Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
September-2021 Volume 22 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2021 Volume 22 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Inhibition of photodynamic therapy induced‑immunosuppression with aminolevulinic acid leads to enhanced outcomes of tumors and pre‑cancerous lesions (Review)

  • Authors:
    • Sharlo Bayless
    • Jeffrey B. Travers
    • Ravi P. Sahu
    • Craig A. Rohan
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
    Copyright: © Bayless et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 664
    |
    Published online on: July 14, 2021
       https://doi.org/10.3892/ol.2021.12925
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Photodynamic therapy (PDT) is a treatment option for tumors and pre‑cancerous lesions, but it has immunosuppressive side effects that limit its effectiveness. Recent studies suggest that PDT‑mediated immunosuppression occurs through a cyclooxygenase type 2 (COX‑2) mediated pathway that leads to increases in regulatory T cells (Tregs) and myeloid‑derived suppressor cells (MDSCs), which act as negative regulators of immune responses. Given this pathway, there are three main methods to block immunosuppression: i) Inhibiting the proliferation of Tregs, which can be achieved with the administration of cyclophosphamide or inhibitors of indoleamine 2,3‑dioxygenase 1, an activator of Tregs; ii) inhibiting MDSCs by reducing hypoxia around the tumor to create an unfavorable environment or administering all‑trans‑retinoic acid, which converts MDSCs to a non‑immunosuppressive state; and iii) inhibiting COX‑2 through selective or non‑selective COX‑inhibitors. In the present review article, strategies that have shown increased efficacy of PDT in treating tumors and pre‑cancerous lesions by blocking the immunosuppressive side effects are outlined and discussed.
View Figures

Figure 1

View References

1 

Dougherty TJ and Marcus SL: Photodynamic therapy. Eur Cancer. 28:1734–1742. 1992. View Article : Google Scholar : PubMed/NCBI

2 

Sharman WM, Allen CM and van Lier JE: Photodynamic therapeutics: Basic principles and clinical applications. Drug Disc Today. 4:507–517. 1999. View Article : Google Scholar : PubMed/NCBI

3 

Ochsner M: Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B. 39:1–18. 1997. View Article : Google Scholar : PubMed/NCBI

4 

Moan J: Porphyrin photosensitization and phototherapy. Photochem Photobiol. 43:681–690. 1986. View Article : Google Scholar : PubMed/NCBI

5 

Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJ and Sibata CH: Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther. 1:27–42. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K and Kulbacka J: Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed Pharmacother. 106:1098–1107. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Abrahamse H and Hamblin MR: New photosensitizers for photodynamic therapy. Biochem J. 473:347–364. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Zhang J, Jiang C, Figueiró Longo JP, Azevedo RB, Zhang H and Muehlmann LA: An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B. 8:137–146. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Chatterjee DK, Fong LS and Zhang Y: Nanoparticles in photodynamic therapy: An emerging paradigm. Adv Drug Deliv Rev. 60:1627–1637. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Gold M: ALA-PDT and MAL-PDT: What makes them different. J Clin Aesthet Dermatol. 2:44–47. 2009.

11 

Cantisani C, Paolino G, Faina V, Frascani F, Cantoresi F, Bianchini D, Gilda Fazia and Stefano Calvieri: Overview on topical 5-ALA photodynamic therapy use for non melanoma skin cancers. Int J Photoen. 2014:3048622014. View Article : Google Scholar

12 

Morton CA and Braathen LR: Daylight photodynamic therapy for actinic keratoses. Am J Clin Dermatol. 19:647–656. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Wehner MR: Comparing the efficacy of field treatments for actinic keratosis: A critical appraisal of a randomized trial in the New England Journal of Medicine. Br J Dermatol. 182:1343–1344. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Taub AF: Photodynamic therapy in dermatology: History and horizons. J Drugs Dermatol. 3 (Suppl 1):S8–S25. 2004.PubMed/NCBI

15 

Armbrecht AM: A prospective study of visual function and quality of life following PDT in patients with wet age related macular degeneration. Br J Ophthalmol. 88:1270–1273. 2004. View Article : Google Scholar : PubMed/NCBI

16 

McBride G: Studies expand potential uses of photodynamic therapy. J Natl Cancer Inst. 94:1740–1742. 2002. View Article : Google Scholar : PubMed/NCBI

17 

Korbelik M, Banáth J and Saw K: Immunoregulatory cell depletion improves the efficacy of photodynamic therapy-generated cancer vaccines. Int J Mol Sci. 16:27005–27014. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Wachowska M, Stachura J, Tonecka K, Fidyt K, Braniewska A, Sas Z, Kotula I, Rygiel TP, Boon L, Golab J and Muchowicz A: Inhibition of IDO leads to IL-6-dependent systemic inflammation in mice when combined with photodynamic therapy. Cancer Immunol Immunother. 69:1101–1112. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Reddan JC, Anderson CY, Xu H, Hrabovsky S, Freye K, Fairchild R, Tubesing KA and Elmets CA: Immunosuppressive effects of silicon phthalocyanine photodynamic therapy. Photochem Photobiol. 70:72–77. 1999. View Article : Google Scholar : PubMed/NCBI

20 

Lynch DH, Haddad S, King VJ, Ott MK, Straight R and Jolles CJ: Systemic immunosuppression induced by photodynamic therapy (PDT) is adoptively transferred by macrophages. Photochem Photobiol. 49:453–458. 1989. View Article : Google Scholar : PubMed/NCBI

21 

Reginato E, Mroz P, Chung H, Kawakubo M, Wolf P and Hamblin MR: Photodynamic therapy plus regulatory T-cell depletion produces immunity against a mouse tumour that expresses a self-antigen. Br J Cancer. 109:2167–2174. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Mroz P and Hamblin MR: The immunosuppressive side of PDT. Photochem Photobiol Sci. 10:751–758. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Falk-Mahapatra R and Gollnick SO: Photodynamic therapy and immunity: An update. Photochem Photobiol. 96:550–559. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Nobbe S, Trüeb RM, French LE and Hofbauer GFL: Herpes simplex virus reactivation as a complication of photodynamic therapy. Photodermatol Photoimmunol Photomed. 27:51–52. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Wolf P, Fink-Puches R, Reimann-Weber A and Kerl H: Development of malignant melanoma after repeated topical photodynamic therapy with 5-Aminolevulinic acid at the exposed site. Dermatology. 194:53–54. 1997. View Article : Google Scholar : PubMed/NCBI

26 

Fiechter S, Skaria A, Nievergelt H, Anex R, Borradori L and Parmentier L: Facial basal cell carcinomas recurring after photodynamic therapy: A retrospective analysis of histological subtypes. Dermatology. 224:346–351. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Castano AP, Mroz P, Wu MX and Hamblin MR: Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model. Proc Natl Acad Sci USA. 105:5495–5500. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Sun X, Cao Z, Mao K, Wu C, Chen H, Wang J, Wang X, Cong X, Li Y, Meng X, et al: Photodynamic therapy produces enhanced efficacy of antitumor immunotherapy by simultaneously inducing intratumoral release of sorafenib. Biomaterials. 240:1198452020. View Article : Google Scholar : PubMed/NCBI

29 

Lindau D, Gielen P, Kroesen M, Wesseling P and Adema GJ: The immunosuppressive tumour network: Myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 138:105–115. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Wang Y, Ma Y, Fang Y, Wu S, Liu L, Fu D and Shen X: Regulatory T cell: A protection for tumour cells. J Cell Mol Med. 16:425–436. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Lee CR, Kwak Y, Yang T, Han JH, Park SH, Ye MB, Lee W, Sim KY, Kang JA, Kim YC, et al: Myeloid-derived suppressor cells are controlled by regulatory T cells via TGF-β during murine colitis. Cell Rep. 17:3219–3232. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Fujimura T, Kambayashi Y and Aiba S: Crosstalk between regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) during melanoma growth. Onco Immunol. 1:1433–1434. 2012.PubMed/NCBI

33 

Ferracini M, Sahu RP, Harrison KA, Waeiss RA, Murphy RC, Jancar S, Konger RL and Travers JB: Topical photodynamic therapy induces systemic immunosuppression via generation of platelet-activating factor receptor ligands. J Invest Dermatol. 135:321–323. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Sahu RP, Petrache I, van Demark MJ, Rashid BM, Ocana JA, Tang Y, Yi Q, Turner MJ, Konger RL and Travers JB: Cigarette smoke exposure inhibits contact hypersensitivity via the generation of platelet-activating factor agonists. J Immunol. 190:2447–2454. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Zhang Q, Yao Y, Konger RL, Sinn AL, Cai S, Pollok KE and Travers JB: UVB radiation-mediated inhibition of contact hypersensitivity reactions is dependent on the platelet-activating factor system. J Invest Dermatol. 128:1780–1787. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Zelenay S, van der Veen AG, Böttcher JP, Snelgrove KJ, Rogers N, Acton SE, Chakravarty P, Girotti MR, Marais R, Quezada SA, et al: Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 162:1257–1270. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Ke J, Yang Y, Che Q, Jiang F, Wang H, Chen Z, Zhu M, Tong H, Zhang H, Yan X, et al: Prostaglandin E2 (PGE2) promotes proliferation and invasion by enhancing SUMO-1 activity via EP4 receptor in endometrial cancer. Tumor Biol. 37:12203–12211. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Fujita M, Kohanbash G, Fellows-Mayle W, Hamilton RL, Komohara Y, Decker SA, Ohlfest JR and Okada H: COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res. 71:2664–2674. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Makowski M, Grzela T, Niderla J, Łazarczyk M, Mróz P, Kopeé M, Legat M, Strusińska K, Koziak K, Nowis D, et al: Inhibition of cyclooxygenase-2 indirectly potentiates antitumor effects of photodynamic therapy in mice. Clin Cancer Res. 9:5417–5422. 2003.PubMed/NCBI

40 

Togashi Y and Nishikawa H: Regulatory T cells: Molecular and cellular basis for immunoregulation. Curr Top Microbiol Immunol. 410:3–27. 2017.PubMed/NCBI

41 

Najafi M, Farhood B and Mortezaee K: Contribution of regulatory T cells to cancer: A review. J Cell Physiol. 234:7983–7993. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Moreno Ayala MA, Li Z and DuPage M: Treg programming and therapeutic reprogramming in cancer. Immunology. 157:198–209. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Yan S, Zhang Y and Sun B: The function and potential drug targets of tumour-associated Tregs for cancer immunotherapy. Sci China Life Sci. 62:179–186. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Oh DS, Kim H, Oh JE, Jung HE, Lee YS, Park JH and Lee HK: Intratumoral depletion of regulatory T cells using CD25-targeted photodynamic therapy in a mouse melanoma model induces antitumoral immune responses. Oncotarget. 8:47440–47453. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Mellor AL, Lemos H and Huang L: Indoleamine 2,3-Dioxygenase and tolerance: Where are we now? Front Immunol. 8:13602017. View Article : Google Scholar : PubMed/NCBI

46 

Baban B, Chandler PR, Sharma MD, Pihkala J, Koni PA, Munn DH and Mellor AL: IDO activates regulatory T cells and blocks their conversion into Th17-Like T cells. J Immuno. 183:2475–2483. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Huang Z, Wei G, Zeng Z, Huang Y, Huang L, Shen Y, Sun X, Xu C and Zhao C: Enhanced cancer therapy through synergetic photodynamic/immune checkpoint blockade mediated by a liposomal conjugate comprised of porphyrin and IDO inhibitor. Theranostics. 9:5542–5557. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Consonni FM, Porta C, Marino A, Pandolfo C, Mola S, Bleve A and Sica A: Myeloid-derived suppressor cells: Ductile targets in disease. Front Immunol. 10:9492019. View Article : Google Scholar : PubMed/NCBI

49 

Pawelec G, Verschoor CP and Ostrand-Rosenberg S: Myeloid-derived suppressor cells: Not only in tumor immunity. Front Immunol. 10:10992019. View Article : Google Scholar : PubMed/NCBI

50 

Zuo H, Hou Y, Yu Y, Li Z, Liu H, Liu C, He J and Miao L: Circumventing myeloid-derived suppressor cell-mediated immunosuppression using an oxygen-generated and -economized nanoplatform. ACS ACS Appl Mater Interfaces. 12:55723–55736. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J and Umansky V: Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 120:16–25. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Ostrand-Rosenberg S, Sinha P, Beury DW and Clements VK: Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol. 22:275–281. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Bruno A, Mortara L, Baci D, Noonan DM and Albini A: Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: Roles in tumor progression. Fronti Immunol. 10:7712019. View Article : Google Scholar : PubMed/NCBI

54 

Iclozan C, Antonia S, Chiappori A, Chen DT and Gabrilovich D: Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother. 62:909–918. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S and Frochot C: Fighting hypoxia to improve PDT. Pharmaceuticals (Basel). 12:1632019. View Article : Google Scholar : PubMed/NCBI

56 

Mai X, Zhang Y, Fan H, Song W, Chang Y, Chen B, Shi J, Xin X, Teng Z, Sun J and Teng G: Integration of immunogenic activation and immunosuppressive reversion using mitochondrial-respiration-inhibited platelet-mimicking nanoparticles. Biomaterials. 232:1196992020. View Article : Google Scholar : PubMed/NCBI

57 

Zhou Z, Zhang B, Wang H, Yuan A, Hu Y and Wu J: Two-stage oxygen delivery for enhanced radiotherapy by perfluorocarbon nanoparticles. Theranostics. 8:4898–4911. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Ji C, Lu Z, Xu Y, Shen B, Yu S and Shi D: Self-production of oxygen system CaO2/MnO2 @PDA-MB for the photodynamic therapy research and switch-control tumor cell imaging. J Biomed Mater Res B Appl Biomater. 106:2544–2552. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Cao M, Xu Y, Youn J, Cabrera R, Zhang X, Gabrilovich D, Nelson DR and Liu C: Kinase inhibitor Sorafenib modulates immunosuppressive cell populations in a murine liver cancer model. Lab Invest. 91:598–608. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Ferrario A, von Tiehl K, Wong S, Luna M and Gomer CJ: Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response. Cancer Res. 62:3956–3961. 2002.PubMed/NCBI

61 

Zhang Z, Huang S, Wu S, Qi J, Li W, Liu S, Cong Y, Chen H, Lu L, Shi S, et al: Clearance of apoptotic cells by mesenchymal stem cells contributes to immunosuppression via PGE2. EBioMedicine. 45:341–350. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Kim SH, Roszik J, Cho S-N, Ogata D, Milton DR, Peng W, Menter DG, Ekmekcioglu S and Grimm EA: The COX2 effector microsomal PGE2 synthase 1 is a regulator of immunosuppression in cutaneous melanoma. Clin Cancer Res. 25:1650–1663. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Ferrario A and Gomer CJ: Targeting the tumor microenvironment using photodynamic therapy combined with inhibitors of cyclooxygenase-2 or vascular endothelial growth factor. Methods Mol Biol. 635:121–132. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Van der Geer S and Krekels GAM: Treatment of actinic keratoses on the dorsum of the hands: ALA-PDT versus diclofenac 3% gel followed by ALA-PDT. A placebo-controlled, double-blind, pilot study. J Dermatolog Treat. 20:259–265. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Rollakanti K, Anand S and Maytin EV: Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models. Proc SPIE Int Soc Opt Eng. 9308:93080Q2015.PubMed/NCBI

66 

Ni C, Gan X, Li X, Sun H, Chen Z and Lu H: Vitamin D alleviates acute graft-versus-host disease through promoting the generation of Foxp3+ T cells. Ann Transl Med. 7:7482019. View Article : Google Scholar : PubMed/NCBI

67 

van der Aar AM, Sibiryak DS, Bakdash G, van Capel TM, van der Kleij HP, Opstelten DJ, Teunissen MB, Kapsenberg ML and de Jong EC: Vitamin D3 targets epidermal and dermal dendritic cells for induction of distinct regulatory T cells. J Allergy Clin Immunol. 127:1532–1540.e7. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Rosenberg AR, Tabacchi M, Ngo KH, Wallendorf M, Rosman IS, Cornelius LA and Demehri S: Skin cancer precursor immunotherapy for squamous cell carcinoma prevention. JCI Insight. 4:e1254762019. View Article : Google Scholar : PubMed/NCBI

69 

Park J, Halliday GM, Surjana D and Damian DL: Nicotinamide prevents ultraviolet radiation-induced cellular energy loss. Photochem Photobiol. 86:942–948. 2010. View Article : Google Scholar : PubMed/NCBI

70 

Gensler HL: Prevention of photoimmunosuppression and photocarcinogenesis by topical nicotinamide. Nutr Cancer. 29:157–162. 1997. View Article : Google Scholar : PubMed/NCBI

71 

Gensler HL, Williams T, Huang AC and Jacobson EL: Oral niacin prevents photocarcinogenesis and photoimmunosuppression in mice. Nutr Cancer. 34:36–41. 1999. View Article : Google Scholar : PubMed/NCBI

72 

Thanos SM, Halliday GM and Damian DL: Nicotinamide reduces photodynamic therapy-induced immunosuppression in humans. Br J Dermatol. 167:631–636. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Surjana D, Halliday GM, Martin AJ, Moloney FJ and Damian DL: Oral nicotinamide reduces actinic keratoses in phase II double-blinded randomized controlled trials. J Invest Dermatol. 132:1497–1500. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Knip M, Douek IF, Moore WPT, Gillmor HA, McLean AEM, Bingley PJ and Gale EA; European Nicotinamide Diabetes Intervention Trial Group, : Safety of high-dose nicotinamide: A review. Diabetologia. 43:1337–1345. 2000. View Article : Google Scholar : PubMed/NCBI

75 

Foster TH, Murant RS, Bryant RG, Knox RS, Gibson SL and Hilf R: Oxygen consumption and diffusion effects in photodynamic therapy. Radiat Res. 126:296–303. 1991. View Article : Google Scholar : PubMed/NCBI

76 

Frost GA, Halliday GM and Damian DL: Photodynamic therapy-induced immunosuppression in humans is prevented by reducing the rate of light delivery. J Invest Dermatol. 131:962–968. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Ericson MB, Sandberg C, Stenquist B, Gudmundson F, Karlsson M, Ros A-M, Rosén A, Larkö O, Wennberg AM and Rosdahl I: Photodynamic therapy of actinic keratosis at varying fluence rates: Assessment of photobleaching, pain and primary clinical outcome. Br J Dermatol. 151:1204–1212. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Bayless S, Travers JB, Sahu RP and Rohan CA: Inhibition of photodynamic therapy induced‑immunosuppression with aminolevulinic acid leads to enhanced outcomes of tumors and pre‑cancerous lesions (Review). Oncol Lett 22: 664, 2021.
APA
Bayless, S., Travers, J.B., Sahu, R.P., & Rohan, C.A. (2021). Inhibition of photodynamic therapy induced‑immunosuppression with aminolevulinic acid leads to enhanced outcomes of tumors and pre‑cancerous lesions (Review). Oncology Letters, 22, 664. https://doi.org/10.3892/ol.2021.12925
MLA
Bayless, S., Travers, J. B., Sahu, R. P., Rohan, C. A."Inhibition of photodynamic therapy induced‑immunosuppression with aminolevulinic acid leads to enhanced outcomes of tumors and pre‑cancerous lesions (Review)". Oncology Letters 22.3 (2021): 664.
Chicago
Bayless, S., Travers, J. B., Sahu, R. P., Rohan, C. A."Inhibition of photodynamic therapy induced‑immunosuppression with aminolevulinic acid leads to enhanced outcomes of tumors and pre‑cancerous lesions (Review)". Oncology Letters 22, no. 3 (2021): 664. https://doi.org/10.3892/ol.2021.12925
Copy and paste a formatted citation
x
Spandidos Publications style
Bayless S, Travers JB, Sahu RP and Rohan CA: Inhibition of photodynamic therapy induced‑immunosuppression with aminolevulinic acid leads to enhanced outcomes of tumors and pre‑cancerous lesions (Review). Oncol Lett 22: 664, 2021.
APA
Bayless, S., Travers, J.B., Sahu, R.P., & Rohan, C.A. (2021). Inhibition of photodynamic therapy induced‑immunosuppression with aminolevulinic acid leads to enhanced outcomes of tumors and pre‑cancerous lesions (Review). Oncology Letters, 22, 664. https://doi.org/10.3892/ol.2021.12925
MLA
Bayless, S., Travers, J. B., Sahu, R. P., Rohan, C. A."Inhibition of photodynamic therapy induced‑immunosuppression with aminolevulinic acid leads to enhanced outcomes of tumors and pre‑cancerous lesions (Review)". Oncology Letters 22.3 (2021): 664.
Chicago
Bayless, S., Travers, J. B., Sahu, R. P., Rohan, C. A."Inhibition of photodynamic therapy induced‑immunosuppression with aminolevulinic acid leads to enhanced outcomes of tumors and pre‑cancerous lesions (Review)". Oncology Letters 22, no. 3 (2021): 664. https://doi.org/10.3892/ol.2021.12925
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team