and the bioeffect of ionizing radiation (Review). Oncology Letters, 22, 661. https://doi.org/10.3892/ol.2021.12922
MLA
Kong, X., Yu, D., Wang, Z., Li, S."Relationship between p53 status and the bioeffect of ionizing radiation (Review)". Oncology Letters 22.3 (2021): 661.
Chicago
Kong, X., Yu, D., Wang, Z., Li, S."Relationship between p53 status and the bioeffect of ionizing radiation (Review)". Oncology Letters 22, no. 3 (2021): 661. https://doi.org/10.3892/ol.2021.12922
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team