Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cross‑link between ferroptosis and nasopharyngeal carcinoma: New approach to radiotherapy sensitization (Review)

  • Authors:
    • Hai-Long Li
    • Nian-Hua Deng
    • Jia-Xin Xiao
    • Xiu-Sheng He
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, University of South China, Hengyang, Hunan 421001, P.R. China, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 770
    |
    Published online on: September 9, 2021
       https://doi.org/10.3892/ol.2021.13031
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ferroptosis is a recently discovered special type of regulated cell death that is strongly associated with both homeostasis maintenance and cancer development. Previous studies have indicated that a number of small‑molecular agents inducing ferroptosis have great potential in the treatment of different types of cancer, including breast, pancreatic, prostate and head and neck cancer. However, the role of ferroptosis in nasopharyngeal carcinoma (NPC) has remained to be fully determined. To the best of our knowledge, no review of the currently available studies on this subject has been published to date. The metabolism and expression of specific genes that regulate ferroptosis may represent a promising radiosensitization target in cancer treatment. The aim of the present review was to describe the cross‑link between ferroptosis and NPC and to discuss the potential value of regulators and the possible mechanism underlying the role of ferroptosis in the radiosensitization of NPC, in the hope that linking the mechanism of ferroptosis with the development of NPC will accelerate the development of novel ferroptosis‑based targets and radiotherapy strategies in NPC.
View Figures

Figure 1

Figure 2

View References

1 

Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y and Ma J: Nasopharyngeal carcinoma. Lancet. 394:64–80. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Long M, Fu Z, Li P and Nie Z: Cigarette smoking and the risk of nasopharyngeal carcinoma: A meta-analysis of epidemiological studies. BMJ Open. 7:e0165822017. View Article : Google Scholar : PubMed/NCBI

3 

Liu YP, Lv X, Zou X, Hua YJ, You R, Yang Q, Xia L, Guo SY, Hu W, Zhang MX, et al: Minimally invasive surgery alone compared with intensity-modulated radiotherapy for primary stage I nasopharyngeal carcinoma. Cancer Commun (Lond). 39:752019. View Article : Google Scholar : PubMed/NCBI

4 

Jaffray DA: Image-guided radiotherapy: From current concept to future perspectives. Nat Rev Clin Oncol. 9:688–699. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Liu G, Zeng X, Wu B, Zhao J and Pan Y: RNA-Seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with radiotherapy response of nasopharyngeal carcinoma and prognosis of head and neck cancer. Cancer Biol Ther. 21:139–146. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Baidoo KE, Yong K and Brechbiel MW: Molecular pathways: Targeted α-particle radiation therapy. Clin Cancer Res. 19:530–537. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Srinivas US, Tan BWQ, Vellayappan BA and Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox Biol. 25:1010842019. View Article : Google Scholar : PubMed/NCBI

8 

Lee AWM, Ng WT, Chan JYW, Corry J, Mäkitie A, Mendenhall WM, Rinaldo A, Rodrigo JP, Saba NF, Strojan P, et al: Management of locally recurrent nasopharyngeal carcinoma. Cancer Treat Rev. 79:1018902019. View Article : Google Scholar : PubMed/NCBI

9 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and Wang J: Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 23:4900–4912. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Raven EP, Lu PH, Tishler TA, Heydari P and Bartzokis G: Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer's disease detected in vivo with magnetic resonance imaging. J Alzheimers Dis. 37:127–136. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Huang S, Cao B, Zhang J, Feng Y, Wang L, Chen X, Su H, Liao S, Liu J, Yan J and Liang B: Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: molecular mechanism and therapeutic potential. Cell Death Dis. 12:2372021. View Article : Google Scholar : PubMed/NCBI

14 

Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, Chen Y, Zhuo W, Mao M, Zhang X, et al: Targeting ferroptosis in breast cancer. Biomark Res. 8:582020. View Article : Google Scholar : PubMed/NCBI

15 

Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Kazan HH, Urfali-Mamatoglu C and Gunduz U: Iron metabolism and drug resistance in cancer. Biometals. 30:629–641. 2017. View Article : Google Scholar : PubMed/NCBI

17 

He YJ, Liu XY, Xing L, Wan X, Chang X and Jiang HL: Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials. 241:1199112020. View Article : Google Scholar : PubMed/NCBI

18 

Torti SV and Torti FM: Iron and cancer: More ore to be mined. Nat Rev Cancer. 13:342–355. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Liang C, Zhang X, Yang M and Dong X: Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI

20 

Lin LS, Song J, Song L, Ke K, Liu Y, Zhou Z, Shen Z, Li J, Yang Z, Tang W and Niu G: Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew Chem Int Ed Engl. 57:4902–4906. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Wang H, Lin D, Yu Q, Li Z, Lenahan C, Dong Y, Wei Q and Shao A: A promising future of ferroptosis in tumor therapy. Front Cell Dev Biol. 9:6291502021. View Article : Google Scholar : PubMed/NCBI

22 

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Stockwell BR, Jiang X and Gu W: Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 30:478–490. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Sato H, Tamba M, Ishii T and Bannai S: Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins. J Biol Chem. 274:11455–11458. 1999. View Article : Google Scholar : PubMed/NCBI

25 

Lo M, Ling V, Wang YZ and Gout PW: The xc-cystine/glutamate antiporter: A mediator of pancreatic cancer growth with a role in drug resistance. Br J Cancer. 99:464–472. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol Cell. 73:354–363.e3. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface J, et al: RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 447:864–868. 2007. View Article : Google Scholar : PubMed/NCBI

29 

Yang WH, Huang Z, Wu J, Ding CC, Murphy SK and Chi JT: A TAZ-ANGPTL4-NOX2 axis regulates ferroptotic cell death and chemoresistance in epithelial ovarian cancer. Mol Cancer Res. 18:79–90. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Lang X, Green MD, Wang W, Yu J, Choi JE, Jiang L, Liao P, Zhou J, Zhang Q, Dow A, et al: Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov. 9:1673–1685. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Lei G, Mao C, Yan Y, Zhuang L and Gan B: Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell. Apr 23–2021.(Epub ahead of print). View Article : Google Scholar

32 

Ye LF, Chaudhary KR, Zandkarimi F, Harken AD, Kinslow CJ, Upadhyayula PS, Dovas A, Higgins DM, Tan H, Zhang Y, et al: Radiation-induced lipid peroxidation triggers ferroptosis and synergizes with ferroptosis inducers. ACS Chem Biol. 15:469–484. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Lei G, Zhang Y, Koppula P, Liu X, Zhang J, Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Xie L, Song X, Yu J, Guo W, Wei L, Liu Y and Wang X: Solute carrier protein family may involve in radiation-induced radioresistance of non-small cell lung cancer. J Cancer Res Clin Oncol. 137:1739–1747. 2011. View Article : Google Scholar : PubMed/NCBI

35 

McDonald JT, Kim K, Norris AJ, Vlashi E, Phillips TM, Lagadec C, Della Donna L, Ratikan J, Szelag H, Hlatky L and McBride WH: Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res. 70:8886–8895. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Zong Y, Feng S, Cheng J, Yu C and Lu G: Up-regulated ATF4 expression increases cell sensitivity to apoptosis in response to radiation. Cell Physiol Biochem. 41:784–794. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI

38 

Maier P, Hartmann L, Wenz F and Herskind C: Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int J Mol Sci. 17:1022016. View Article : Google Scholar : PubMed/NCBI

39 

Stracker TH, Roig I, Knobel PA and Marjanović M: The ATM signaling network in development and disease. Front Genet. 4:372013. View Article : Google Scholar : PubMed/NCBI

40 

Sanli T, Steinberg GR, Singh G and Tsakiridis T: AMP-activated protein kinase (AMPK) beyond metabolism: Anovel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther. 15:156–169. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Degterev A and Yuan J: Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol. 9:378–390. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Gudkov AV and Komarova EA: The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer. 3:117–129. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Kirtonia A, Sethi G and Garg M: The multifaceted role of reactive oxygen species in tumorigenesis. Cell Mol Life Sci. 77:4459–4483. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Halliwell B and Cross CE: Oxygen-derived species: Their relation to human disease and environmental stress. Environ Health Perspect. 102 (Suppl 10):S5–S12. 1994. View Article : Google Scholar : PubMed/NCBI

45 

Grivennikova VG and Vinogradov AD: Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta. 1757:553–561. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Hentze MW, Muckenthaler MU, Galy B and Camaschella C: Two to tango: Regulation of mammalian iron metabolism. Cell. 142:24–38. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Gutteridge JM and Halliwell B: Iron toxicity and oxygen radicals. Baillieres Clin Haematol. 2:195–256. 1989. View Article : Google Scholar : PubMed/NCBI

48 

Doll S and Conrad M: Iron and ferroptosis: A still ill-defined liaison. IUBMB Life. 69:423–434. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Andrews NC: Disorders of iron metabolism. N Engl J Med. 341:1986–1995. 1999. View Article : Google Scholar : PubMed/NCBI

50 

Li B, Liao Z, Mo Y, Zhao W, Zhou X, Xiao X, Cui W, Feng G, Zhong S, Liang Y, et al: Inactivation of 3-hydroxybutyrate dehydrogenase type 2 promotes proliferation and metastasis of nasopharyngeal carcinoma by iron retention. Br J Cancer. 122:102–110. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Xu Y, Wang Q, Li X, Chen Y and Xu G: Itraconazole attenuates the stemness of nasopharyngeal carcinoma cells via triggering ferroptosis. Environ Toxicol. 36:257–266. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Andrews NC: Forging a field: The golden age of iron biology. Blood. 112:219–230. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Ivanov SD, Semenov AL, Kovan'ko EG and Yamshanov VA: Effects of iron ions and iron chelation on the efficiency of experimental radiotherapy of animals with gliomas. Bull Exp Biol Med. 158:800–803. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Park E and Chung SW: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 10:8222019. View Article : Google Scholar : PubMed/NCBI

56 

Hong X, Roh W, Sullivan RJ, Wong KHK, Wittner BS, Guo H, Dubash TD, Sade-Feldman M, Wesley B, Horwitz E, et al: The lipogenic regulator SREBP2 induces transferrin in circulating melanoma cells and suppresses ferroptosis. Cancer Discov. 11:678–695. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka JM, et al: Transferrin receptor is a specific ferroptosis marker. Cell Rep. 30:3411–3423.e7. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Yang WS and Stockwell BR: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 15:234–245. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Guagnozzi D, Severi C, Ialongo P, Viscido A, Patrizi F, Testino G, Vannella L, Labriola R, Strom R and Caprilli R: Ferritin as a simple indicator of iron deficiency in anemic IBD patients. Inflamm Bowel Dis. 12:150–151. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Ma BB, Leungm SF, Hui EP, Mo F, Kwan WH, Zee B, Yuen J and Chan AT: Prospective validation of serum CYFRA 21-1, beta-2-microglobulin, and ferritin levels as prognostic markers in patients with nonmetastatic nasopharyngeal carcinoma undergoing radiotherapy. Cancer. 101:776–781. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Chen X, Long X, Liang Z, Lei H, Li L, Qu S and Zhu X: Higher N stage and serum ferritin, but lower serum albumin levels are associated with distant metastasis and poor survival in patients with nasopharyngeal carcinoma following intensity-modulated radiotherapy. Oncotarget. 8:73177–73186. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Zhang W, Fan S, Zou G, Shi L, Zeng Z, Ma J, Zhou Y, Li X, Zhang X, Li X, et al: Lactotransferrin could be a novel independent molecular prognosticator of nasopharyngeal carcinoma. Tumour Biol. 36:675–683. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Zhou Y, Zeng Z, Zhang W, Xiong W, Wu M, Tan Y, Yi W, Xiao L, Li X, Huang C, et al: Lactotransferrin: A candidate tumor suppressor-deficient expression in human nasopharyngeal carcinoma and inhibition of NPC cell proliferation by modulating the mitogen-activated protein kinase pathway. Int J Cancer. 123:2065–2072. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Zhang H, Feng X, Liu W, Jiang X, Shan W, Huang C, Yi H, Zhu B, Zhou W, Wang L, et al: Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines. J Cell Biochem. 112:1832–1843. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Deng M, Zhang W, Tang H, Ye Q, Liao Q, Zhou Y, Wu M, Xiong W, Zheng Y, Guo X, et al: Lactotransferrin acts as a tumor suppressor in nasopharyngeal carcinoma by repressing AKT through multiple mechanisms. Oncogene. 32:4273–4283. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Song M, Bode AM, Dong Z and Lee MH: AKT as a therapeutic target for cancer. Cancer Res. 79:1019–1031. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI

68 

Qiang Z, Dong H, Xia Y, Chai D, Hu R and Jiang H: Nrf2 and STAT3 alleviates ferroptosis-mediated IIR-ALI by regulating SLC7A11. Oxid Med Cell Longev. 2020:51469822020. View Article : Google Scholar : PubMed/NCBI

69 

Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R and Tang D: Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Cloer EW, Goldfarb D, Schrank TP, Weissman BE and Major MB: NRF2 activation in cancer: From DNA to protein. Cancer Res. 79:889–898. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Huang W, Shi G, Yong Z, Li J, Qiu J, Cao Y, Zhao Y and Yuan L: Downregulation of RKIP promotes radioresistance of nasopharyngeal carcinoma by activating NRF2/NQO1 axis via downregulating miR-450b-5p. Cell Death Dis. 11:5042020. View Article : Google Scholar : PubMed/NCBI

72 

Zhou J, Ding J, Ma X, Zhang M, Huo Z, Yao Y, Li D and Wang Z: The NRF2/KEAP1 pathway modulates nasopharyngeal carcinoma cell radiosensitivity via ROS elimination. Onco Targets Ther. 13:9113–9122. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Zhang G, Wang W, Yao C, Ren J, Zhang S and Han M: Salinomycin overcomes radioresistance in nasopharyngeal carcinoma cells by inhibiting Nrf2 level and promoting ROS generation. Biomed Pharmacother. 91:147–154. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Yun SM, Kim YS and Hur DY: LMP1 and 2A induce the expression of Nrf2 through Akt signaling pathway in Epstein-Barr virus-transformed B cells. Transl Oncol. 12:775–783. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Hsu JL, Chou JW, Chen TF, Hsu JT, Su FY, Lan JL, Wu PC, Hu CM, Lee EY and Lee WH: Glutathione peroxidase 8 negatively regulates caspase-4/11 to protect against colitis. EMBO Mol Med. 12:e93862020. View Article : Google Scholar : PubMed/NCBI

76 

Koeberle SC, Gollowitzer A, Laoukili J, Kranenburg O, Werz O, Koeberle A and Kipp AP: Distinct and overlapping functions of glutathione peroxidases 1 and 2 in limiting NF-κB-driven inflammation through redox-active mechanisms. Redox Biol. 28:1013882020. View Article : Google Scholar : PubMed/NCBI

77 

Maiorino M, Conrad M and Ursini F: GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 29:61–74. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Nunes SC and Serpa J: Glutathione in ovarian cancer: A Double-edged sword. Int J Mol Sci. 19:18822018. View Article : Google Scholar : PubMed/NCBI

79 

Meng DF, Guo LL, Peng LX, Zheng LS, Xie P, Mei Y, Li CZ, Peng XS, Lang YH, Liu ZJ, et al: Antioxidants suppress radiation-induced apoptosis via inhibiting MAPK pathway in nasopharyngeal carcinoma cells. Biochem Biophys Res Commun. 527:770–777. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Song X, Xie Y, Kang R, Hou W, Sun X, Epperly MW, Greenberger JS and Tang D: FANCD2 protects against bone marrow injury from ferroptosis. Biochem Biophys Res Commun. 480:443–449. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Bao Y, Feng H, Zhao F, Zhang L, Xu S, Zhang C, Zhao C and Qin G: FANCD2 knockdown with shRNA interference enhances the ionizing radiation sensitivity of nasopharyngeal carcinoma CNE-2 cells. Neoplasma. 68:40–52. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Xu S, Zhao F, Liang Z, Feng H, Bao Y, Xu W, Zhao C and Qin G: Expression of FANCD2 is associated with prognosis in patients with nasopharyngeal carcinoma. Int J Clin Exp Pathol. 12:3465–3473. 2019.PubMed/NCBI

83 

Suttner DM and Dennery PA: Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB J. 13:1800–1809. 1999. View Article : Google Scholar : PubMed/NCBI

84 

Adedoyin O, Boddu R, Traylor A, Lever JM, Bolisetty S, George JF and Agarwal A: Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Renal Physiol. 314:F702–F714. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Shi L and Fang J: Implication of heme oxygenase-1 in the sensitivity of nasopharyngeal carcinomas to radiotherapy. J Exp Clin Cancer Res. 27:132008. View Article : Google Scholar : PubMed/NCBI

86 

Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 520:57–62. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Wang SJ, Li D, Ou Y, Jiang L, Chen Y, Zhao Y and Gu W: Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep. 17:366–373. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, Zhong M, Yuan H, Zhang L, Billiar TR, et al: The tumor suppressor p53 limits Ferroptosis by blocking DPP4 activity. Cell Rep. 20:1692–1704. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Wang Z, Mao JW, Liu GY, Wang FG, Ju ZS, Zhou D and Wang RY: MicroRNA-372 enhances radiosensitivity while inhibiting cell invasion and metastasis in nasopharyngeal carcinoma through activating the PBK-dependent p53 signaling pathway. Cancer Med. 8:712–728. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Ma WS, Ma JG and Xing LN: Efficacy and safety of recombinant human adenovirus p53 combined with chemoradiotherapy in the treatment of recurrent nasopharyngeal carcinoma. Anticancer Drugs. 28:230–236. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Song X, Zhu S, Chen P, Hou W, Wen Q, Liu J, Xie Y, Liu J, Klionsky DJ, Kroemer G, et al: AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking System Xc− activity. Curr Biol. 28:2388–2399.e5. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Kang R, Zhu S, Zeh HJ, Klionsky DJ and Tang D: BECN1 is a new driver of ferroptosis. Autophagy. 14:2173–2175. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Wan XB, Fan XJ, Chen MY, Xiang J, Huang PY, Guo L, Wu XY, Xu J, Long ZJ, Zhao Y, et al: Elevated Beclin 1 expression is correlated with HIF-1alpha in predicting poor prognosis of nasopharyngeal carcinoma. Autophagy. 6:395–404. 2010. View Article : Google Scholar : PubMed/NCBI

94 

Wang Y, Chen W, Lian J, Zhang H, Yu B, Zhang M, Wei F, Wu J, Jiang J, Jia Y, et al: The lncRNA PVT1 regulates nasopharyngeal carcinoma cell proliferation via activating the KAT2A acetyltransferase and stabilizing HIF-1α. Cell Death Differ. 27:695–710. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Majidinia M, Karimian A, Alemi F, Yousefi B and Safa A: Targeting miRNAs by polyphenols: Novel therapeutic strategy for aging. Biochem Pharmacol. 173:1136882020. View Article : Google Scholar : PubMed/NCBI

96 

Ding C, Ding X, Zheng J, Wang B, Li Y, Xiang H, Dou M, Qiao Y, Tian P and Xue W: miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis. 11:9292020. View Article : Google Scholar : PubMed/NCBI

97 

Deng SH, Wu DM, Li L, Liu T, Zhang T, Li J, Yu Y, He M, Zhao YY, Han R and Xu Y: miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549. Biochem Biophys Res Commun. 549:54–60. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Xiao FJ, Zhang D, Wu Y, Jia QH, Zhang L, Li YX, Yang YF, Wang H, Wu CT and Wang LS: miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis. Biochem Biophys Res Commun. 515:448–454. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Ma LL, Liang L, Zhou D and Wang SW: Tumor suppressor miR-424-5p abrogates ferroptosis in ovarian cancer through targeting ACSL4. Neoplasma. 68:165–173. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Tomita K, Fukumoto M, Itoh K, Kuwahara Y, Igarashi K, Nagasawa T, Suzuki M, Kurimasa A and Sato T: MiR-7-5p is a key factor that controls radioresistance via intracellular Fe2+ content in clinically relevant radioresistant cells. Biochem Biophys Res Commun. 518:712–718. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Zhang K, Wu L, Zhang P, Luo M, Du J, Gao T, O'Connell D, Wang G, Wang H and Yang Y: miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma. Mol Carcinog. 57:1566–1576. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, O'Connell D, Zhang P, Li Y, Gao T, et al: miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ. 25:1457–1472. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Qi YF, Yang Y, Zhang Y, Liu S, Luo B and Liu W: Down regulation of lactotransferrin enhanced radio-sensitivity of nasopharyngeal carcinoma. Comput Biol Chem. 90:1074262021. View Article : Google Scholar : PubMed/NCBI

104 

He W, Jin H, Liu Q and Sun Q: miR-182-5p contributes to radioresistance in nasopharyngeal carcinoma by regulating BNIP3 expression. Mol Med Rep. 23:1302021. View Article : Google Scholar : PubMed/NCBI

105 

Zhang Y, Zheng L, Lin S, Liu Y, Wang Y and Gao F: MiR-124 enhances cell radiosensitivity by targeting PDCD6 in nasopharyngeal carcinoma. Int J Clin Exp Pathol. 10:11461–11470. 2017.PubMed/NCBI

106 

Tian Y, Tian Y, Tu Y, Zhang G, Zeng X, Lin J, Ai M, Mao Z, Zheng R and Yuan Y: microRNA-124 inhibits stem-like properties and enhances radiosensitivity in nasopharyngeal carcinoma cells via direct repression of expression of JAMA. J Cell Mol Med. 24:9533–9544. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Chen L, Zhou H and Guan Z: CircRNA_000543 knockdown sensitizes nasopharyngeal carcinoma to irradiation by targeting miR-9/platelet-derived growth factor receptor B axis. Biochem Biophys Res Commun. 512:786–792. 2019. View Article : Google Scholar : PubMed/NCBI

108 

Hu JL, He GY, Lan XL, Zeng ZC, Guan J, Ding Y, Qian XL, Liao WT, Ding YQ and Liang L: Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis. 7:162018. View Article : Google Scholar : PubMed/NCBI

109 

Han JB, Huang ML, Li F, Yang R, Chen SM and Tao ZZ: MiR-214 mediates cell proliferation and apoptosis of nasopharyngeal carcinoma through targeting both WWOX and PTEN. Cancer Biother Radiopharm. 35:615–625. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Zhang ZC, Li YY, Wang HY, Fu S, Wang XP, Zeng MS, Zeng YX and Shao JY: Knockdown of miR-214 promotes apoptosis and inhibits cell proliferation in nasopharyngeal carcinoma. PLoS One. 9:e861492014. View Article : Google Scholar : PubMed/NCBI

111 

He J, Tang Y and Tian Y: MicroRNA-214 promotes proliferation and inhibits apoptosis via targeting Bax in nasopharyngeal carcinoma cells. Mol Med Rep. 12:6286–6292. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Deng M, Ye Q, Qin Z, Zheng Y, He W, Tang H, Zhou Y, Xiong W, Zhou M, Li X, et al: miR-214 promotes tumorigenesis by targeting lactotransferrin in nasopharyngeal carcinoma. Tumour Biol. 34:1793–1800. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Deng X, Ma L, Wu M, Zhang G, Jin C, Guo Y and Liu R: miR-124 radiosensitizes human glioma cells by targeting CDK4. J Neurooncol. 114:263–274. 2013. View Article : Google Scholar : PubMed/NCBI

114 

Luo Y, Wang J, Wang F, Liu X, Lu J, Yu X, Ma X, Peng X and Li X: Foxq1 promotes metastasis of nasopharyngeal carcinoma by inducing vasculogenic mimicry via the EGFR signaling pathway. Cell Death Dis. 12:4112021. View Article : Google Scholar : PubMed/NCBI

115 

Lu J, Xu F and Lu H: LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 260:1183052020. View Article : Google Scholar : PubMed/NCBI

116 

Bao WD, Zhou XT, Zhou LT, Wang F, Yin X, Lu Y, Zhu LQ and Liu D: Targeting miR-124/Ferroportin signaling ameliorated neuronal cell death through inhibiting apoptosis and ferroptosis in aged intracerebral hemorrhage murine model. Aging Cell. 19:e132352020. View Article : Google Scholar : PubMed/NCBI

117 

Li Y, Chen F, Chen J, Chan S, He Y, Liu W and Zhang G: Disulfiram/Copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and Ferroptosis pathways. Cancers (Basel). 12:1382020. View Article : Google Scholar : PubMed/NCBI

118 

He X, Yao Q, Fan D, Duan L, You Y, Liang W, Zhou Z, Teng S, Liang Z, Hall DD, et al: Cephalosporin antibiotics specifically and selectively target nasopharyngeal carcinoma through HMOX1-induced ferroptosis. Life Sci. 277:1194572021. View Article : Google Scholar : PubMed/NCBI

119 

Shibata Y, Yasui H, Higashikawa K, Miyamoto N and Kuge Y: Erastin, a ferroptosis-inducing agent, sensitized cancer cells to X-ray irradiation via glutathione starvation in vitro and in vivo. PLoS One. 14:e02259312019. View Article : Google Scholar : PubMed/NCBI

120 

Li M, Wang X, Lu S, He C, Wang C, Wang L, Wang X, Ge P and Song D: Erastin triggers autophagic death of breast cancer cells by increasing intracellular iron levels. Oncol Lett. 20:572020.PubMed/NCBI

121 

Tam SY, Wu VW and Law HK: Influence of autophagy on the efficacy of radiotherapy. Radiat Oncol. 12:572017. View Article : Google Scholar : PubMed/NCBI

122 

Mou Y, Wang J, Wu J, He D, Zhang C, Duan C and Li B: Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI

123 

Friedmann Angeli JP, Krysko DV and Conrad M: Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 19:405–414. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li H, Deng N, Xiao J and He X: Cross‑link between ferroptosis and nasopharyngeal carcinoma: New approach to radiotherapy sensitization (Review). Oncol Lett 22: 770, 2021.
APA
Li, H., Deng, N., Xiao, J., & He, X. (2021). Cross‑link between ferroptosis and nasopharyngeal carcinoma: New approach to radiotherapy sensitization (Review). Oncology Letters, 22, 770. https://doi.org/10.3892/ol.2021.13031
MLA
Li, H., Deng, N., Xiao, J., He, X."Cross‑link between ferroptosis and nasopharyngeal carcinoma: New approach to radiotherapy sensitization (Review)". Oncology Letters 22.5 (2021): 770.
Chicago
Li, H., Deng, N., Xiao, J., He, X."Cross‑link between ferroptosis and nasopharyngeal carcinoma: New approach to radiotherapy sensitization (Review)". Oncology Letters 22, no. 5 (2021): 770. https://doi.org/10.3892/ol.2021.13031
Copy and paste a formatted citation
x
Spandidos Publications style
Li H, Deng N, Xiao J and He X: Cross‑link between ferroptosis and nasopharyngeal carcinoma: New approach to radiotherapy sensitization (Review). Oncol Lett 22: 770, 2021.
APA
Li, H., Deng, N., Xiao, J., & He, X. (2021). Cross‑link between ferroptosis and nasopharyngeal carcinoma: New approach to radiotherapy sensitization (Review). Oncology Letters, 22, 770. https://doi.org/10.3892/ol.2021.13031
MLA
Li, H., Deng, N., Xiao, J., He, X."Cross‑link between ferroptosis and nasopharyngeal carcinoma: New approach to radiotherapy sensitization (Review)". Oncology Letters 22.5 (2021): 770.
Chicago
Li, H., Deng, N., Xiao, J., He, X."Cross‑link between ferroptosis and nasopharyngeal carcinoma: New approach to radiotherapy sensitization (Review)". Oncology Letters 22, no. 5 (2021): 770. https://doi.org/10.3892/ol.2021.13031
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team