|
1
|
Klar AJ, Fogel S and Macleod K: MAR1-a
Regulator of the HMa and HMalpha Loci in Saccharomyces Cerevisiae.
Genetics. 93:37–50. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Loo S and Rine J: Silencing and heritable
domains of gene expression. Annu Rev Cell Dev Biol. 11:519–548.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gottlieb S and Esposito RE: A new role for
a yeast transcriptional silencer gene, SIR2, in regulation of
recombination in ribosomal DNA. Cell. 56:771–776. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Guarente L: Diverse and dynamic functions
of the Sir silencing complex. Nat Genet. 23:281–285. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Tanny JC, Dowd GJ, Huang J, Hilz H and
Moazed D: An enzymatic activity in the yeast Sir2 protein that is
essential for gene silencing. Cell. 99:735–745. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Tanner KG, Landry J, Sternglanz R and Denu
JM: Silent information regulator 2 family of NAD-dependent
histone/protein deacetylases generates a unique product,
1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA. 97:14178–14182.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hirschey MD: Old enzymes, new tricks:
Sirtuins are NAD(+)-dependent de-acylases. Cell Metab. 14:718–719.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Haigis MC, Mostoslavsky R, Haigis KM,
Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos
GD, Karow M, Blander G, et al: SIRT4 inhibits glutamate
dehydrogenase and opposes the effects of calorie restriction in
pancreatic beta cells. Cell. 126:941–954. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
de Ruijter AJ, van Gennip AH, Caron HN,
Kemp S and van Kuilenburg AB: Histone deacetylases (HDACs):
Characterization of the classical HDAC family. Biochem J. 370((Pt
3)): 737–749. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Feldman JL, Dittenhafer-Reed KE, Kudo N,
Thelen JN, Ito A, Yoshida M and Denu JM: Kinetic and structural
basis for acyl-group selectivity and NAD(+) dependence in
sirtuin-catalyzed deacylation. Biochemistry. 54:3037–3050. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Maxwell MM, Tomkinson EM, Nobles J,
Wizeman JW, Amore AM, Quinti L, Chopra V, Hersch SM and Kazantsev
AG: The Sirtuin 2 microtubule deacetylase is an abundant neuronal
protein that accumulates in the aging CNS. Hum Mol Genet.
20:3986–3996. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rack JG, VanLinden MR, Lutter T, Aasland R
and Ziegler M: Constitutive nuclear localization of an
alternatively spliced sirtuin-2 isoform. J Mol Biol. 426:1677–1691.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kudo N, Ito A, Arata M, Nakata A and
Yoshida M: Identification of a novel small molecule that inhibits
deacetylase but not defatty-acylase reaction catalysed by SIRT2.
Philos Trans R Soc Lond B Biol Sci. 373:201700702018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Mei Z, Zhang X, Yi J, Huang J, He J and
Tao Y: Sirtuins in metabolism, DNA repair and cancer. J Exp Clin
Cancer Res. 35:1822016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
North BJ and Verdin E: Interphase
nucleo-cytoplasmic shuttling and localization of SIRT2 during
mitosis. PLoS One. 2:e7842007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mathias RA, Greco TM, Oberstein A,
Budayeva HG, Chakrabarti R, Rowland EA, Kang Y, Shenk T and Cristea
IM: Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase
complex activity. Cell. 159:1615–1625. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tong Z, Wang M, Wang Y, Kim DD, Grenier
JK, Cao J, Sadhukhan S, Hao Q and Lin H: SIRT7 Is an RNA-activated
protein lysine deacylase. ACS Chem Biol. 12:300–310. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Eskandarian HA, Impens F, Nahori MA,
Soubigou G, Coppée JY, Cossart P and Hamon MA: A role for
SIRT2-dependent histone H3K18 deacetylation in bacterial infection.
Science. 341:12388582013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cha Y, Han MJ, Cha HJ, Zoldan J, Burkart
A, Jung JH, Jang Y, Kim CH, Jeong HC, Kim BG, et al: Metabolic
control of primed human pluripotent stem cell fate and function by
the miR-200c-SIRT2 axis. Nat Cell Biol. 19:445–456. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fiskus W, Coothankandaswamy V, Chen J, Ma
H, Ha K, Saenz DT, Krieger SS, Mill CP, Sun B, Huang P, et al:
SIRT2 deacetylates and inhibits the peroxidase activity of
peroxiredoxin-1 to sensitize breast cancer cells to oxidant
stress-inducing agents. Cancer Res. 76:5467–5478. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rothgiesser KM, Erener S, Waibel S,
Lüscher B and Hottiger MO: SIRT2 regulates NF-kappaB dependent gene
expression through deacetylation of p65 Lys310. J Cell Sci.
(123)((Pt 24)): 4251–4258. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tsusaka T, Guo T, Yagura T, Inoue T,
Yokode M, Inagaki N and Kondoh H: Deacetylation of phosphoglycerate
mutase in its distinct central region by SIRT2 down-regulates its
enzymatic activity. Genes Cells. 19:766–777. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sarikhani M, Mishra S, Desingu PA, Kotyada
C, Wolfgeher D, Gupta MP, Singh M and Sundaresan NR: SIRT2
regulates oxidative stress-induced cell death through deacetylation
of c-Jun NH2-terminal kinase. Cell Death Differ.
25:1638–1656. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Fabrizio P, Gattazzo C, Battistella L, Wei
M, Cheng C, McGrew K and Longo VD: Sir2 blocks extreme life-span
extension. Cell. 123:655–667. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Horio Y, Hayashi T, Kuno A and Kunimoto R:
Cellular and molecular effects of sirtuins in health and disease.
Clin Sci (Lond). 121:191–203. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Michan S and Sinclair D: Sirtuins in
mammals: Insights into their biological function. Biochem J.
404:1–13. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
North BJ, Rosenberg MA, Jeganathan KB,
Hafner AV, Michan S, Dai J, Baker DJ, Cen Y, Wu LE, Sauve AA, et
al: SIRT2 induces the checkpoint kinase BubR1 to increase lifespan.
EMBO J. 33:1438–1453. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Dryden SC, Nahhas FA, Nowak JE, Goustin AS
and Tainsky MA: Role for human SIRT2 NAD-dependent deacetylase
activity in control of mitotic exit in the cell cycle. Mol Cell
Biol. 23:3173–3185. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Vaquero A, Scher MB, Lee DH, Sutton A,
Cheng HL, Alt FW, Serrano L, Sternglanz R and Reinberg D: SirT2 is
a histone deacetylase with preference for histone H4 Lys 16 during
mitosis. Genes Dev. 20:1256–1261. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Serrano L, Martínez-Redondo P,
Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB,
Kane-Goldsmith N, Tong Q, Rabanal RM, et al: The tumor suppressor
SirT2 regulates cell cycle progression and genome stability by
modulating the mitotic deposition of H4K20 methylation. Genes Dev.
27:639–653. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kim HS, Vassilopoulos A, Wang RH, Lahusen
T, Xiao Z, Xu X, Li C, Veenstra TD, Li B, Yu H, et al: SIRT2
maintains genome integrity and suppresses tumorigenesis through
regulating APC/C activity. Cancer Cell. 20:487–499. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chen G, Luo Y, Warncke K, Sun Y, Yu DS, Fu
H, Behera M, Ramalingam SS, Doetsch PW, Duong DM, et al:
Acetylation regulates ribonucleotide reductase activity and cancer
cell growth. Nat Commun. 10:32132019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gonfloni S, Iannizzotto V, Maiani E,
Bellusci G, Ciccone S and Diederich M: P53 and Sirt1: Routes of
metabolism and genome stability. Biochem Pharmacol. 92:149–156.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cha YI and Kim HS: Emerging role of
sirtuins on tumorigenesis: Possible link between aging and cancer.
BMB Rep. 46:429–438. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li Y, Zhang M, Dorfman RG, Pan Y, Tang D,
Xu L, Zhao Z, Zhou Q, Zhou L, Wang Y, et al: SIRT2 promotes the
migration and invasion of gastric cancer through RAS/ERK/JNK/MMP-9
pathway by increasing PEPCK1-Related metabolism. Neoplasia.
20:745–756. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Park SH, Ozden O, Liu G, Song HY, Zhu Y,
Yan Y, Zou X, Kang HJ, Jiang H, Principe DR, et al: SIRT2-Mediated
deacetylation and tetramerization of pyruvate kinase directs
glycolysis and tumor growth. Cancer Res. 76:3802–3812. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang YP, Zhou LS, Zhao YZ, Wang SW, Chen
LL, Liu LX, Ling ZQ, Hu FJ, Sun YP, Zhang JY, et al: Regulation of
G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and
cell survival during oxidative stress. EMBO J. 33:1304–1320.
2014.PubMed/NCBI
|
|
38
|
Hamaidi I, Zhang L, Kim N, Wang MH,
Iclozan C, Fang B, Liu M, Koomen JM, Berglund AE, Yoder SJ, et al:
Sirt2 inhibition enhances metabolic fitness and effector functions
of Tumor-Reactive T Cells. Cell Metab. 32:420–436.e412. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jing H, Zhang X, Wisner SA, Chen X,
Spiegelman NA, Linder ME and Lin H: SIRT2 and lysine fatty
acylation regulate the transforming activity of K-Ras4a. Elife.
6:e324362017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Spiegelman NA, Zhang X, Jing H, Cao J,
Kotliar IB, Aramsangtienchai P, Wang M, Tong Z, Rosch KM and Lin H:
SIRT2 and Lysine fatty acylation regulate the activity of RalB and
cell migration. ACS Chem Biol. 14:2014–2023. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kosciuk T, Price IR, Zhang X, Zhu C,
Johnson KN, Zhang S, Halaby SL, Komaniecki GP, Yang M, DeHart CJ,
et al: NMT1 and NMT2 are lysine myristoyltransferases regulating
the ARF6 GTPase cycle. Nat Commun. 11:10672020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chen G, Huang P and Hu C: The role of
SIRT2 in cancer: A novel therapeutic target. Int J Cancer.
147:3297–3304. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liu Y, Zhang Y, Zhu K, Chi S, Wang C and
Xie A: Emerging role of Sirtuin 2 in Parkinson's disease. Front
Aging Neurosci. 11:3722020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang Y, Anoopkumar-Dukie S, Arora D and
Davey AK: Review of the anti-inflammatory effect of SIRT1 and SIRT2
modulators on neurodegenerative diseases. Eur J Pharmacol.
867:1728472020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Reifenberger J, Reifenberger G, Liu L,
James CD, Wechsler W and Collins VP: Molecular genetic analysis of
oligodendroglial tumors shows preferential allelic deletions on 19q
and 1p. Am J Pathol. 145:1175–1190. 1994.PubMed/NCBI
|
|
46
|
Head PE, Zhang H, Bastien AJ, Koyen AE,
Withers AE, Daddacha WB, Cheng X and Yu DS: Sirtuin 2 mutations in
human cancers impair its function in genome maintenance. J Biol
Chem. 292:9919–9931. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang B, Ye Y, Yang X, Liu B, Wang Z, Chen
S, Jiang K, Zhang W, Jiang H, Mustonen H, et al: SIRT2-dependent
IDH1 deacetylation inhibits colorectal cancer and liver metastases.
EMBO Rep. 21:e481832020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Carafa V, Altucci L and Nebbioso A: Dual
tumor suppressor and tumor promoter action of sirtuins in
determining malignant phenotype. Front Pharmacol. 10:382019.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li Z, Xie QR, Chen Z, Lu S and Xia W:
Regulation of SIRT2 levels for human non-small cell lung cancer
therapy. Lung Cancer. 82:9–15. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Grbesa I, Pajares MJ, Martínez-Terroba E,
Agorreta J, Mikecin AM, Larráyoz M, Idoate MA, Gall-Troselj K, Pio
R and Montuenga LM: Expression of sirtuin 1 and 2 is associated
with poor prognosis in non-small cell lung cancer patients. PLoS
One. 10:e01246702015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Gao CX, Chen B, Xie HK, Han CN and Luo J:
Immunohistochemistry and clinical value of sirtuin 2 in
non-metastasized non-small cell lung cancer. J Thorac Dis.
11:3973–3979. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
McGlynn LM, Zino S, MacDonald AI, Curle J,
Reilly JE, Mohammed ZM, McMillan DC, Mallon E, Payne AP, Edwards J
and Shiels PG: SIRT2: Tumour suppressor or tumour promoter in
operable breast cancer? Eur J Cancer. 50:290–301. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gong J, Wang H, Lou W, Wang G, Tao H, Wen
H, Liu Y and Xie Q: Associations of sirtuins with
clinicopathological parameters and prognosis in non-small cell lung
cancer. Cancer Manag Res. 10:3341–3356. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Berggrund M, Enroth S, Lundberg M,
Assarsson E, Stålberg K, Lindquist D, Hallmans G, Grankvist K,
Olovsson M and Gyllensten U: Identification of candidate plasma
protein biomarkers for cervical cancer using the multiplex
proximity extension assay. Mol Cell Proteomics. 18:735–743. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Inoue K, Mallakin A and Frazier DP: Dmp1
and tumor suppression. Oncogene. 26:4329–4335. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Das C, Lucia MS, Hansen KC and Tyler JK:
CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature.
459:113–117. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Jin YH, Kim YJ, Kim DW, Baek KH, Kang BY,
Yeo CY and Lee KY: Sirt2 interacts with 14-3-3 beta/gamma and
down-regulates the activity of p53. Biochem Biophys Res Commun.
368:690–695. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang
P, Xu YH, Dong B, Xiong Y, Lei QY and Guan KL: Lysine-5 acetylation
negatively regulates lactate dehydrogenase A and is decreased in
pancreatic cancer. Cancer Cell. 23:464–476. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jing H, Hu J, He B, Negrón Abril YL,
Stupinski J, Weiser K, Carbonaro M, Chiang YL, Southard T,
Giannakakou P, et al: A SIRT2-Selective inhibitor promotes c-Myc
oncoprotein degradation and exhibits broad anticancer activity.
Cancer Cell. 29:6072016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang MH, Laurent G, Bause AS, Spang R,
German N, Haigis MC and Haigis KM: HDAC6 and SIRT2 regulate the
acetylation state and oncogenic activity of mutant K-RAS. Mol
Cancer Res. 11:1072–1077. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Spiegelman NA, Hong JY, Hu J, Jing H, Wang
M, Price IR, Cao J, Yang M, Zhang X and Lin H: A Small-Molecule
SIRT2 inhibitor that promotes K-Ras4a lysine fatty-acylation.
ChemMedChem. 14:744–748. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Liu PY, Xu N, Malyukova A, Scarlett CJ,
Sun YT, Zhang XD, Ling D, Su SP, Nelson C, Chang DK, et al: The
histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death
Differ. 20:503–514. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Luo J, Bao YC, Ji XX, Chen B, Deng QF and
Zhou SW: SPOP promotes SIRT2 degradation and suppresses non-small
cell lung cancer cell growth. Biochem Biophys Res Commun.
483:880–884. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xu Y, Li F, Lv L, Li T, Zhou X, Deng CX,
Guan KL, Lei QY and Xiong Y: Oxidative stress activates SIRT2 to
deacetylate and stimulate phosphoglycerate mutase. Cancer Res.
74:3630–3642. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhao Y, Yang J, Liao W, Liu X, Zhang H,
Wang S, Wang D, Feng J, Yu L and Zhu WG: Cytosolic FoxO1 is
essential for the induction of autophagy and tumour suppressor
activity. Nat Cell Biol. 12:665–675. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tang HX, Wang MY, Xiao W and Wen JW:
SIRT2-Reverses Drug-Resistance of HL-60/A through autophagy
mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 27:409–414. 2019.(In
Chinese). PubMed/NCBI
|
|
67
|
Liu L, Yu L, Zeng C, Long H, Duan G, Yin
G, Dai X and Lin Z: E3 Ubiquitin Ligase HRD1 promotes lung
tumorigenesis by promoting sirtuin 2 ubiquitination and
degradation. Mol Cell Biol. 40:e00257–19. 2020. View Article : Google Scholar
|
|
68
|
Zhu H, Hu Y, Zeng C, Chang L, Ge F, Wang
W, Yan F, Zhao Q, Cao J, Ying M, et al: The SIRT2-mediated
deacetylation of AKR1C1 is required for suppressing its
pro-metastasis function in Non-small cell lung cancer.
Theranostics. 10:2188–2200. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lin R, Tao R, Gao X, Li T, Zhou X, Guan
KL, Xiong Y and Lei QY: Acetylation stabilizes ATP-citrate lyase to
promote lipid biosynthesis and tumor growth. Mol Cell. 51:506–518.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mu N, Lei Y, Wang Y, Wang Y, Duan Q, Ma G,
Liu X and Su L: Inhibition of SIRT1/2 upregulates HSPA5 acetylation
and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in
human lung cancer cells. Apoptosis. 24:798–811. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang L, Xu P, Xie X, Hu F, Jiang L, Hu R,
Ding F, Xiao H and Zhang H: Down regulation of SIRT2 Reduced ASS
induced NSCLC apoptosis through the release of autophagy components
via exosomes. Front Cell Dev Biol. 8:6019532020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bajpe PK, Prahallad A, Horlings H,
Nagtegaal I, Beijersbergen R and Bernards R: A chromatin modifier
genetic screen identifies SIRT2 as a modulator of response to
targeted therapies through the regulation of MEK kinase activity.
Oncogene. 34:531–536. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xu H, Li Y, Chen L, Wang C, Wang Q, Zhang
H, Lin Y, Li Q and Pang T: SIRT2 mediates multidrug resistance in
acute myelogenous leukemia cells via ERK1/2 signaling pathway. Int
J Oncol. 48:613–623. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhang M, Du W, Acklin S, Jin S and Xia F:
SIRT2 protects peripheral neurons from cisplatin-induced injury by
enhancing nucleotide excision repair. J Clin Invest. 130:2953–2965.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun
YP, Xiong Y, Guan KL and Lei QY: NOTCH-induced aldehyde
dehydrogenase 1A1 deacetylation promotes breast cancer stem cells.
J Clin Invest. 124:5453–5465. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wei R, He D and Zhang X: Role of SIRT2 in
regulation of stemness of cancer stem-like cells in renal cell
carcinoma. Cell Physiol Biochem. 49:2348–2357. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Eramo A, Haas TL and De Maria R: Lung
cancer stem cells: Tools and targets to fight lung cancer.
Oncogene. 29:4625–4635. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Jiang F, Qiu Q, Khanna A, Todd NW, Deepak
J, Xing L, Wang H, Liu Z, Su Y, Stass SA and Katz RL: Aldehyde
dehydrogenase 1 is a tumor stem cell-associated marker in lung
cancer. Mol Cancer Res. 7:330–338. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Rotili D, Tarantino D, Nebbioso A, Paolini
C, Huidobro C, Lara E, Mellini P, Lenoci A, Pezzi R, Botta G, et
al: Discovery of salermide-related sirtuin inhibitors: Binding mode
studies and antiproliferative effects in cancer cells including
cancer stem cells. J Med Chem. 55:10937–10947. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hu F, Sun X, Li G, Wu Q, Chen Y, Yang X,
Luo X, Hu J and Wang G: Inhibition of SIRT2 limits tumour
angiogenesis via inactivation of the STAT3/VEGFA signalling
pathway. Cell Death Dis. 10:92018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hoffmann G, Breitenbücher F, Schuler M and
Ehrenhofer-Murray AE: A novel sirtuin 2 (SIRT2) inhibitor with
p53-dependent pro-apoptotic activity in non-small cell lung cancer.
J Biol Chem. 289:5208–5216. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ma W, Zhao X, Wang K, Liu J and Huang G:
Dichloroacetic acid (DCA) synergizes with the SIRT2 inhibitor
Sirtinol and AGK2 to enhance anti-tumor efficacy in non-small cell
lung cancer. Cancer Biol Ther. 19:835–846. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Lima RT, Barron GA, Grabowska JA, Bermano
G, Kaur S, Roy N, Vasconcelos MH and Lin PK: Cytotoxicity and cell
death mechanisms induced by a novel bisnaphthalimidopropyl
derivative against the NCI-H460 non-small lung cancer cell line.
Anticancer Agents Med Chem. 13:414–421. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Liu G, Su L, Hao X, Zhong N, Zhong D,
Singhal S and Liu X: Salermide up-regulates death receptor 5
expression through the ATF4-ATF3-CHOP axis and leads to apoptosis
in human cancer cells. J Cell Mol Med. 16:1618–1628. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Meissner F, Scheltema RA, Mollenkopf HJ
and Mann M: Direct proteomic quantification of the secretome of
activated immune cells. Science. 340:475–478. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lundby A, Lage K, Weinert BT,
Bekker-Jensen DB, Secher A, Skovgaard T, Kelstrup CD, Dmytriyev A,
Choudhary C, Lundby C and Olsen JV: Proteomic analysis of lysine
acetylation sites in rat tissues reveals organ specificity and
subcellular patterns. Cell Rep. 2:419–431. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Simon GM, Cheng J and Gordon JI:
Quantitative assessment of the impact of the gut microbiota on
lysine epsilon-acetylation of host proteins using gnotobiotic mice.
Proc Natl Acad Sci USA. 109:11133–11138. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Choudhary C, Kumar C, Gnad F, Nielsen ML,
Rehman M, Walther TC, Olsen JV and Mann M: Lysine acetylation
targets protein complexes and co-regulates major cellular
functions. Science. 325:834–840. 2009. View Article : Google Scholar : PubMed/NCBI
|