|
1
|
Ostrom QT, Gino C, Gittleman H, Patil N,
Waite K, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical
report: Primary brain and other central nervous system tumors
diagnosed in the United States in 2012–2016. Neuro Oncol. 21 (Suppl
5):v1–v100. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Louis D, Perry A, Reifenberger G, von
Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD,
Kleihues P and Ellison DW: The 2016 World Health Organization
Classification of Tumors of the Central Nervous System: A summary.
Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Forbes K, Osborn, Salzman, Barkovich, et
al: Diagnostic Imaging. Brain (2nd edition). Neuroradiology.
54:2692012.
|
|
4
|
Gajjar A and Robinson G:
Medulloblastoma-translating discoveries from the bench to the
bedside. Nat Rev Clin Oncol. 11:714–722. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pollack IF and Jakacki RI: Childhood brain
tumors: Epidemiology, current management and future directions. Nat
Rev Neurol. 7:495–506. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Merchant TE, Mulhern RK, Krasin MJ, Kun
LE, Williams T, Li C, Xiong X, Khan RB, Lustig RH, Boop FA and
Sanford RA: Preliminary results from a phase II trial of conformal
radiation therapy and evaluation of radiation-related CNS effects
for pediatric patients with localized ependymoma. J Clin Oncol.
22:3156–3162. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kortmann RD, Kühl J, Timmermann B, Mittler
U, Urban C, Budach V, Richter E, Willich N, Flentje M, Berthold F,
et al: Postoperative neoadjuvant chemotherapy before radiotherapy
as compared to immediate radiotherapy followed by maintenance
chemotherapy in the treatment of medulloblastoma in childhood:
Results of the german prospective randomized trial hit '91. Int J
Radiat Oncol Biol Phys. 46:269–279. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gerber NU, Mynarek M, Von Hoff K,
Friedrich C, Resch A and Rutkowski S: Recent developments and
current concepts in medulloblastoma. Cancer Treat Rev. 40:356–365.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
ENCODE Project Consortium, . An Integrated
Encyclopedia of DNA Elements in the Human Genome. Nature.
489:57–74. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Pennisi E: ENCODE project writes eulogy
for junk DNA. Science. 337:1159–1161. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ramasamy P, Malhotra M and Massoud TF: The
protean world of non-coding RNAs in glioblastoma. J Mol Med (Berl).
97:909–925. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nie L, Wu HJ, Hsu JM, Chang SS, Labaff AM,
Li CW, Wang Y, Hsu JL and Hung MC: Long non-coding RNAs: Versatile
master regulators of gene expression and crucial players in cancer.
Am J Transl Res. 4:127–150. 2012.PubMed/NCBI
|
|
13
|
Barrett SP and Salzman J: Circular RNAs:
Analysis, expression and potential functions. Development.
143:1838–1847. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Peng Y and Croce CM: The role of MicroRNAs
in human cancer. Signal Transduct Target Ther. 1:150042016.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kristensen LS, Hansen TB, Venø MT and
Kjems J: Circular RNAs in cancer: Opportunities and challenges in
the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Trimarchi T, Bilal E, Ntziachristos P,
Fabbri G, Dalla-Favera R, Tsirigos A and Aifantis I: Genome-wide
mapping and characterization of Notch-regulated long noncoding RNAs
in acute leukemia. Cell. 158:593–606. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Xia X, Li X, Li F, Wu X, Zhang M, Zhou H,
Huang N, Yang X, Xiao F, Liu D, et al: A novel tumor suppressor
protein encoded by circular AKT3 RNA inhibits glioblastoma
tumorigenicity by competing with active phosphoinositide-dependent
Kinase-1. Mol Cancer. 18:1312019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X,
Zhong J, Zhao Z, Zhao K, Liu D, et al: Circular RNA-encoded
oncogenic E-cadherin variant promotes glioblastoma tumorigenicity
through activation of EGFR-STAT3 signalling. Nat Cell Biol.
23:278–291. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Morlando M, Di Timoteo G, Rossi F,
Morlando M, Briganti F, Sthandier O, Fatica A, Santini T,
Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that Can
Be translated and functions in myogenesis. Mol Cell. 66:22–37.e9.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Diederichs S: Non-coding RNA in malignant
tumors. A new world of tumor biomarkers and target structures in
cancer cells. Pathologe. 31 (Suppl 2):S258–S262. 2010.(In German).
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Julia L, Grabowska A, Zarębska Ż,
Kuczyński K, Kuczyńska B and Rolle K: Non-coding RNAs in Brain
Tumors, the Contribution of lncRNAs, circRNAs, and snoRNAs to
cancer development-their diagnostic and therapeutic potential. Int
J Mol Scie. 21:70012020. View Article : Google Scholar
|
|
22
|
Joshi P, Katsushima K, Zhou R, Meoded A,
Stapleton S, Jallo G, Raabe E, Eberhart CG and Perera RJ: The
therapeutic and diagnostic potential of regulatory noncoding RNAs
in medulloblastoma. Neurooncol Adv. 1:vdz0232019.PubMed/NCBI
|
|
23
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans Heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Browne BM, Stensland KD, Patel CK,
Sullivan T, Burks EJ, Canes D, Raman JD, Warrick J and
Reiger-Christ KM: MicroRNA expression profiles in upper tract
urothelial carcinoma differentiate tumor grade, stage, and
survival: Implications for clinical decision-making. Urology.
123:93–100. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Magdalena Z, Fendler W, Zakrzewski K,
Sikorska B, Grajkowska W, Dembowska-Bagińska B, Filipek I,
Stefańczyk Ł and Liberski PP: Altered MicroRNA expression is
associated with tumor grade, molecular background and outcome in
childhood infratentorial ependymoma. PLoS One. 11:e01584642016.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rothé F, Ignatiadis M, Chaboteaux C,
Haibe-Kains B, Kheddoumi N, Majjaj S, Badran B, Fayyad-Kazan H,
Desmedt C, Harris AL, et al: Global microRNA expression profiling
identifies MiR-210 associated with tumor proliferation, invasion
and poor clinical outcome in breast cancer. PLoS One. 6:e209802011.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Pierson J, Hostager B, Fan R and Vibhakar
R: Regulation of cyclin dependent kinase 6 by microRNA 124 in
medulloblastoma. J Neurooncol. 90:1–7. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ferretti E, De Smaele E, Po A, Di
Marcotullio L, Tosi E, Espinola MS, Di Rocco C, Riccardi R,
Giangaspero F, Farcomeni A, et al: MicroRNA profiling in human
medulloblastoma. Int J Cancer. 124:568–577. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Po A, Abballe L, Sabato C, Gianno F,
Chiacchiarini M, Catanzaro G, De Smaele E, Giangaspero F, Ferretti
E, Miele E and Besharat ZM: Sonic hedgehog medulloblastoma cancer
stem cells mirnome and transcriptome highlight novel Functional
Networks. Int J Mol Sci. 19:23262018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Dai J, Li Q, Bing Z, Zhang Y, Niu L, Yin
H, Yuan G and Pan Y: Comprehensive analysis of a microRNA
expression profile in pediatric medulloblastoma. Mol Med Rep.
15:4109–4115. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yogi K, Sridhar E, Goel N, Jalali R, Goel
A, Moiyadi A, Thorat R, Panwalkar P, Khire A, Dasgupta A, et al:
MiR-148a, a microRNA upregulated in the WNT subgroup tumors,
inhibits invasion and tumorigenic potential of medulloblastoma
cells by targeting Neuropilin 1. Oncoscience. 2:334–348. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Northcott PA, Fernandez-L A, Hagan JP,
Ellison DW, Grajkowska W, Gillespie Y, Grundy R, Van Meter T, Rutka
JT, Croce CM, et al: The miR-17/92 polycistron is up-regulated in
sonic hedgehog-driven medulloblastomas and induced by N-myc in
sonic hedgehog-treated cerebellar neural precursors. Cancer Res.
69:3249–3255. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhu LY, Wu XY, Liu XD, Zheng DF, Li HS,
Yang B, Zhang J and Chang Q: Aggressive medulloblastoma-derived
exosomal miRNAs promote in vitro invasion and migration of tumor
cells via Ras/MAPK pathway. J Neuropathol Exp Neurol. 79:734–745.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Gershanov S, Toledano H, Michowiz S,
Barinfeld O, Pinhasov A, Goldenberg-Cohen N and Salmon-Divon M:
MicroRNA-mRNA expression profiles associated with medulloblastoma
subgroup 4. Cancer Manag Res. 10:339–352. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Visani M, Marucci G, Biase D, Giangaspero
F, Buttarelli FR, Brandes AA, Franceschi E, Acquaviva G, Ciarrocchi
A, Rhoden KJ, et al: miR-196B-5P and miR-200B-3P are differentially
expressed in medulloblastomas of adults and children. Diagnostics
(Basel). 10:2652020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pal R and Greene S: microRNA-10b is
overexpressed and critical for cell survival and proliferation in
medulloblastoma. PLoS One. 10:e01378452015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Grunder E, D'ambrosio R, Fiaschetti G,
Abela L, Arcaro A, Zuzak T, Ohgaki H, Lv SQ, Shalaby T and Grotzer
M: MicroRNA-21 suppression impedes medulloblastoma cell migration.
Eur J Cancer. 47:2479–2490. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang SY, Choi SA, Lee JY, Park AK, Wang
KC, Phi JH, Koh EJ, Park WY, Park SH, Hwang DW, et al: miR-192
suppresses leptomeningeal dissemination of medulloblastoma by
modulating cell proliferation and anchoring through the regulation
of DHFR, integrins, and CD47. Oncotarget. 6:43712–43730. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang J, Li N, Fu J and Zhou W: Long
noncoding RNA HOTAIR promotes medulloblastoma growth, migration and
invasion by sponging miR-1/miR-206 and targeting YY1. Biomed
Pharmacother. 124:1098872020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Senfter D, Samadaei M, Mader R, Gojo J,
Peyrl A, Krupitza G, Kool M, Sill M, Haberler C, Ricken G, et al:
High impact of miRNA-4521 on FOXM1 expression in medulloblastoma.
Cell death & disease. 10:6962019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kumar V, Kumar V, Chaudhary AK, Coulter
DW, McGuire T and Mahato RI: Impact of miRNA-mRNA profiling and
their correlation on medulloblastoma tumorigenesis. Mol Ther
Nucleic Acids. 12:490–503. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li Y, Jiang T, Shao L, Liu Y, Zheng C,
Zhong Y, Zhang J and Chang Q: Mir-449a, a potential diagnostic
biomarker for WNT group of medulloblastoma. J Neurooncol.
129:423–431. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pezuk JA, Brassesco MS, De Oliveira RS,
Machado HR, Neder L, Scrideli CA and Tone LG: PLK1-associated
microRNAs are correlated with pediatric medulloblastoma prognosis.
Childs Nerv Syst. 33:609–615. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
de Antonellis P, Medaglia C, Cusanelli E,
Andolfo I, Liguori L, De Vita G, Carotenuto M, Bello A, Formiggini
F, Galeone A, et al: MiR-34a targeting of Notch ligand delta-like 1
impairs CD15+/CD133+ tumor-propagating cells
and supports neural differentiation in medulloblastoma. PLoS One.
6:e245842011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Silber J, Hashizume R, Felix T, Hariono S,
Yu M, Berger MS, Huse JT, VandenBerg SR, James CD, Hodgson JG and
Gupta N: Expression of miR-124 inhibits growth of medulloblastoma
cells. Neuro Oncol. 15:83–90. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Nigro JM, Cho KR, Fearon ER, Kern SE,
Ruppert JM, Oliner JD, Kinzler KW and Vogelstein B: Scrambled
exons. Cell. 64:607–613. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Salzman J, Gawad C, Wang PL, Lacayo N and
Brown PO: Circular RNAs Are the predominant transcript isoform from
hundreds of human genes in diverse cell types. PLoS One.
7:e307332012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li X, Yang L and Chen LL: The biogenesis,
functions, and challenges of circular RNAs. Mol Cell. 71:428–442.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chen LL: The expanding regulatory
mechanisms and cellular functions of circular RNAs. Nat Rev Mol
Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Nilsen TW and Graveley BR: Expansion of
the eukaryotic proteome by alternative splicing. Nature.
463:457–463. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Moore MJ and Proudfoot NJ: Pre-mRNA
processing reaches back to transcription and ahead to translation.
Cell. 136:688–700. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Salzman J, Chen RE, Olsen MN, Wang PL and
Brown PO: Cell-type specific features of circular RNA expression.
PLoS Genet. 9:e10037772018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Belter A, Popenda M, Sajek M, Woźniak T,
Naskręt-Barciszewska MZ, Szachniuk M, Jurga S and Barciszewski J: A
new molecular mechanism of RNA circularization and the microRNA
sponge formation. J Biomol Struct Dyn. Nov 17–2020.(Epub ahead of
print). View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Guo JU, Agarwal V, Guo H and Bartel DP:
Expanded identification and characterization of mammalian circular
RNAs. Genome Biol. 15:4092014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y,
Yang S, Zeng Z, Liao W, Ding YQ and Liang L: Emerging roles of
circRNA_001569 targeting miR-145 in the proliferation and invasion
of colorectal cancer. Oncotarget. 7:26680–26691. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wei Y, Chen X, Liang C, Ling Y, Yang X, Ye
X, Zhang H, Yang P, Cui X, Ren Y, et al: A noncoding regulatory
RNAs Network Driven by Circ-CDYL acts specifically in the early
stages hepatocellular carcinoma. Hepatology. 71:130–147. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Han J, Zhao G, Ma X, Dong Q, Zhang H, Wang
Y and Cui J: CircRNA circ-BANP-mediated miR-503/LARP1 signaling
contributes to lung cancer progression. Biochem Biophys Res Commun.
503:2429–2435. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Gong J, Jiang H, Shu C, Hu MQ, Huang Y,
Liu Q, Li RF and Wei YZ: Integrated analysis of circular
RNA-associated ceRNA network in cervical cancer: Observational
Study. Medicine (Baltimore). 98:e169222019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Huang M, He YR, Liang LC, Huang Q and Zhu
ZQ: Circular RNA hsa_circ_0000745 may serve as a diagnostic marker
for gastric cancer. World J Gastroenterol. 23:6330–6338. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li G, Huang M, Cai Y, Yang Y, Sun X and Ke
Y: Circ-U2AF1 promotes human glioma via derepressing
neuro-oncological ventral antigen 2 by sponging hsa-miR-7-5p. J
Cell Physiol. 234:9144–9155. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lv T, Miao Y, Jin K, Han S, Xu TQ, Qiu ZL
and Zhang XH: Dysregulated circular RNAs in medulloblastoma
regulate proliferation and growth of tumor cells via host genes.
Cancer Med. 7:6147–6157. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang X, Xu D, Pei X, Zhang Y, Zhang Y, Gu
Y and Li Y: CircSKA3 modulates FOXM1 to facilitate cell
proliferation, migration, and invasion while confine apoptosis in
medulloblastoma via miR-383-5p. Cancer Manag Res. 12:13415–13426.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Shibayama Y, Fanucchi S, Magagula L and
Mhlanga MM: lncRNA and gene looping: What's the connection?
Transcription. 5:e286582014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lin CY, Erkek S, Tong Y, Yin L, Federation
AJ, Zapatka M, Haldipur P, Kawauchi D, Risch T, Warnatz HJ, et al:
Active medulloblastoma enhancers reveal subgroup-specific cellular
origins. Nature. 530:57–62. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Shi PF, Ji HL, Luo YK, Mao TM, Chen X and
Zhou KY: Effect of long noncoding RNA SPRY4-IT1 on proliferation
and metastasis of medulloblastoma. Zhongguo Ying Yong Sheng Li Xue
Za Zhi. 33:78–82. 2017.(In Chinese). PubMed/NCBI
|