|
1
|
Dougherty TJ and Marcus SL: Photodynamic
therapy. Eur Cancer. 28:1734–1742. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sharman WM, Allen CM and van Lier JE:
Photodynamic therapeutics: Basic principles and clinical
applications. Drug Disc Today. 4:507–517. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ochsner M: Photophysical and
photobiological processes in the photodynamic therapy of tumours. J
Photochem Photobiol B. 39:1–18. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Moan J: Porphyrin photosensitization and
phototherapy. Photochem Photobiol. 43:681–690. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Allison RR, Downie GH, Cuenca R, Hu XH,
Childs CJ and Sibata CH: Photosensitizers in clinical PDT.
Photodiagnosis Photodyn Ther. 1:27–42. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kwiatkowski S, Knap B, Przystupski D,
Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O,
Kotowski K and Kulbacka J: Photodynamic therapy-mechanisms,
photosensitizers and combinations. Biomed Pharmacother.
106:1098–1107. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Abrahamse H and Hamblin MR: New
photosensitizers for photodynamic therapy. Biochem J. 473:347–364.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang J, Jiang C, Figueiró Longo JP,
Azevedo RB, Zhang H and Muehlmann LA: An updated overview on the
development of new photosensitizers for anticancer photodynamic
therapy. Acta Pharm Sin B. 8:137–146. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chatterjee DK, Fong LS and Zhang Y:
Nanoparticles in photodynamic therapy: An emerging paradigm. Adv
Drug Deliv Rev. 60:1627–1637. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gold M: ALA-PDT and MAL-PDT: What makes
them different. J Clin Aesthet Dermatol. 2:44–47. 2009.
|
|
11
|
Cantisani C, Paolino G, Faina V, Frascani
F, Cantoresi F, Bianchini D, Gilda Fazia and Stefano Calvieri:
Overview on topical 5-ALA photodynamic therapy use for non melanoma
skin cancers. Int J Photoen. 2014:3048622014. View Article : Google Scholar
|
|
12
|
Morton CA and Braathen LR: Daylight
photodynamic therapy for actinic keratoses. Am J Clin Dermatol.
19:647–656. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wehner MR: Comparing the efficacy of field
treatments for actinic keratosis: A critical appraisal of a
randomized trial in the New England Journal of Medicine. Br J
Dermatol. 182:1343–1344. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Taub AF: Photodynamic therapy in
dermatology: History and horizons. J Drugs Dermatol. 3 (Suppl
1):S8–S25. 2004.PubMed/NCBI
|
|
15
|
Armbrecht AM: A prospective study of
visual function and quality of life following PDT in patients with
wet age related macular degeneration. Br J Ophthalmol.
88:1270–1273. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
McBride G: Studies expand potential uses
of photodynamic therapy. J Natl Cancer Inst. 94:1740–1742. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Korbelik M, Banáth J and Saw K:
Immunoregulatory cell depletion improves the efficacy of
photodynamic therapy-generated cancer vaccines. Int J Mol Sci.
16:27005–27014. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wachowska M, Stachura J, Tonecka K, Fidyt
K, Braniewska A, Sas Z, Kotula I, Rygiel TP, Boon L, Golab J and
Muchowicz A: Inhibition of IDO leads to IL-6-dependent systemic
inflammation in mice when combined with photodynamic therapy.
Cancer Immunol Immunother. 69:1101–1112. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Reddan JC, Anderson CY, Xu H, Hrabovsky S,
Freye K, Fairchild R, Tubesing KA and Elmets CA: Immunosuppressive
effects of silicon phthalocyanine photodynamic therapy. Photochem
Photobiol. 70:72–77. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lynch DH, Haddad S, King VJ, Ott MK,
Straight R and Jolles CJ: Systemic immunosuppression induced by
photodynamic therapy (PDT) is adoptively transferred by
macrophages. Photochem Photobiol. 49:453–458. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Reginato E, Mroz P, Chung H, Kawakubo M,
Wolf P and Hamblin MR: Photodynamic therapy plus regulatory T-cell
depletion produces immunity against a mouse tumour that expresses a
self-antigen. Br J Cancer. 109:2167–2174. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mroz P and Hamblin MR: The
immunosuppressive side of PDT. Photochem Photobiol Sci. 10:751–758.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Falk-Mahapatra R and Gollnick SO:
Photodynamic therapy and immunity: An update. Photochem Photobiol.
96:550–559. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Nobbe S, Trüeb RM, French LE and Hofbauer
GFL: Herpes simplex virus reactivation as a complication of
photodynamic therapy. Photodermatol Photoimmunol Photomed.
27:51–52. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wolf P, Fink-Puches R, Reimann-Weber A and
Kerl H: Development of malignant melanoma after repeated topical
photodynamic therapy with 5-Aminolevulinic acid at the exposed
site. Dermatology. 194:53–54. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Fiechter S, Skaria A, Nievergelt H, Anex
R, Borradori L and Parmentier L: Facial basal cell carcinomas
recurring after photodynamic therapy: A retrospective analysis of
histological subtypes. Dermatology. 224:346–351. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Castano AP, Mroz P, Wu MX and Hamblin MR:
Photodynamic therapy plus low-dose cyclophosphamide generates
antitumor immunity in a mouse model. Proc Natl Acad Sci USA.
105:5495–5500. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sun X, Cao Z, Mao K, Wu C, Chen H, Wang J,
Wang X, Cong X, Li Y, Meng X, et al: Photodynamic therapy produces
enhanced efficacy of antitumor immunotherapy by simultaneously
inducing intratumoral release of sorafenib. Biomaterials.
240:1198452020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lindau D, Gielen P, Kroesen M, Wesseling P
and Adema GJ: The immunosuppressive tumour network: Myeloid-derived
suppressor cells, regulatory T cells and natural killer T cells.
Immunology. 138:105–115. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang Y, Ma Y, Fang Y, Wu S, Liu L, Fu D
and Shen X: Regulatory T cell: A protection for tumour cells. J
Cell Mol Med. 16:425–436. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lee CR, Kwak Y, Yang T, Han JH, Park SH,
Ye MB, Lee W, Sim KY, Kang JA, Kim YC, et al: Myeloid-derived
suppressor cells are controlled by regulatory T cells via TGF-β
during murine colitis. Cell Rep. 17:3219–3232. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fujimura T, Kambayashi Y and Aiba S:
Crosstalk between regulatory T cells (Tregs) and myeloid derived
suppressor cells (MDSCs) during melanoma growth. Onco Immunol.
1:1433–1434. 2012.PubMed/NCBI
|
|
33
|
Ferracini M, Sahu RP, Harrison KA, Waeiss
RA, Murphy RC, Jancar S, Konger RL and Travers JB: Topical
photodynamic therapy induces systemic immunosuppression via
generation of platelet-activating factor receptor ligands. J Invest
Dermatol. 135:321–323. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sahu RP, Petrache I, van Demark MJ, Rashid
BM, Ocana JA, Tang Y, Yi Q, Turner MJ, Konger RL and Travers JB:
Cigarette smoke exposure inhibits contact hypersensitivity via the
generation of platelet-activating factor agonists. J Immunol.
190:2447–2454. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang Q, Yao Y, Konger RL, Sinn AL, Cai S,
Pollok KE and Travers JB: UVB radiation-mediated inhibition of
contact hypersensitivity reactions is dependent on the
platelet-activating factor system. J Invest Dermatol.
128:1780–1787. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zelenay S, van der Veen AG, Böttcher JP,
Snelgrove KJ, Rogers N, Acton SE, Chakravarty P, Girotti MR, Marais
R, Quezada SA, et al: Cyclooxygenase-dependent tumor growth through
evasion of immunity. Cell. 162:1257–1270. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ke J, Yang Y, Che Q, Jiang F, Wang H, Chen
Z, Zhu M, Tong H, Zhang H, Yan X, et al: Prostaglandin E2 (PGE2)
promotes proliferation and invasion by enhancing SUMO-1 activity
via EP4 receptor in endometrial cancer. Tumor Biol. 37:12203–12211.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fujita M, Kohanbash G, Fellows-Mayle W,
Hamilton RL, Komohara Y, Decker SA, Ohlfest JR and Okada H: COX-2
blockade suppresses gliomagenesis by inhibiting myeloid-derived
suppressor cells. Cancer Res. 71:2664–2674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Makowski M, Grzela T, Niderla J, Łazarczyk
M, Mróz P, Kopeé M, Legat M, Strusińska K, Koziak K, Nowis D, et
al: Inhibition of cyclooxygenase-2 indirectly potentiates antitumor
effects of photodynamic therapy in mice. Clin Cancer Res.
9:5417–5422. 2003.PubMed/NCBI
|
|
40
|
Togashi Y and Nishikawa H: Regulatory T
cells: Molecular and cellular basis for immunoregulation. Curr Top
Microbiol Immunol. 410:3–27. 2017.PubMed/NCBI
|
|
41
|
Najafi M, Farhood B and Mortezaee K:
Contribution of regulatory T cells to cancer: A review. J Cell
Physiol. 234:7983–7993. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Moreno Ayala MA, Li Z and DuPage M: Treg
programming and therapeutic reprogramming in cancer. Immunology.
157:198–209. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yan S, Zhang Y and Sun B: The function and
potential drug targets of tumour-associated Tregs for cancer
immunotherapy. Sci China Life Sci. 62:179–186. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Oh DS, Kim H, Oh JE, Jung HE, Lee YS, Park
JH and Lee HK: Intratumoral depletion of regulatory T cells using
CD25-targeted photodynamic therapy in a mouse melanoma model
induces antitumoral immune responses. Oncotarget. 8:47440–47453.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mellor AL, Lemos H and Huang L:
Indoleamine 2,3-Dioxygenase and tolerance: Where are we now? Front
Immunol. 8:13602017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Baban B, Chandler PR, Sharma MD, Pihkala
J, Koni PA, Munn DH and Mellor AL: IDO activates regulatory T cells
and blocks their conversion into Th17-Like T cells. J Immuno.
183:2475–2483. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Huang Z, Wei G, Zeng Z, Huang Y, Huang L,
Shen Y, Sun X, Xu C and Zhao C: Enhanced cancer therapy through
synergetic photodynamic/immune checkpoint blockade mediated by a
liposomal conjugate comprised of porphyrin and IDO inhibitor.
Theranostics. 9:5542–5557. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Consonni FM, Porta C, Marino A, Pandolfo
C, Mola S, Bleve A and Sica A: Myeloid-derived suppressor cells:
Ductile targets in disease. Front Immunol. 10:9492019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Pawelec G, Verschoor CP and
Ostrand-Rosenberg S: Myeloid-derived suppressor cells: Not only in
tumor immunity. Front Immunol. 10:10992019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zuo H, Hou Y, Yu Y, Li Z, Liu H, Liu C, He
J and Miao L: Circumventing myeloid-derived suppressor
cell-mediated immunosuppression using an oxygen-generated and
-economized nanoplatform. ACS ACS Appl Mater Interfaces.
12:55723–55736. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Groth C, Hu X, Weber R, Fleming V,
Altevogt P, Utikal J and Umansky V: Immunosuppression mediated by
myeloid-derived suppressor cells (MDSCs) during tumour progression.
Br J Cancer. 120:16–25. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ostrand-Rosenberg S, Sinha P, Beury DW and
Clements VK: Cross-talk between myeloid-derived suppressor cells
(MDSC), macrophages, and dendritic cells enhances tumor-induced
immune suppression. Semin Cancer Biol. 22:275–281. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bruno A, Mortara L, Baci D, Noonan DM and
Albini A: Myeloid derived suppressor cells interactions with
natural killer cells and pro-angiogenic activities: Roles in tumor
progression. Fronti Immunol. 10:7712019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Iclozan C, Antonia S, Chiappori A, Chen DT
and Gabrilovich D: Therapeutic regulation of myeloid-derived
suppressor cells and immune response to cancer vaccine in patients
with extensive stage small cell lung cancer. Cancer Immunol
Immunother. 62:909–918. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Larue L, Myrzakhmetov B, Ben-Mihoub A,
Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S
and Frochot C: Fighting hypoxia to improve PDT. Pharmaceuticals
(Basel). 12:1632019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mai X, Zhang Y, Fan H, Song W, Chang Y,
Chen B, Shi J, Xin X, Teng Z, Sun J and Teng G: Integration of
immunogenic activation and immunosuppressive reversion using
mitochondrial-respiration-inhibited platelet-mimicking
nanoparticles. Biomaterials. 232:1196992020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhou Z, Zhang B, Wang H, Yuan A, Hu Y and
Wu J: Two-stage oxygen delivery for enhanced radiotherapy by
perfluorocarbon nanoparticles. Theranostics. 8:4898–4911. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ji C, Lu Z, Xu Y, Shen B, Yu S and Shi D:
Self-production of oxygen system CaO2/MnO2
@PDA-MB for the photodynamic therapy research and switch-control
tumor cell imaging. J Biomed Mater Res B Appl Biomater.
106:2544–2552. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cao M, Xu Y, Youn J, Cabrera R, Zhang X,
Gabrilovich D, Nelson DR and Liu C: Kinase inhibitor Sorafenib
modulates immunosuppressive cell populations in a murine liver
cancer model. Lab Invest. 91:598–608. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ferrario A, von Tiehl K, Wong S, Luna M
and Gomer CJ: Cyclooxygenase-2 inhibitor treatment enhances
photodynamic therapy-mediated tumor response. Cancer Res.
62:3956–3961. 2002.PubMed/NCBI
|
|
61
|
Zhang Z, Huang S, Wu S, Qi J, Li W, Liu S,
Cong Y, Chen H, Lu L, Shi S, et al: Clearance of apoptotic cells by
mesenchymal stem cells contributes to immunosuppression via PGE2.
EBioMedicine. 45:341–350. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kim SH, Roszik J, Cho S-N, Ogata D, Milton
DR, Peng W, Menter DG, Ekmekcioglu S and Grimm EA: The COX2
effector microsomal PGE2 synthase 1 is a regulator of
immunosuppression in cutaneous melanoma. Clin Cancer Res.
25:1650–1663. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ferrario A and Gomer CJ: Targeting the
tumor microenvironment using photodynamic therapy combined with
inhibitors of cyclooxygenase-2 or vascular endothelial growth
factor. Methods Mol Biol. 635:121–132. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Van der Geer S and Krekels GAM: Treatment
of actinic keratoses on the dorsum of the hands: ALA-PDT versus
diclofenac 3% gel followed by ALA-PDT. A placebo-controlled,
double-blind, pilot study. J Dermatolog Treat. 20:259–265. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rollakanti K, Anand S and Maytin EV:
Topical calcitriol prior to photodynamic therapy enhances treatment
efficacy in non-melanoma skin cancer mouse models. Proc SPIE Int
Soc Opt Eng. 9308:93080Q2015.PubMed/NCBI
|
|
66
|
Ni C, Gan X, Li X, Sun H, Chen Z and Lu H:
Vitamin D alleviates acute graft-versus-host disease through
promoting the generation of Foxp3+ T cells. Ann Transl Med.
7:7482019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
van der Aar AM, Sibiryak DS, Bakdash G,
van Capel TM, van der Kleij HP, Opstelten DJ, Teunissen MB,
Kapsenberg ML and de Jong EC: Vitamin D3 targets epidermal and
dermal dendritic cells for induction of distinct regulatory T
cells. J Allergy Clin Immunol. 127:1532–1540.e7. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Rosenberg AR, Tabacchi M, Ngo KH,
Wallendorf M, Rosman IS, Cornelius LA and Demehri S: Skin cancer
precursor immunotherapy for squamous cell carcinoma prevention. JCI
Insight. 4:e1254762019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Park J, Halliday GM, Surjana D and Damian
DL: Nicotinamide prevents ultraviolet radiation-induced cellular
energy loss. Photochem Photobiol. 86:942–948. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gensler HL: Prevention of
photoimmunosuppression and photocarcinogenesis by topical
nicotinamide. Nutr Cancer. 29:157–162. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Gensler HL, Williams T, Huang AC and
Jacobson EL: Oral niacin prevents photocarcinogenesis and
photoimmunosuppression in mice. Nutr Cancer. 34:36–41. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Thanos SM, Halliday GM and Damian DL:
Nicotinamide reduces photodynamic therapy-induced immunosuppression
in humans. Br J Dermatol. 167:631–636. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Surjana D, Halliday GM, Martin AJ, Moloney
FJ and Damian DL: Oral nicotinamide reduces actinic keratoses in
phase II double-blinded randomized controlled trials. J Invest
Dermatol. 132:1497–1500. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Knip M, Douek IF, Moore WPT, Gillmor HA,
McLean AEM, Bingley PJ and Gale EA; European Nicotinamide Diabetes
Intervention Trial Group, : Safety of high-dose nicotinamide: A
review. Diabetologia. 43:1337–1345. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Foster TH, Murant RS, Bryant RG, Knox RS,
Gibson SL and Hilf R: Oxygen consumption and diffusion effects in
photodynamic therapy. Radiat Res. 126:296–303. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Frost GA, Halliday GM and Damian DL:
Photodynamic therapy-induced immunosuppression in humans is
prevented by reducing the rate of light delivery. J Invest
Dermatol. 131:962–968. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ericson MB, Sandberg C, Stenquist B,
Gudmundson F, Karlsson M, Ros A-M, Rosén A, Larkö O, Wennberg AM
and Rosdahl I: Photodynamic therapy of actinic keratosis at varying
fluence rates: Assessment of photobleaching, pain and primary
clinical outcome. Br J Dermatol. 151:1204–1212. 2004. View Article : Google Scholar : PubMed/NCBI
|