|
1
|
Neal DE, Metcalfe C, Donovan JL, Lane JA,
Davis M, Young GJ, Dutton SJ, Walsh EI, Martin RM, Peters TJ, et
al: Ten-year mortality, disease progression, and treatment-related
side effects in men with localised prostate cancer from the protecT
randomised controlled trial according to treatment received. Eur
Urol. 77:320–330. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Enane FO, Saunthararajah Y and Korc M:
Differentiation therapy and the mechanisms that terminate cancer
cell proliferation without harming normal cells. Cell Death Dis.
9:9122018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Li J, Yang X, Qi Z, Sang Y, Liu Y, Xu B,
Liu W, Xu Z and Deng Y: The role of mRNA m 6 A
methylation in the nervous system. Cell Biosci. 9:662019.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lv Z, Sun L, Xu Q, Xing C and Yuan Y:
Joint analysis of lncRNA m6A methylome and lncRNA/mRNA
expression profiles in gastric cancer. Cancer Cell Int. 20:4642020.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pan X, Hong X, Li S, Meng P and Xiao F:
METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells
by accelerating pri-microRNA-221-3p maturation in a m6A-dependent
manner. Exp Mol Med. 53:91–102. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Li HB, Tong J, Zhu S, Batista PJ, Duffy
EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, et al:
m6A mRNA methylation controls T cell homeostasis by
targeting the IL-7/STAT5/SOCS pathways. Nature. 548:338–342. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Liu K and Chen W: iMRM: A platform for
simultaneously identifying multiple kinds of RNA modifications.
Bioinformatics. 36:3336–3342. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Weng H, Huang H, Wu H, Qin X, Zhao BS,
Dong L, Shi H, Skibbe J, Shen C, Hu C, et al: METTL14 inhibits
hematopoietic stem/progenitor differentiation and promotes
leukemogenesis via mRNA m6A modification. Cell Stem
Cell. 22:191–205.e9. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chen M, Wei L, Law CT, Tsang FH, Shen J,
Cheng CL, Tsang LH, Ho DW, Chiu DK, Lee JM, et al: RNA
N6-methyladenosine methyltransferase-like 3 promotes liver cancer
progression through YTHDF2-dependent posttranscriptional silencing
of SOCS2. Hepatology. 67:2254–2270. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chen J, Zhang YC, Huang C, Shen H, Sun B,
Cheng X, Zhang YJ, Yang YG, Shu Q, Yang Y and Li X: m6A
regulates neurogenesis and neuronal development by modulating
histone methyltransferase Ezh2. Genomics Proteomics Bioinformatics.
17:154–168. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lin S, Choe J, Du P, Triboulet R and
Gregory RI: The m(6)A methyltransferase METTL3 promotes translation
in human cancer cells. Mol Cell. 62:335–345. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Shi H, Wei J and He C: Where, when, and
how: Context-dependent functions of RNA methylation writers,
readers, and erasers. Mol Cell. 74:640–650. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Liu N, Zhou KI, Parisien M, Dai Q,
Diatchenko L and Pan T: N6-methyladenosine alters RNA structure to
regulate binding of a low-complexity protein. Nucleic Acids Res.
45:6051–6063. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Liu N, Dai Q, Zheng G, He C, Parisien M
and Pan T: N (6)-methyladenosine-dependent RNA structural switches
regulate RNA-protein interactions. Nature. 518:560–564. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lan Q, Liu PY, Haase J, Bell JL,
Hüttelmaier S and Liu T: The critical role of RNA m6A
methylation in cancer. Cancer Res. 79:1285–1292. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Barbieri I, Tzelepis K, Pandolfini L, Shi
J, Millán-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister
AJ, Han N, et al: Promoter-bound METTL3 maintains myeloid leukaemia
by m 6 A-dependent translation control. Nature.
552:126–131. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Vu LP, Pickering BF, Cheng Y, Zaccara S,
Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, et al:
The N6-methyladenosine (m6A)-forming enzyme
METTL3 controls myeloid differentiation of normal hematopoietic and
leukemia cells. Nat Med. 23:1369–1376. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhang C, Zhi WI, Lu H, Samanta D, Chen I,
Gabrielson E and Semenza GL: Hypoxia-inducible factors regulate
pluripotency factor expression by ZNF217-and ALKBH5-mediated
modulation of RNA methylation in breast cancer cells. Oncotarget.
7:64527–64542. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang
Z, Liu Y, Zhang X, Zhang W and Ye L: HBXIP-elevated
methyltransferase METTL3 promotes the progression of breast cancer
via inhibiting tumor suppressor let-7g. Cancer Lett. 415:11–19.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Taketo K, Konno M, Asai A, Koseki J,
Toratani M, Satoh T, Doki Y, Mori M, Ishii H and Ogawa K: The
epitranscriptome m6A writer METTL3 promotes chemo- and
radioresistance in pancreatic cancer cells. Int J Oncol.
52:621–629. 2018.PubMed/NCBI
|
|
21
|
Sun Y, Li S, Yu W, Zhao Z, Gao J, Chen C,
Wei M and Liu L: 1981O-The m(6)A methyltransferase METTL3 promotes
gastric cancer progression through facilitating primary microRNA
maturation. Ann Oncol. 30:v7972019. View Article : Google Scholar
|
|
22
|
Liu S, Li Q, Li G, Zhang Q, Zhuo L, Han X,
Zhang M, Chen X, Pan T, Yan L, et al: The mechanism of
m6A methyltransferase METTL3-mediated autophagy in
reversing gefitinib resistance in NSCLC cells by β-elemene. Cell
Death Dis. 11:9692020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li X, Tang J, Huang W, Wang F, Li P, Qin
C, Qin Z, Zou Q, Wei J, Hua L, et al: The M6A methyltransferase
METTL3: Acting as a tumor suppressor in renal cell carcinoma.
Oncotarget. 8:96103–96116. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Robinson M, Shah P, Cui YH and He YY: The
role of dynamic m6A RNA methylation in photobiology.
Photochem Photobiol. 95:95–104. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Du Y, Hou G, Zhang H, Dou J, He J, Guo Y,
Li L, Chen R, Wang Y, Deng R, et al: SUMOylation of the m6A-RNA
methyltransferase METTL3 modulates its function. Nucleic Acids Res.
46:5195–5208. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Selberg S, Blokhina D, Aatonen M, Koivisto
P, Siltanen A, Mervaala E, Kankuri E and Karelson M: Discovery of
small molecules that activate RNA methylation through cooperative
binding to the METTL3-14-WTAP complex active site. Cell Rep.
26:3762–3771.e5. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH,
Wang F, Wang TT, Xu QG, Zhou WP and Sun SH: METTL14 suppresses the
metastatic potential of hepatocellular carcinoma by modulating
N6-methyladenosine-dependent primary MicroRNA
processing. Hepatology. 65:529–543. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ruszkowska A: METTL16,
methyltransferase-like protein 16: Current insights into structure
and function. Int J Mol Scis. 22:21762021. View Article : Google Scholar
|
|
29
|
Warda AS, Kretschmer J, Hackert P, Lenz C,
Urlaub H, Höbartner C, Sloan KE and Bohnsack MT: Human METTL16 is a
N6-methyladenosine (m6A) methyltransferase
that targets pre-mRNAs and various non-coding RNAs. EMBO Rep.
18:2004–2014. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Detich N, Hamm S, Just G, Knox JD and Szyf
M: The methyl donor S-Adenosylmethionine inhibits active
demethylation of DNA: A candidate novel mechanism for the
pharmacological effects of S-Adenosylmethionine. J Biol Chem.
278:20812–20820. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Shima H, Matsumoto M, Ishigami Y, Ebina M,
Muto A, Sato Y, Kumagai S, Ochiai K, Suzuki T and Igarashi K:
S-Adenosylmethionine synthesis is regulated by selective
N6-adenosine methylation and mRNA degradation involving METTL16 and
YTHDC1. Cell Rep. 21:3354–3363. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Schwartz S, Mumbach MR, Jovanovic M,
Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan
D, Habib N, et al: Perturbation of m6A writers reveals two distinct
classes of mRNA methylation at internal and 5′ sites. Cell Rep.
8:284–296. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ping XL, Sun BF, Wang L, Xiao W, Yang X,
Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is
a regulatory subunit of the RNA N6-methyladenosine
methyltransferase. Cell Res. 24:177–189. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sorci M, Ianniello Z, Cruciani S, Larivera
S, Ginistrelli LC, Capuano E, Marchioni M, Fazi F and Fatica A:
METTL3 regulates WTAP protein homeostasis. Cell Death Dis.
9:7962018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Xi Z, Xue Y, Zheng J, Liu X, Ma J and Liu
Y: WTAP expression predicts poor prognosis in malignant glioma
patients. J Mol Neurosci. 60:131–136. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li BQ, Huang S, Shao QQ, Sun J, Zhou L,
You L, Zhang TP, Liao Q, Guo JC and Zhao YP: WT1-associated protein
is a novel prognostic factor in pancreatic ductal adenocarcinoma.
Oncol Lett. 13:2531–2538. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Tang J, Wang F, Cheng G, Si S, Sun X, Han
J, Yu H, Zhang W, Lv Q, Wei JF and Yang H: Wilms' tumor
1-associating protein promotes renal cell carcinoma proliferation
by regulating CDK2 mRNA stability. J Exp Clin Cancer Res.
37:402018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Su R, Li Z, Weng H, Weng X and Chen J: FTO
Plays an oncogenic role in acute myeloid leukemia As a
N6-methyladenosine RNA demethylase. Blood. 128:2706.
2016. View Article : Google Scholar
|
|
39
|
Chao Y, Shang J and Ji W:
ALKBH5-m6A-FOXM1 signaling axis promotes proliferation
and invasion of lung adenocarcinoma cells under intermittent
hypoxia. Biochem Biophys Res Commun. 521:499–506. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kusinska R, Górniak P, Pastorczak A,
Fendler W, Potemski P, Mlynarski W and Kordek R: Influence of
genomic variation in FTO at 16q12. 2, MC4R at 18q22 and NRXN3 at
14q31 genes on breast cancer risk. Mol Biol Rep. 39:2915–2919.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun
L, Wang Y, Li X, Xiong XF, Wei B, et al: RNA N6-methyladenosine
demethylase FTO promotes breast tumor progression through
inhibiting BNIP3. Mol Cancer. 18:462019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang
Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in
nuclear RNA is a major substrate of the obesity-associated FTO. Nat
Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tian R, Zhang S, Sun D, Bei C, Li D, Zheng
C, Song X, Chen M, Tan S, Zhu X and Zhang H: M6A demethylase FTO
plays a tumor suppressor role in thyroid cancer. DNA Cell Biol.
39:2184–2193. 2020. View Article : Google Scholar
|
|
44
|
Gaudet MM, Yang HP, Bosquet JG, Healey CS,
Ahmed S, Dunning AM, Easton DF, Spurdle AB, Ferguson K, O'Mara T,
et al: No association between FTO or HHEX and endometrial cancer
risk. Cancer Epidemiol Biomarkers Prev. 19:2106–2109. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li Y, Zheng D, Wang F, Xu Y, Yu H and
Zhang H: Expression of demethylase genes, FTO and ALKBH1, is
associated with prognosis of gastric cancer. Dig Dis Sci.
64:1503–1513. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Tsuruta N, Tsuchihashi K, Ohmura H,
Yamaguchi K, Ito M, Ariyama H, Kusaba H, Akashi K and Baba E: RNA
N6-methyladenosine demethylase FTO regulates PD-L1 expression in
colon cancer cells. Biochem Biophys Res Commun. 530:235–239. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hernández-Caballero ME and Sierra-Ramírez
JA: Single nucleotide polymorphisms of the FTO gene and cancer
risk: An overview. Mol Biol Rep. 42:699–704. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li Z, Weng H, Su R, Weng X, Zuo Z, Li C,
Huang H, Nachtergaele S, Dong L, Hu C, et al: FTO plays an
oncogenic role in acute myeloid leukemia as a N6-methyladenosine
RNA demethylase. Cancer Cell. 31:127–141. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhou S, Bai ZL, Xia D, Zhao ZJ, Zhao R,
Wang YY and Zhe H: FTO regulates the chemo-radiotherapy resistance
of cervical squamous cell carcinoma (CSCC) by targeting β-catenin
through mRNA demethylation. Mol Carcinog. 57:590–597. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Xu C, Liu K, Tempel W, Demetriades M, Aik
W, Schofield CJ and Min J: Structures of human ALKBH5 demethylase
reveal a unique binding mode for specific single-stranded
N6-methyladenosine RNA demethylation. J Biol Chem. 289:17299–17311.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang C, Samanta D, Lu H, Bullen JW, Zhang
H, Chen I, He X and Semenza GL: Hypoxia induces the breast cancer
stem cell phenotype by HIF-dependent and ALKBH5-mediated
m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA.
113:E2047–E2056. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S,
Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, et al: m6A
demethylase ALKBH5 maintains tumorigenicity of glioblastoma
stem-like cells by sustaining FOXM1 expression and cell
proliferation program. Cancer Cell. 31:591–606.e6. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
He Y, Hu H, Wang Y, Yuan H, Lu Z, Wu P,
Liu D, Tian L, Yin J, Jiang K and Miao Y: ALKBH5 inhibits
pancreatic cancer motility by decreasing long non-coding RNA
KCNK15-AS1 methylation. Cell Physiol Biochem. 48:838–846. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lee Y, Choe J, Park OH and Kim YK:
Molecular mechanisms driving mRNA degradation by m6A modification.
Trends Genet. 36:177–188. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sheng H, Li Z, Su S, Sun W, Zhang X, Li L,
Li J, Liu S, Lu B, Zhang S and Shan C: YTH domain family 2 promotes
lung cancer cell growth by facilitating 6-phosphogluconate
dehydrogenase mRNA translation. Carcinogenesis. 41:541–550. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Li Z, Zhang Y, Ramanujan K, Ma Y, Kirsch
DG and Glass DJ: Oncogenic NRAS, required for pathogenesis of
embryonic rhabdomyosarcoma, relies upon the HMGA2-IGF2BP2 pathway.
Cancer Res. 73:3041–3050. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liao S, Sun H and Xu C: YTH domain: A
family of N6-methyladenosine (m6A) readers.
Genomics Proteomics Bioinformatics. 16:99–107. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Xiao W, Adhikari S, Dahal U, Chen YS, Hao
YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A
reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li J, Meng S, Xu M, Wang S, He L, Xu X,
Wang X and Xie L: Downregulation of N6-methyladenosine
binding YTHDF2 protein mediated by miR-493-3p suppresses prostate
cancer by elevating N6-methyladenosine levels. Oncotarget.
9:3752–3764. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bhardwaj U, Powell P and Goss DJ:
Eukaryotic initiation factor (eIF)3 mediates barley yellow dwarf
viral mRNA 3′-5′UTR interactions and 40S ribosomal subunit binding
to facilitate cap-independent translation. Nucleic Acids Res.
47:6225–6235. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li Z, Lin S, Jiang T, Wang J, Lu H, Tang
H, Teng M and Fan J: Overexpression of eIF3e is correlated with
colon tumor development and poor prognosis. Int J Clin Exp Pathol.
7:6462–6474. 2014.PubMed/NCBI
|
|
62
|
Choe J, Lin S, Zhang W, Liu Q, Wang L,
Ramirez-Moya J, Du P, Kim W, Tang S, Sliz P, et al: mRNA
circularization by METTL3-eIF3h enhances translation and promotes
oncogenesis. Nature. 561:556–560. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Dominissini D, Moshitch-Moshkovitz S,
Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K,
Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human
and mouse m6A RNA methylomes revealed by m6A-seq. Nature.
485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Antanaviciute A, Baquero-Perez B, Watson
CM, Harrison SM, Lascelles C, Crinnion L, Markham AF, Bonthron DT,
Whitehouse A and Carr IM: m6aViewer: Software for the detection,
analysis, and visualization of N6-methyladenosine peaks
from m6A-seq/ME-RIP sequencing data. RNA. 23:1493–1501.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang SY, Zhang SW, Fan XN, Zhang T, Meng
J and Huang Y: FunDMDeep-m6A: Identification and prioritization of
functional differential m6A methylation genes. Bioinformatics.
35:i90–i98. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Meyer KD, Saletore Y, Zumbo P, Elemento O,
Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation
reveals enrichment in 3′UTRs and near stop codons. Cell.
149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chandola U, Das R and Panda B: Role of the
N6-methyladenosine RNA mark in gene regulation and its implications
on development and disease. Brief Funct Genomics. 14:169–179. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Jiang X, Liu B, Nie Z, Duan L, Xiong Q,
Jin Z, Yang C and Chen Y: The role of m6A modification in the
biological functions and diseases. Signal Transduct Target Ther.
6:742021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Linder B, Grozhik AV, Olarerin-George AO,
Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution
mapping of m6A and m6Am throughout the transcriptome. Nat Methods.
12:767–772. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mauer J, Luo X, Blanjoie A, Jiao X,
Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q,
et al: Reversible methylation of m6Am in the
5′cap controls mRNA stability. Nature. 541:371–375. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N,
Han D, Dominissini D, Dai Q, Pan T, et al: High-resolution
N(6)-methyladenosine (m(6) A) map using photo-crosslinking-assisted
m(6) A sequencing. Angew Chem Int Ed Engl. 54:1587–1590. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ke S, Alemu EA, Mertens C, Gantman EC, Fak
JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al:
A majority of m6A residues are in the last exons, allowing the
potential for 3′UTR regulation. Genes Dev. 29:2037–2053. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Molinie B, Wang J, Lim KS, Hillebrand R,
Lu ZX, Van Wittenberghe N, Howard BD, Daneshvar K, Mullen AC, Dedon
P, et al: m(6)A-LAIC-seq reveals the census and complexity of the
m(6)A epitranscriptome. Nat Methods. 13:692–698. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu N, Parisien M, Dai Q, Zheng G, He C
and Pan T: Probing N6-methyladenosine RNA modification status at
single nucleotide resolution in mRNA and long noncoding RNA. RNA.
19:1848–1856. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li X, Zhu P, Ma S, Song J, Bai J, Sun F
and Yi C: Chemical pulldown reveals dynamic pseudouridylation of
the mammalian transcriptome. Nat Chem Biol. 11:592–597. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Golovina AY, Dzama MM, Petriukov KS,
Zatsepin TS, Sergiev PV, Bogdanov AA and Dontsova OA: Method for
site-specific detection of m6A nucleoside presence in RNA based on
high-resolution melting (HRM) analysis. Nucleic Acids Res.
42:e272014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wang M, Liu J, Zhao Y, He R, Xu X, Guo X,
Li X, Xu S, Miao J, Guo J, et al: Upregulation of METTL14 mediates
the elevation of PERP mRNA N6 adenosine methylation
promoting the growth and metastasis of pancreatic cancer. Mol
Cancer. 19:1302020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Xue L, Li J, Lin Y, Liu D, Yang Q, Jian J
and Peng J: m6A transferase METTL3-induced lncRNA
ABHD11-AS1 promotes the Warburg effect of non-small-cell lung
cancer. J Cell Physiol. 236:2649–2658. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang Y, Wang H, Xi F, Wang H, Han X, Wei
W, Zhang H, Zhang Q, Zheng Y, Zhu Q, et al: Profiling of circular
RNA N6-methyladenosine in moso bamboo (Phyllostachys
edulis) using nanopore-based direct RNA sequencing. J Integr
Plant Biol. 62:1823–1838. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang Z, Wang Q, Zhang M, Zhang W, Zhao L,
Yang C, Wang B, Jiang K, Ye Y, Shen Z and Wang S: Comprehensive
analysis of the transcriptome-wide m6A methylome in colorectal
cancer by MeRIP sequencing. Epigenetics. 16:425–435. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Han Z, Yang B, Wang Q, Hu Y, Wu Y and Tian
Z: Comprehensive analysis of the transcriptome-wide m6A
methylome in invasive malignant pleomorphic adenoma. Cancer Cell
Int. 21:1422021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang YC, Zhang SW, Liu L, Liu H, Zhang L,
Cui X, Huang Y and Meng J: Spatially enhanced differential RNA
methylation analysis from affinity-based sequencing data with
hidden Markov model. Biomed Res Int. 2015:8520702015.PubMed/NCBI
|
|
83
|
Li GQ, Liu Z, Shen HB and Yu DJ:
TargetM6A: Identifying N6-Methyladenosine sites from RNA
sequences via position-specific nucleotide propensities and a
support vector machine. IEEE Trans Nanobioscience. 15:674–682.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Chen W, Feng P, Ding H, Lin H and Chou KC:
iRNA-Methyl: Identifying N(6)-methyladenosine sites using pseudo
nucleotide composition. Anal Biochem. 490:26–33. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Jia CZ, Zhang JJ and Gu WZ:
RNA-MethylPred: A high-accuracy predictor to identify
N(6)-methyladenosine in RNA. Anal Biochem. 510:72–75. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhou Y, Zeng P, Li YH, Zhang Z and Cui Q:
SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based
on sequence-derived features. Nucleic Acids Res. 44:e912016.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Woosley AN, Dalton AC, Hussey GS, Howley
BV, Mohanty BK, Grelet S, Dincman T, Bloos S, Olsen SK and Howe PH:
TGFβ promotes breast cancer stem cell self-renewal through an
ILEI/LIFR signaling axis. Oncogene. 38:3794–3811. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Song T, Yang Y, Wei H, Xie X, Lu J, Zeng Q
and Peng J, Zhou Y, Jiang S and Peng J: Zfp217 mediates m6A mRNA
methylation to orchestrate transcriptional and post-transcriptional
regulation to promote adipogenic differentiation. Nucleic Acids
Res. 47:6130–6144. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhao X and Cui L: Development and
validation of a m6A RNA methylation regulators-based
signature for predicting the prognosis of head and neck squamous
cell carcinoma. Am J Cancer Res. 9:2156–2169. 2019.PubMed/NCBI
|
|
90
|
Du S, Hu W, Zhao YI, Zhou H, Wen W, Xu M,
Zhao P and Liu K: Long non-coding RNA MAGI2-AS3 inhibits breast
cancer cell migration and invasion via sponging microRNA-374a.
Cancer Biomark. 24:269–277. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ercolani C, Di Benedetto A, Terrenato I,
Pizzuti L, Di Lauro L, Sergi D, Sperati F, Buglioni S, Ramieri MT,
Mentuccia L, et al: Expression of phosphorylated Hippo pathway
kinases (MST1/2 and LATS1/2) in HER2-positive and triple-negative
breast cancer patients treated with neoadjuvant therapy. Cancer
Biol Ther. 18:339–346. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ni TK and Kuperwasser C: Abstract 4995:
Premature polyadenylation causes oncogenic truncations of the tumor
suppressor genes BRCA1, LATS1 and MAGI3 in breast cancer. Cancer
Res. 77:49952017.
|
|
93
|
Tanabe A, Tanikawa K, Tsunetomi M, Takai
K, Ikeda H, Konno J, Torigoe T, Maeda H, Kutomi G, Okita K, et al:
RNA helicase YTHDC2 promotes cancer metastasis via the enhancement
of the efficiency by which HIF-1α mRNA is translated. Cancer Lett.
376:34–42. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhao YL, Liu YH, Wu RF, Bi Z, Yao YX, Liu
Q, Wang YZ and Wang XX: Understanding m6A function
through uncovering the diversity roles of YTH domain-containing
proteins. Mol Biotechnol. 61:355–364. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hou J, Zhang H, Liu J, Zhao Z, Wang J, Lu
Z, Hu B, Zhou J, Zhao Z, Feng M, et al: YTHDF2 reduction fuels
inflammation and vascular abnormalization in hepatocellular
carcinoma. Mol Cancer. 18:1632019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhao M, Jia M, Xiang Y, Zeng Y, Yu W, Xiao
B and Dai R: METTL3 promotes the progression of hepatocellular
carcinoma through m6A-mediated up-regulation of microRNA-873-5p. Am
J Physiol Gastrointest Liver Physiol. Jul 20–2020.(Epub ahead of
print). doi: 10.1152/ajpgi.00161.2020. PubMed/NCBI
|
|
97
|
Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH,
Wang F, Wang TT, Xu QG, Zhou WP and Sun SH: METTL14 suppresses the
metastatic potential of HCC by modulating m6 A-dependent
primary miRNA processing. Hepatology. 65:529–543. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xu XD: Effects of N6-methylpurine(m6A)
methyltransferase METTL14 on the proliferation, invasion and
metastasis of pancreatic cancer and its mechanism. Huazhong Univ
Sci Technol, (PhD Thesis), . 2017.
|
|
99
|
Liu J, Eckert MA, Harada BT, Liu SM, Lu Z,
Yu K, Tienda SM, Chryplewicz A, Zhu AC, Yang Y, et al:
m6A mRNA methylation regulates AKT activity to promote
the proliferation and tumorigenicity of endometrial cancer. Nat
Cell Biol. 20:1074–1083. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wang X, Li Z, Kong B, Song C, Cong J, Hou
J and Wang S: Reduced m6A mRNA methylation is correlated
with the progression of human cervical cancer. Oncotarget.
8:98918–98930. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Ma X, Li Y, Wen J and Zhao Y: m6A RNA
methylation regulators contribute to malignant development and have
a clinical prognostic effect on cervical cancer. Am J Transl Res.
12:8137–8146. 2020.PubMed/NCBI
|
|
102
|
Ji F, Lu Y, Chen S, Yu Y, Lin X, Zhu Y and
Luo X: IGF2BP2-modified circular RNA circARHGAP12 promotes cervical
cancer progression by interacting m6A/FOXM1 manner. Cell Death
Discov. 7:2152021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lin X, Chai G, Wu Y, Chen F, Liu J, Luo G,
Tauler J, Du J, Lin S, He C and Wang H: RNA m(6)A methylation
regulates the epithelial mesenchymal transition of cancer cells and
translation of Snail. Nat Commun. 10:20652019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Huang GZ, Wu QQ, Zheng ZN, Shao TR, Chen
YC, Zeng WS and Lv XZ: M6A-related bioinformatics analysis reveals
that HNRNPC facilitates progression of OSCC via EMT. Aging (Albany
NY). 12:11667–11684. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yue B, Song C, Yang L, Cui R, Cheng X,
Zhang Z and Zhao G: METTL3-mediated N6-methyladenosine modification
is critical for epithelial-mesenchymal transition and metastasis of
gastric cancer. Mol Cancer. 18:1422019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Li H, Su Q, Li B, Lan L, Wang C, Li W,
Wang G, Chen W, He Y and Zhang C: High expression of WTAP leads to
poor prognosis of gastric cancer by influencing tumour-associated T
lymphocyte infiltration. J Cell Mol Med. 24:4452–4465. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Sun Y, Li S, Yu W, Zhao Z, Gao J, Chen C,
Wei M, Liu T, Li L and Liu L: N6-methyladenosine-dependent
pri-miR-17-92 maturation suppresses PTEN/TMEM127 and promotes
sensitivity to everolimus in gastric cancer. Cell Death Dis.
11:8362020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lin S, Liu J, Jiang W, Wang P, Sun C, Wang
X, Chen Y and Wang H: METTL3 promotes the proliferation and
mobility of gastric cancer cells. Open Med (Wars). 14:25–31. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu T, Yang S, Sui J, Xu SY, Cheng YP,
Shen B, Zhang Y, Zhang XM, Yin LH, Pu YP and Liang GY: Dysregulated
N6-methyladenosine methylation writer METTL3 contributes to the
proliferation and migration of gastric cancer. J Cell Physiol.
235:548–562. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Du C, Lv C, Feng Y and Yu S: Activation of
the KDM5A/miRNA-495/YTHDF2/m6A-MOB3B axis facilitates prostate
cancer progression. J Exp Clin Cancer Res. 39:2232020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y,
Cheng C, Li L, Pi J, Si Y, et al: The m6A reader YTHDF1 promotes
ovarian cancer progression via augmenting EIF3C translation.
Nucleic Acids Res. 48:3816–3831. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Huang H, Weng H and Chen J: m(6)A
modification in coding and non-coding RNAs: Roles and therapeutic
implications in cancer. Cancer Cell. 37:270–288. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G,
Yuan W, Kan Q and Sun Z: The interplay between m6A RNA methylation
and noncoding RNA in cancer. J Hematol Oncol. 12:1212019.
View Article : Google Scholar : PubMed/NCBI
|