|
1
|
Miller KD, Fidler-Benaoudia M, Keegan TH,
Hipp HS, Jemal A and Siegel RL: Cancer statistics for adolescents
and young adults, 2020. CA Cancer J Clin. 70:443–459. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Cao W, Chen HD, Yu YW, Li N and Chen WQ:
Changing profiles of cancer burden worldwide and in China: A
secondary analysis of the global cancer statistics 2020. Chin Med J
(Engl). 134:783–791. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ishikawa C, Senba M and Mori N: Evaluation
of artesunate for the treatment of adult T-cell leukemia/lymphoma.
Eur J Pharmacol. 872:1729532020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Slezakova S and Ruda-Kucerova J:
Anticancer activity of artemisinin and its derivatives. Anticancer
Res. 37:5995–6003. 2017.PubMed/NCBI
|
|
7
|
Cen YY, Zao YB, Li P, Li XL, Zeng XX and
Zhou H: Research progress on pharmacokinetics and pharmacological
activities of artesunate. Zhongguo Zhong Yao Za Zhi. 43:3970–3978.
2018.(In Chinese). PubMed/NCBI
|
|
8
|
Khanal P: Antimalarial and anticancer
properties of artesunate and other artemisinins: Current
development. Monatsh Chem. Mar 30–2021.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhou X, Chen Y, Wang F, Wu H, Zhang Y, Liu
J, Cai Y, Huang S, He N, Hu Z and Jin X: Artesunate induces
autophagy dependent apoptosis through upregulating ROS and
activating AMPK-mTOR-ULK1 axis in human bladder cancer cells. Chem
Biol Interact. 331:1092732020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhao F, Vakhrusheva O, Markowitsch SD,
Slade KS, Tsaur I, Cinatl J Jr, Michaelis M, Efferth T, Haferkamp A
and Juengel E: Artesunate impairs growth in cisplatin-resistant
bladder cancer cells by cell cycle arrest, apoptosis and autophagy
induction. Cells. 9:26432020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Markowitsch SD, Schupp P, Lauckner J,
Vakhrusheva O, Slade KS, Mager R, Efferth T, Haferkamp A and
Juengel E: Artesunate inhibits growth of sunitinib-resistant renal
cell carcinoma cells through cell cycle arrest and induction of
ferroptosis. Cancers (Basel). 12:31502020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Klaunig JE: Oxidative stress and cancer.
Curr Pharm Des. 24:4771–4778. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lichota A and Gwozdzinski K: Anticancer
activity of natural compounds from plant and marine environment.
Int J Mol Sci. 19:35332018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chekem L and Wierucki S: Extraction of
artemisinin and synthesis of its derivates artesunate and
artemether. Med Trop (Mars). 66:602–605. 2006.(In French).
PubMed/NCBI
|
|
15
|
Efferth T: From ancient herb to modern
drug: Artemisia annua and artemisinin for cancer therapy.
Semin Cancer Biol. 46:65–83. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wei T and Liu J: Anti-angiogenic
properties of artemisinin derivatives (review). Int J Mol Med.
40:972–978. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ho WE, Peh HY, Chan TK and Wong WS:
Artemisinins: Pharmacological actions beyond anti-malarial.
Pharmacol Ther. 142:126–139. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhang J, Sun X, Wang L, Wong YK, Lee YM,
Zhou C, Wu G, Zhao T, Yang L, Lu L, et al: Artesunate-induced
mitophagy alters cellular redox status. Redox Biol. 19:263–273.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Alagbonsi AI, Salman TM, Sulaiman SO,
Adedini KA and Kebu S: Possible mechanisms of the hypoglycaemic
effect of artesunate: Gender implication. Metabol Open.
10:1000872021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Venturini E, Zammarchi L, Bianchi L,
Montagnani C, Tersigni C, Bortone B, Chiappini E and Galli L:
Efficacy and safety of intravenous artesunate in children with
severe imported malaria. Pediatr Infect Dis J. 39:e2202020.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li Z, Shi X, Liu J, Shao F, Huang G, Zhou
Z and Zheng P: Artesunate prevents type 1 diabetes in NOD mice
mainly by inducing protective IL-4-producing T cells and regulatory
T cells. FASEB J. 33:8241–8248. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li H, Xu K, Pian G and Sun S: Artesunate
and sorafenib: Combinatorial inhibition of liver cancer cell
growth. Oncol Lett. 18:4735–4743. 2019.PubMed/NCBI
|
|
23
|
Pirali M, Taheri M, Zarei S, Majidi M and
Ghafouri H: Artesunate, as a HSP70 ATPase activity inhibitor,
induces apoptosis in breast cancer cells. Int J Biol Macromol.
164:3369–3375. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang Z, Wang Q, He T, Li W, Liu Y, Fan Y,
Wang Y, Wang Q and Chen J: The combination of artesunate and
carboplatin exerts a synergistic anti-tumour effect on non-small
cell lung cancer. Clin Exp Pharmacol Physiol. 47:1083–1091. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhao Y, Liu J and Liu L: Artesunate
inhibits lung cancer cells via regulation of mitochondrial membrane
potential and induction of apoptosis. Mol Med Rep. 22:3017–3022.
2020.PubMed/NCBI
|
|
26
|
Zhang Q, Yi H, Yao H, Lu L, He G, Wu M,
Zheng C, Li Y, Chen S, Li L, et al: Artemisinin derivatives inhibit
non-small cell lung cancer cells through induction of ROS-dependent
apoptosis/ferroptosis. J Cancer. 12:4075–4085. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Verma S, Das P and Kumar VL:
Chemoprevention by artesunate in a preclinical model of colorectal
cancer involves down regulation of β-catenin, suppression of
angiogenesis, cellular proliferation and induction of apoptosis.
Chem Biol Interact. 278:84–91. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ma JD, Jing J, Wang JW, Yan T, Li QH, Mo
YQ, Zheng DH, Gao JL, Nguyen KA and Dai L: A novel function of
artesunate on inhibiting migration and invasion of fibroblast-like
synoviocytes from rheumatoid arthritis patients. Arthritis Res
Ther. 21:1532019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Qian P, Zhang YW, Zhou ZH, Liu JQ, Yue SY,
Guo XL, Sun LQ, Lv XT and Chen JQ: Artesunate enhances γδ
T-cell-mediated antitumor activity through augmenting γδ T-cell
function and reversing immune escape of HepG2 cells.
Immunopharmacol Immunotoxicol. 40:107–116. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jing W, Shuo L, Yingru X, Min M, Runpeng
Z, Jun X and Dong H: Artesunate promotes sensitivity to sorafenib
in hepatocellular carcinoma. Biochem Biophys Res Commun. 519:41–45.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
He W, Huang X, Berges BK, Wang Y, An N, Su
R and Lu Y: Artesunate regulates neurite outgrowth inhibitor
protein B receptor to overcome resistance to sorafenib in
hepatocellular carcinoma cells. Front Pharmacol. 12:6158892021.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xu X, Lai Y and Hua ZC: Apoptosis and
apoptotic body: Disease message and therapeutic target potentials.
Biosci Rep. 39:BSR201809922019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wong YK, Xu C, Kalesh KA, He Y, Lin Q,
Wong WSF, Shen HM and Wang J: Artemisinin as an anticancer drug:
Recent advances in target profiling and mechanisms of action. Med
Res Rev. 37:1492–1517. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chen S, Gan S, Han L, Li X, Xie X, Zou D
and Sun H: Artesunate induces apoptosis and inhibits the
proliferation, stemness, and tumorigenesis of leukemia. Ann Transl
Med. 8:7672020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen X, Zhang XL, Zhang GH and Gao YF:
Artesunate promotes Th1 differentiation from CD4+ T cells to
enhance cell apoptosis in ovarian cancer via miR-142. Braz J Med
Biol Res. 52:e79922019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Peng J, Yuan C, Wu Z, Wang Y, Yin W, Lin
Y, Zhou L and Lu J: Upregulation of microRNA-1 inhibits
proliferation and metastasis of breast cancer. Mol Med Rep.
22:454–464. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang J, Zhou L, Xiang JD, Jin CS, Li MQ
and He YY: Artesunate-induced ATG5-related autophagy enhances the
cytotoxicity of NK92 cells on endometrial cancer cells via
interactions between CD155 and CD226/TIGIT. Int Immunopharmacol.
97:1077052021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hayes JD, Dinkova-Kostova AT and Tew KD:
Oxidative stress in cancer. Cancer Cell. 38:167–197. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kohan R, Collin A, Guizzardi S, Tolosa de
Talamoni N and Picotto G: Reactive oxygen species in cancer: A
paradox between pro- and anti-tumour activities. Cancer Chemother
Pharmacol. 86:1–13. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kirtonia A, Sethi G and Garg M: The
multifaceted role of reactive oxygen species in tumorigenesis. Cell
Mol Life Sci. 77:4459–4483. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Srinivas US, Tan BWQ, Vellayappan BA and
Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox
Biol. 25:1010842019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Fei Z, Gu W, Xie R, Su H and Jiang Y:
Artesunate enhances radiosensitivity of esophageal cancer cells by
inhibiting the repair of DNA damage. J Pharmacol Sci. 138:131–137.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Petricciuolo M, Davidescu M, Fettucciari
K, Gatticchi L, Brancorsini S, Roberti R, Corazzi L and Macchioni
L: The efficacy of the anticancer 3-bromopyruvate is potentiated by
antimycin and menadione by unbalancing mitochondrial ROS production
and disposal in U118 glioblastoma cells. Heliyon. 6:e057412020.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yu X, Wang X, Wang X, Zhou Y, Li Y, Wang
A, Wang T, An Y, Sun W, Du J, et al: TEOA inhibits proliferation
and induces DNA damage of diffuse large b-cell lymphoma cells
through activation of the ROS-dependent p38 MAPK signaling pathway.
Front Pharmacol. 11:5547362020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang H, Li M, Zhu X, Zhang Z, Huang H and
Hou L: Artemisinin co-delivery system based on manganese oxide for
precise diagnosis and treatment of breast cancer. Nanotechnology.
Apr 28–2021.(Epub ahead of print).
|
|
46
|
Yao X, Zhao CR, Yin H, Wang K and Gao JJ:
Synergistic antitumor activity of sorafenib and artesunate in
hepatocellular carcinoma cells. Acta Pharmacol Sin. 41:1609–1620.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Viallard C and Larrivée B: Tumor
angiogenesis and vascular normalization: Alternative therapeutic
targets. Angiogenesis. 20:409–426. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao
HL, Li H, Zhang SR, Xu JZ, Qi ZH, et al: Angiogenesis in pancreatic
cancer: Current research status and clinical implications.
Angiogenesis. 22:15–36. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cao J, Liu X, Yang Y, Wei B, Li Q, Mao G,
He Y, Li Y, Zheng L, Zhang Q, et al: Decylubiquinone suppresses
breast cancer growth and metastasis by inhibiting angiogenesis via
the ROS/p53/BAI1 signaling pathway. Angiogenesis. 23:325–338. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Singh N, Badrun D and Ghatage P: State of
the art and up-and-coming angiogenesis inhibitors for ovarian
cancer. Expert Opin Pharmacother. 21:1579–1590. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chen H, Shi L, Yang X, Li S, Guo X and Pan
L: Artesunate inhibiting angiogenesis induced by human myeloma
RPMI8226 cells. Int J Hematol. 92:587–597. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Andrade-Tomaz M, de Souza I, Rocha CRR and
Gomes LR: The role of chaperone-mediated autophagy in cell cycle
control and its implications in cancer. Cells. 9:21402020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen K, Shou LM, Lin F, Duan WM, Wu MY,
Xie X, Xie YF, Li W and Tao M: Artesunate induces G2/M cell cycle
arrest through autophagy induction in breast cancer cells.
Anticancer Drugs. 25:652–662. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Weng X, Zhu SQ and Cui HJ: Artesunate
inhibits proliferation of glioblastoma cells by arresting cell
cycle. Zhongguo Zhong Yao Za Zhi. 43:772–778. 2018.(In Chinese).
PubMed/NCBI
|
|
55
|
Wang Y, Wei Z, Pan K, Li J and Chen Q: The
function and mechanism of ferroptosis in cancer. Apoptosis.
25:786–798. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu Z, Zhao Q, Zuo ZX, Yuan SQ, Yu K,
Zhang Q, Zhang X, Sheng H, Ju HQ, Cheng H, et al: Systematic
analysis of the aberrances and functional implications of
ferroptosis in cancer. iScience. 23:1013022020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li ZJ, Dai HQ, Huang XW, Feng J, Deng JH,
Wang ZX, Yang XM, Liu YJ, Wu Y, Chen PH, et al: Artesunate
synergizes with sorafenib to induce ferroptosis in hepatocellular
carcinoma. Acta Pharmacol Sin. 42:301–310. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hu LJ, Jiang T, Wang FJ, Huang SH, Cheng
XM and Jia YQ: Effects of artesunate combined with bortezomib on
apoptosis and autophagy of acute myeloid leukemia cells in vitro
and its mechanism. Zhonghua Xue Ye Xue Za Zhi. 40:204–208. 2019.(In
Chinese). PubMed/NCBI
|
|
59
|
Kim C, Lee JH, Kim SH, Sethi G and Ahn KS:
Artesunate suppresses tumor growth and induces apoptosis through
the modulation of multiple oncogenic cascades in a chronic myeloid
leukemia xenograft mouse model. Oncotarget. 6:4020–4035. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kumar B, Kalvala A, Chu S, Rosen S, Forman
SJ, Marcucci G, Chen CC and Pullarkat V: Antileukemic activity and
cellular effects of the antimalarial agent artesunate in acute
myeloid leukemia. Leuk Res. 59:124–135. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang X, Du Q, Mao Z, Fan X, Hu B, Wang Z,
Chen Z, Jiang X, Wang Z, Lei N, et al: Combined treatment with
artesunate and bromocriptine has synergistic anticancer effects in
pituitary adenoma cell lines. Oncotarget. 8:45874–45887. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Karpel-Massler G, Westhoff MA, Kast RE,
Dwucet A, Nonnenmacher L, Wirtz CR, Debatin KM and Halatsch ME:
Artesunate enhances the antiproliferative effect of temozolomide on
U87MG and A172 glioblastoma cell lines. Anticancer Agents Med Chem.
14:313–318. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Berte N, Lokan S, Eich M, Kim E and Kaina
B: Artesunate enhances the therapeutic response of glioma cells to
temozolomide by inhibition of homologous recombination and
senescence. Oncotarget. 7:67235–67250. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lian S, Shi R, Huang X, Hu X, Song B, Bai
Y, Yang B, Dong J, Du Z, Zhang Y, et al: Artesunate attenuates
glioma proliferation, migration and invasion by affecting cellular
mechanical properties. Oncol Rep. 36:984–990. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Berdelle N, Nikolova T, Quiros S, Efferth
T and Kaina B: Artesunate induces oxidative DNA damage, sustained
DNA double-strand breaks, and the ATM/ATR damage response in cancer
cells. Mol Cancer Ther. 10:2224–2233. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Button RW, Lin F, Ercolano E, Vincent JH,
Hu B, Hanemann CO and Luo S: Artesunate induces necrotic cell death
in schwannoma cells. Cell Death Dis. 5:e14662014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wei S, Liu L, Chen Z, Yin W, Liu Y, Ouyang
Q, Zeng F, Nie Y and Chen T: Artesunate inhibits the mevalonate
pathway and promotes glioma cell senescence. J Cell Mol Med.
24:276–284. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Greenshields AL, Fernando W and Hoskin DW:
The anti-malarial drug artesunate causes cell cycle arrest and
apoptosis of triple-negative MDA-MB-468 and HER2-enriched SK-BR-3
breast cancer cells. Exp Mol Pathol. 107:10–22. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wen L, Liu L, Wen L, Yu T and Wei F:
Artesunate promotes G2/M cell cycle arrest in MCF7 breast cancer
cells through ATM activation. Breast Cancer. 25:681–686. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Greenshields AL, Shepherd TG and Hoskin
DW: Contribution of reactive oxygen species to ovarian cancer cell
growth arrest and killing by the anti-malarial drug artesunate. Mol
Carcinog. 56:75–93. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Li B, Bu S, Sun J, Guo Y and Lai D:
Artemisinin derivatives inhibit epithelial ovarian cancer cells via
autophagy-mediated cell cycle arrest. Acta Biochim Biophys Sin
(Shanghai). 50:1227–1235. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liu L, Zuo LF, Zuo J and Wang J:
Artesunate induces apoptosis and inhibits growth of Eca109 and
Ec9706 human esophageal cancer cell lines in vitro and in
vivo. Mol Med Rep. 12:1465–1472. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang L, Liu L, Chen Y, Du Y, Wang J and
Liu J: Correlation between adenosine triphosphate (ATP)-binding
cassette transporter G2 (ABCG2) and drug resistance of esophageal
cancer and reversal of drug resistance by artesunate. Pathol Res
Pract. 214:1467–1473. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang L, Liu L, Wang J and Chen Y:
Inhibitory effect of artesunate on growth and apoptosis of gastric
cancer cells. Arch Med Res. 48:623–630. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang P, Luo HS, Li M and Tan SY:
Artesunate inhibits the growth and induces apoptosis of human
gastric cancer cells by downregulating COX-2. Onco Targets Ther.
8:845–854. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Jiang F, Zhou JY, Zhang D, Liu MH and Chen
YG: Artesunate induces apoptosis and autophagy in HCT116 colon
cancer cells, and autophagy inhibition enhances the
artesunate-induced apoptosis. Int J Mol Med. 42:1295–1304.
2018.PubMed/NCBI
|
|
77
|
Kumar VL, Verma S and Das P: Artesunate
suppresses inflammation and oxidative stress in a rat model of
colorectal cancer. Drug Dev Res. 80:1089–1097. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ilamathi M, Santhosh S and
Sivaramakrishnan V: Artesunate as an anti-cancer agent targets
stat-3 and favorably suppresses hepatocellular carcinoma. Curr Top
Med Chem. 16:2453–2463. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wojcicki AV, Kasowski MM, Sakamoto KM and
Lacayo N: Metabolomics in acute myeloid leukemia. Mol Genet Metab.
130:230–238. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Efferth T, Giaisi M, Merling A, Krammer PH
and Li-Weber M: Artesunate induces ROS-mediated apoptosis in
doxorubicin-resistant T leukemia cells. PLoS One. 2:e6932007.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang Y, Yang J, Chen L, Wang J, Wang Y,
Luo J, Pan L and Zhang X: Artesunate induces apoptosis through
caspase-dependent and -independent mitochondrial pathways in human
myelodysplastic syndrome SKM-1 cells. Chem Biol Interact.
219:28–36. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tan M, Rong Y, Su Q and Chen Y: Artesunate
induces apoptosis via inhibition of STAT3 in THP-1 cells. Leuk Res.
62:98–103. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li Y, Feng L, Li Y, Jiang W, Shan N and
Wang X: Artesunate possesses anti-leukemia properties that can be
enhanced by arsenic trioxide. Leuk Lymphoma. 55:1366–1372. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Papanikolaou X, Johnson S, Garg T, Tian E,
Tytarenko R, Zhang Q, Stein C, Barlogie B, Epstein J and Heuck C:
Artesunate overcomes drug resistance in multiple myeloma by
inducing mitochondrial stress and non-caspase apoptosis.
Oncotarget. 5:4118–4128. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Blessing MM and Alexandrescu S: Embryonal
tumors of the central nervous system: An update. Surg Pathol Clin.
13:235–247. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Alegría-Loyola MA, Galnares-Olalde JA and
Mercado M: Tumors of the central nervous system. Rev Med Inst Mex
Seguro Soc. 55:330–340. 2017.(In Spanish). PubMed/NCBI
|
|
87
|
Francis SS, Wang R, Enders C, Prado I,
Wiemels JL, Ma X and Metayer C: Socioeconomic status and childhood
central nervous system tumors in California. Cancer Causes Control.
32:27–39. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Reichert S, Reinboldt V, Hehlgans S,
Efferth T, Rödel C and Rödel F: A radiosensitizing effect of
artesunate in glioblastoma cells is associated with a diminished
expression of the inhibitor of apoptosis protein survivin.
Radiother Oncol. 103:394–401. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kobayashi D, Hirayama M, Komohara Y,
Mizuguchi S, Wilson Morifuji M, Ihn H, Takeya M, Kuramochi A and
Araki N: Translationally controlled tumor protein is a novel
biological target for neurofibromatosis type 1-associated tumors. J
Biol Chem. 289:26314–26326. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhao J, Wen J, Wang S, Yao J, Liao L and
Dong J: Association between adipokines and thyroid carcinoma: A
meta-analysis of case-control studies. BMC Cancer. 20:7882020.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ma L and Fei H: Antimalarial drug
artesunate is effective against chemoresistant anaplastic thyroid
carcinoma via targeting mitochondrial metabolism. J Bioenerg
Biomembr. 52:123–130. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Capdevila J, Wirth LJ, Ernst T, Ponce Aix
S, Lin CC, Ramlau R, Butler MO, Delord JP, Gelderblom H, Ascierto
PA, et al: PD-1 blockade in anaplastic thyroid carcinoma. J Clin
Oncol. 38:2620–2627. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Breast Cancer Expert Committee of National
Cancer Quality Control Center; Breast Cancer Expert Committee of
China Anti-Cancer Association; Cancer Drug Clinical Research
Committee of China Anti-Cancer Association, . Guidelines for
clinical diagnosis and treatment of advanced breast cancer in China
(2020 edition). Zhonghua Zhong Liu Za Zhi. 42:781–797. 2020.(In
Chinese). PubMed/NCBI
|
|
94
|
Barzaman K, Karami J, Zarei Z,
Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, Safari E and
Farahmand L: Breast cancer: Biology, biomarkers, and treatments.
Int Immunopharmacol. 84:1065352020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Britt KL, Cuzick J and Phillips KA: Key
steps for effective breast cancer prevention. Nat Rev Cancer.
20:417–436. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Dong X, Bai X, Ni J, Zhang H, Duan W,
Graham P and Li Y: Exosomes and breast cancer drug resistance. Cell
Death Dis. 11:9872020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Tran TH, Nguyen TD, Poudel BK, Nguyen HT,
Kim JO, Yong CS and Nguyen CN: Development and evaluation of
artesunate-loaded chitosan-coated lipid nanocapsule as a potential
drug delivery system against breast cancer. AAPS PharmSciTech.
16:1307–1316. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Tran TH, Nguyen AN, Kim JO, Yong CS and
Nguyen CN: Enhancing activity of artesunate against breast cancer
cells via induced-apoptosis pathway by loading into lipid carriers.
Artif Cells Nanomed Biotechnol. 44:1979–1987. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang S, Yuan H, Guo Y, Wang K, Wang X and
Guo Z: Towards rational design of RAD51-targeting prodrugs:
platinumIV-artesunate conjugates with enhanced
cytotoxicity against BRCA-proficient ovarian and breast cancer
cells. Chem Commun (Camb). 54:11717–11720. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Raza A, Ghoshal A, Chockalingam S and
Ghosh SS: Connexin-43 enhances tumor suppressing activity of
artesunate via gap junction-dependent as well as independent
pathways in human breast cancer cells. Sci Rep. 7:75802017.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Li Z, Zhu YT, Xiang M, Qiu JL, Luo SQ and
Lin F: Enhanced lysosomal function is critical for paclitaxel
resistance in cancer cells: Reversed by artesunate. Acta Pharmacol
Sin. 42:624–632. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Kujawa KA and Lisowska KM: Ovarian
cancer-from biology to clinic. Postepy Hig Med Dosw (Online).
69:1275–1290. 2015.(In Polish). View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Aziz NB, Mahmudunnabi RG, Umer M, Sharma
S, Rashid MA, Alhamhoom Y, Shim YB, Salomon C and Shiddiky MJA:
MicroRNAs in ovarian cancer and recent advances in the development
of microRNA-based biosensors. Analyst. 145:2038–2057. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Gaona-Luviano P, Medina-Gaona LA and
Magaña-Pérez K: Epidemiology of ovarian cancer. Chin Clin Oncol.
9:472020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yang Y, Qi S, Shi C, Han X, Yu J, Zhang L,
Qin S and Gao Y: Identification of metastasis and
prognosis-associated genes for serous ovarian cancer. Biosci Rep.
40:BSR201943242020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Kuroki L and Guntupalli SR: Treatment of
epithelial ovarian cancer. BMJ. 371:m37732020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Rooth C: Ovarian cancer: Risk factors,
treatment and management. Br J Nurs. 22:S23–S30. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Penson RT, Valencia RV, Cibula D, Colombo
N, Leath CA III, Bidziński M, Kim JW, Nam JH, Madry R, Hernández C,
et al: Olaparib versus nonplatinum chemotherapy in patients with
platinum-sensitive relapsed ovarian cancer and a germline BRCA1/2
mutation (SOLO3): A randomized phase III trial. J Clin Oncol.
38:1164–1174. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Yadav G, Vashisht M, Yadav V and Shyam R:
Molecular biomarkers for early detection and prevention of ovarian
cancer-a gateway for good prognosis: A narrative review. Int J Prev
Med. 11:1352020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Chen HH, Zhou HJ, Wu GD and Lou XE:
Inhibitory effects of artesunate on angiogenesis and on expressions
of vascular endothelial growth factor and VEGF receptor KDR/flk-1.
Pharmacology. 71:1–9. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wang B, Hou D, Liu Q, Wu T, Guo H, Zhang
X, Zou Y, Liu Z, Liu J, Wei J, et al: Artesunate sensitizes ovarian
cancer cells to cisplatin by downregulating RAD51. Cancer Biol
Ther. 16:1548–1556. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Fatehi Hassanabad A, Chehade R, Breadner D
and Raphael J: Esophageal carcinoma: Towards targeted therapies.
Cell Oncol (Dordr). 43:195–209. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Fan J, Liu Z, Mao X, Tong X, Zhang T, Suo
C and Chen X: Global trends in the incidence and mortality of
esophageal cancer from 1990 to 2017. Cancer Med. 9:6875–6887. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Shi R, Cui H, Bi Y, Huang X, Song B, Cheng
C, Zhang L, Liu J, He C, Wang F, et al: Artesunate altered cellular
mechanical properties leading to deregulation of cell proliferation
and migration in esophageal squamous cell carcinoma. Oncol Lett.
9:2249–2255. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Eusebi LH, Telese A, Marasco G, Bazzoli F
and Zagari RM: Gastric cancer prevention strategies: A global
perspective. J Gastroenterol Hepatol. 35:1495–1502. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Niu PH, Zhao LL, Wu HL, Zhao DB and Chen
YT: Artificial intelligence in gastric cancer: Application and
future perspectives. World J Gastroenterol. 26:5408–5419. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhou X, Sun WJ, Wang WM, Chen K, Zheng JH,
Lu MD, Li PH and Zheng ZQ: Artesunate inhibits the growth of
gastric cancer cells through the mechanism of promoting oncosis
both in vitro and in vivo. Anticancer Drugs. 24:920–927. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Su T, Li F, Guan J, Liu L, Huang P, Wang
Y, Qi X, Liu Z, Lu L and Wang D: Artemisinin and its derivatives
prevent Helicobacter pylori-induced gastric carcinogenesis
via inhibition of NF-κB signaling. Phytomedicine. 63:1529682019.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
La Vecchia S and Sebastián C: Metabolic
pathways regulating colorectal cancer initiation and progression.
Semin Cell Dev Biol. 98:63–70. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Johdi NA and Sukor NF: Colorectal cancer
immunotherapy: Options and strategies. Front Immunol. 11:16242020.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Li LN, Zhang HD, Yuan SJ, Tian ZY, Wang L
and Sun ZX: Artesunate attenuates the growth of human colorectal
carcinoma and inhibits hyperactive Wnt/beta-catenin pathway. Int J
Cancer. 121:1360–1365. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Cui C, Feng H, Shi X, Wang Y, Feng Z, Liu
J, Han Z, Fu J, Fu Z and Tong H: Artesunate down-regulates
immunosuppression from colorectal cancer Colon26 and RKO cells in
vitro by decreasing transforming growth factor β1 and
interleukin-10. Int Immunopharmacol. 27:110–121. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Bei Y, Chen X, Raturi VP, Liu K, Ye S, Xu
Q and Lu M: Treatment patterns and outcomes change in early-stage
non-small cell lung cancer in octogenarians and older: A SEER
database analysis. Aging Clin Exp Res. 33:147–156. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Huo KG, D'Arcangelo E and Tsao MS:
Patient-derived cell line, xenograft and organoid models in lung
cancer therapy. Transl Lung Cancer Res. 9:2214–2232. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Xu K, Zhang C, Du T, Gabriel ANA, Wang X,
Li X, Sun L, Wang N, Jiang X and Zhang Y: Progress of exosomes in
the diagnosis and treatment of lung cancer. Biomed Pharmacother.
134:1111112021. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Rasheed SA, Efferth T, Asangani IA and
Allgayer H: First evidence that the antimalarial drug artesunate
inhibits invasion and in vivo metastasis in lung cancer by
targeting essential extracellular proteases. Int J Cancer.
127:1475–1485. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhao Y, Jiang W, Li B, Yao Q, Dong J, Cen
Y, Pan X, Li J, Zheng J, Pang X and Zhou H: Artesunate enhances
radiosensitivity of human non-small cell lung cancer A549 cells via
increasing NO production to induce cell cycle arrest at G2/M phase.
Int Immunopharmacol. 11:2039–2046. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Wang JS, Wang MJ, Lu X, Zhang J, Liu QX,
Zhou D, Dai JG and Zheng H: Artesunate inhibits
epithelial-mesenchymal transition in non-small-cell lung cancer
(NSCLC) cells by down-regulating the expression of BTBD7.
Bioengineered. 11:1197–1207. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Chen X, Han K, Chen F, Wu C and Huang W:
Effects of artesunate on the invasion of lung adenocarcinoma A549
cells and expression of ICAM-1 and MMP-9. Zhongguo Fei Ai Za Zhi.
16:567–571. 2013.(In Chinese). PubMed/NCBI
|
|
130
|
Tong Y, Liu Y, Zheng H, Zheng L, Liu W, Wu
J, Ou R, Zhang G, Li F, Hu M, et al: Artemisinin and its
derivatives can significantly inhibit lung tumorigenesis and tumor
metastasis through Wnt/β-catenin signaling. Oncotarget.
7:31413–31428. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Li W, Ma G, Deng Y, Wu Q, Wang Z and Zhou
Q: Artesunate exhibits synergistic anti-cancer effects with
cisplatin on lung cancer A549 cells by inhibiting MAPK pathway.
Gene. 766:1451342021. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Anwanwan D, Singh SK, Singh S, Saikam V
and Singh R: Challenges in liver cancer and possible treatment
approaches. Biochim Biophys Acta Rev Cancer. 1873:1883142020.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Cheng Z, Wei-Qi J and Jin D: New insights
on sorafenib resistance in liver cancer with correlation of
individualized therapy. Biochim Biophys Acta Rev Cancer.
1874:1883822020. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Hou J, Wang D, Zhang R and Wang H:
Experimental therapy of hepatoma with artemisinin and its
derivatives: In vitro and in vivo activity, chemosensitization, and
mechanisms of action. Clin Cancer Res. 14:5519–5530. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Jin M, Shen X, Zhao C, Qin X, Liu H, Huang
L, Qiu Z and Liu Y: In vivo study of effects of artesunate
nanoliposomes on human hepatocellular carcinoma xenografts in nude
mice. Drug Deliv. 20:127–133. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Guragain D, Seubwai W, Kobayashi D,
Silsinivanit A, Vaeteewoottacharn K, Sawanyawisuth K, Wongkham C,
Wongkham S, Araki N and Cha'on U: Artesunate and chloroquine induce
cytotoxic activity on cholangiocarcinoma cells via different cell
death mechanisms. Cell Mol Biol (Noisy-le-grand). 64:113–118. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Wang ZC, Liu Y, Wang H, Han QK and Lu C:
Research on the relationship between artesunate and raji cell
autophagy and apoptosis of burkitt's lymphoma and its mechanism.
Eur Rev Med Pharmacol Sci. 21:2238–2243. 2017.PubMed/NCBI
|
|
138
|
Chauhan AK, Min KJ and Kwon TK:
RIP1-dependent reactive oxygen species production executes
artesunate-induced cell death in renal carcinoma caki cells. Mol
Cell Biochem. 435:15–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Sarma B, Willmes C, Angerer L, Adam C,
Becker JC, Kervarrec T, Schrama D and Houben R: Artesunate affects
T antigen expression and survival of virus-positive merkel cell
carcinoma. Cancers (Basel). 12:9192020. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Zheng L and Pan J: The anti-malarial drug
artesunate blocks Wnt/β-catenin pathway and inhibits growth,
migration and invasion of uveal melanoma cells. Curr Cancer Drug
Targets. 18:988–998. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Wang Z, Wang C, Wu Z, Xue J, Shen B, Zuo
W, Wang Z and Wang SL: Artesunate suppresses the growth of
prostatic cancer cells through inhibiting androgen receptor. Biol
Pharm Bull. 40:479–485. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Yang Y, Wu N, Wu Y, Chen H, Qiu J, Qian X,
Zeng J, Chiu K, Gao Q and Zhuang J: Artesunate induces
mitochondria-mediated apoptosis of human retinoblastoma cells by
upregulating Kruppel-like factor 6. Cell Death Dis. 10:8622019.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Roh JL, Kim EH, Jang H and Shin D: Nrf2
inhibition reverses the resistance of cisplatin-resistant head and
neck cancer cells to artesunate-induced ferroptosis. Redox Biol.
11:254–262. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Berköz M, Özkan-Yılmaz F, Özlüer-Hunt A,
Krośniak M, Türkmen Ö, Korkmaz D and Keskin S: Artesunate inhibits
melanoma progression in vitro via suppressing STAT3 signaling
pathway. Pharmacol Rep. 73:650–663. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Mancuso RI, Foglio MA and Olalla Saad ST:
Artemisinin-type drugs for the treatment of hematological
malignancies. Cancer Chemother Pharmacol. 87:1–22. 2021. View Article : Google Scholar : PubMed/NCBI
|