Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

miR‑148a, miR‑152 and miR‑200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression

  • Authors:
    • Venhar Gurbuz
    • Sinan Sozen
    • Cenk Y. Bilen
    • Ece Konac
  • View Affiliations / Copyright

    Affiliations: Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey, Department of Urology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey, Department of Urology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
    Copyright: © Gurbuz et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 805
    |
    Published online on: September 23, 2021
       https://doi.org/10.3892/ol.2021.13066
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

MicroRNAs (miRs) modulate the expression of target genes in the signal pathway on transcriptome level. The present study investigated the ‘epigenetic‑based miRNA (epi‑miRNA)‑mRNA’ regulatory network of miR‑34b, miR‑34c, miR‑148a, miR‑152, miR‑200a and miR‑200b epi‑miRNAs and their target genes, DNA methyltransferase (DNMT1, 3a and 3b), phosphate and tensin homolog (PTEN) and NK3 Homeobox 1 (NKX3.1), in prostate cancer (PCa) using reverse transcription‑quantitative PCR. The expression level of NKX3.1 were not significantly different between the PCa, Met‑PCa and control groups. However, in the PCa and Met‑PCa groups, the expression level of DNMT1 was upregulated, while DNMT3a, DNMT3b and PTEN were downregulated. Overexpression of DNMT1 (~5 and ~6‑fold increase in the PCa and Met‑PCa groups respectively) was accompanied by a decreased expression in PTEN, indicating a potential negative association. Both groups indicated that a high level of DNMT1 is associated with the aggressiveness of cancer, and there is a a directly proportional relationship between this gene and PSA, GS and TNM staging. A significant ~2 to ~5‑fold decrease in the expression levels of DNMT3a and DNMT3b was found in both groups. In the PCa group, significant associations were identified between miR‑34b and DNMT1/DNMT3b; between miR‑34c/miR‑148a and all target genes; between miR‑152 and DNMT1/DNMT3b and PTEN; and between miR‑200a/b and DNMT1. In the Met‑PCa group, miR‑148a, miR‑152 and miR‑200b exhibited a significant association with all target genes. A significant negative association was identified between PTEN and DNMT1 in the Met‑PCa group. It was also revealed that that miR‑148a, miR‑152 and miR‑200b increased the expression of DNMT1 and suppressed PTEN. Furthermore, the ‘epi‑miRNA‑mRNA’ bidirectional feedback loop was emphasised and the methylation pattern in PCa anti‑cancer therapeutics was highlighted.
View Figures

Figure 1

Figure 2

View References

1 

Stahl M, Kohrman N, Gore SD, Kim TK, Zeidan AM and Prebet T: Epigenetics in cancer: A hematological perspective. PLoS Genet. 12:e10061932016. View Article : Google Scholar : PubMed/NCBI

2 

Malik SS, Batool R, Masood N and Yasmin A: Risk factors for prostate cancer: A multifactorial case-control study. Curr Probl Cancer. 42:337–343. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Pandareesh MD, Kameshwar VH and Byrappa KK: Prostate carcinogenesis: Insights in relation to epigenetics and inflammation. Endocr Metab Immune Disord Drug Targets. 21:253–267. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Prcic A, Begic E and Hiros M: Usefulness of total PSA value in prostate diseases diagnosis. Acta Inform Med. 24:156–161. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Bickers B and Aukim-Hastie C: New molecular biomarkers for the prognosis and management of prostate cancer-the post PSA era. Anticancer Res. 29:3289–3298. 2009.PubMed/NCBI

6 

Matin F, Jeet V, Moya L, Selth LA, Chambers S; Australian Prostate Cancer BioResource, ; Clements JA and Batra J: A plasma biomarker panel of four MicroRNAs for the diagnosis of prostate cancer. Sci Rep. 8:66532018. View Article : Google Scholar : PubMed/NCBI

7 

Filella X, Fernández-Galan E, Bonifacio RF and Foj L: Emerging biomarkers in the diagnosis of prostate cancer. Pharmgenomics Pers Med. 11:83–94. 2018.PubMed/NCBI

8 

Sharma S, Kelly TK and Jones PA: Epigenetics in cancer. Carcinogenesis. 31:27–36. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Ramassone A, Pagotto S, Veronese A and Visone R: Epigenetics and MicroRNAs in cancer. Int J Mol Sci. 19:4592018. View Article : Google Scholar : PubMed/NCBI

10 

Bosutti A, Zanconati F, Grassi G, Dapas B, Passamonti S and Scaggiante B: Epigenetic and miRNAs dysregulation in prostate cancer: The role of nutraceuticals. Anticancer Agents Med Chem. 16:1385–1402. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Lai X, Eberhardt M, Schmitz U and Vera J: Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res. 47:7753–7766. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Pesta M, Klecka J, Kulda V, Topolcan O, Hora M, Eret V, Ludvikova M, Babjuk M, Novak K, Stolz J and Holubec L: Importance of miR-20a expression in prostate cancer tissue. Anticancer Res. 30:3579–3583. 2010.PubMed/NCBI

13 

Brase JC, Johannes M, Schlomm T, Fälth M, Haese A, Steuber T, Beissbarth T, Kuner R and Sültmann H: Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 128:608–616. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Watahiki A and Wang Y, Morris J, Dennis K, O'Dwyer HM, Gleave M, Gout PW and Wang Y: MicroRNAs associated with metastatic prostate cancer. PLoS One. 6:e249502011. View Article : Google Scholar : PubMed/NCBI

15 

Al-Kafaji G, Said HM, Alam MA and Al Naieb ZT: Blood-based microRNAs as diagnostic biomarkers to discriminate localized prostate cancer from benign prostatic hyperplasia and allow cancer-risk stratification. Oncol Lett. 16:1357–1365. 2018.PubMed/NCBI

16 

Bhagirath D, Yang TL, Bucay N, Sekhon K, Majid S, Shahryari V, Dahiya R, Tanaka Y and Saini S: microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 78:1833–1844. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Paziewska A, Mikula M, Dabrowska M, Kulecka M, Goryca K, Antoniewicz A, Dobruch J, Borowka A, Rutkowski P and Ostrowski J: Candidate diagnostic miRNAs that can detect cancer in prostate biopsy. Prostate. 78:178–185. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Zhang M, Wang F and Zhang X: miRNA-627 inhibits cell proliferation and cell migration, promotes cell apoptosis in prostate cancer cells through upregulating MAP3K1, PTPRK and SRA1. Int J Clin Exp Pathol. 11:255–261. 2018.PubMed/NCBI

19 

Tu J, Peng Q, Shen Y, Hong Y, Zhu J, Feng Z, Zhou P, Fan S, Zhu Y and Zhang Y: Identification of biomarker microRNA-mRNA regulatory pairs for predicting the docetaxel resistance in prostate cancer. J Cancer. 10:5469–5482. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Bi CW, Zhang GY, Bai Y, Zhao B and Yang H: Increased expression of miR-153 predicts poor prognosis for patients with prostate cancer. Medicine (Baltimore). 98:e16705. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Lynch SM, O'Neill KM, McKenna MM, Walsh CP and McKenna DJ: Regulation of miR-200c and miR-141 by methylation in prostate cancer. Prostate. 76:1146–1159. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Daniunaite K, Dubikaityte M, Gibas P, Bakavicius A, Lazutka JM, Ulys A, Jankevicius F and Jarmalaite S: Clinical significance of miRNA host gene promoter methylation in prostate cancer. Hum Mol Genet. 26:2451–2461. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Torres-Ferreira J, Ramalho-Carvalho J, Gomez A, Menezes FD, Freitas R, Oliveira J, Antunes L, Bento MJ, Esteller M, Henrique R and Jerónimo C: miR-193b promoter methylation accurately detects prostate cancer in urine sediments and miR-34b/c or miR-129-2 promoter methylation define subsets of clinically aggressive tumors. Mol Cancer. 16:262017. View Article : Google Scholar : PubMed/NCBI

24 

Barros-Silva D, Costa-Pinheiro P, Duarte H, Sousa EJ, Evangelista AF, Graça I, Carneiro I, Martins AT, Oliveira J, Carvalho AL, et al: MicroRNA-27a-5p regulation by promoter methylation and MYC signaling in prostate carcinogenesis. Cell Death Dis. 9:1672018. View Article : Google Scholar : PubMed/NCBI

25 

Gurbuz V, Kiliccioglu I, Dikmen AU, Bilen CY, Sozen S and Konac E: Comparative analysis of epi-miRNA expression levels in local/locally advanced and metastatic prostate cancer patients. Gene. 758:1449632020. View Article : Google Scholar : PubMed/NCBI

26 

Lyko F: The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat Rev Genet. 19:81–92. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Subramaniam D, Thombre R, Dhar A and Anant S: DNA methyltransferases: A novel target for prevention and therapy. Front Oncol. 4:802014. View Article : Google Scholar : PubMed/NCBI

28 

Zhang J, Yang C, Wu C, Cui W and Wang L: DNA methyltransferases in cancer: Biology, paradox, aberrations, and targeted therapy. Cancers (Basel). 12:21232020. View Article : Google Scholar : PubMed/NCBI

29 

Maehama T, Taylor GS and Dixon JE: PTEN and myotubularin: Novel phosphoinositide phosphatases. Annu Rev Biochem. 70:247–279. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, Montgomery B, Taplin ME, Pritchard CC, Attard G, et al: Integrative clinical genomics of advanced prostate cancer. Cell. 162:4542015. View Article : Google Scholar : PubMed/NCBI

31 

Sun J, Li S, Wang F, Fan C and Wang J: Identification of key pathways and genes in PTEN mutation prostate cancer by bioinformatics analysis. BMC Med Genet. 20:1912019. View Article : Google Scholar : PubMed/NCBI

32 

Lei Q, Jiao J, Xin L, Chang CJ, Wang S, Gao J, Gleave ME, Witte ON, Liu X and Wu H: NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell. 9:367–378. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Bowen C, Ostrowski MC, Leone G and Gelmann EP: Loss of PTEN accelerates NKX3.1 degradation to promote prostate cancer progression. Cancer Res. 79:4124–4134. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Gurel B, Ali TZ, Montgomery EA, Begum S, Hicks J, Goggins M, Eberhart CG, Clark DP, Bieberich CJ, Epstein JI and Marzo AM: NKX3.1 as a marker of prostatic origin in metastatic tumors. Am J Surg Pathol. 34:1097–1105. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Shivakumar M, Lee Y, Bang L, Garg T, Sohn KA and Kim D: Identification of epigenetic interactions between miRNA and DNA methylation associated with gene expression as potential prognostic markers in bladder cancer. BMC Med Genomics. 10 (Suppl 1):S302017. View Article : Google Scholar : PubMed/NCBI

36 

Memari F, Joneidi Z, Taheri B, Aval SF, Roointan A and Zarghami N: Epigenetics and Epi-miRNAs: Potential markers/therapeutics in leukemia. Biomed Pharmacother. 106:1668–1677. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Arif K, Elliott E, Haupt L and Griffiths L: Regulatory mechanisms of epigenetic miRNA relationships in human cancer and potential as therapeutic targets. Cancers (Basel). 12:29222020. View Article : Google Scholar : PubMed/NCBI

38 

Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, et al: MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. 104:15805–15810. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Reale E, Taverna D, Cantini L, Martignetti L, Osella M, De Pittà C, Virga F, Orso F and Caselle M: Investigating the epi-miRNome: Identification of epi-miRNAs using transfection experiments. Epigenomics. 11:1581–1599. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Misso G, Di Martino MT, De Rosa G, Farooqi AA, Lombardi A, Campani V, Zarone MR, Gullà A, Tagliaferri P, Tassone P and Caraglia M: Mir-34: A new weapon against cancer? Mol Ther Nucleic Acids. 3:e1942014. View Article : Google Scholar : PubMed/NCBI

41 

Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G and Hermeking H: Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: MiR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 6:1586–1593. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chang I, Yamamura S, Tanaka Y, Chiyomaru T, et al: miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res. 19:73–84. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Vogt M, Munding J, Grüner M, Liffers ST, Verdoodt B, Hauk J, Steinstraesser L, Tannapfel A and Hermeking H: Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch. 458:313–322. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Li Y, Deng X, Zeng X and Peng X: The role of Mir-148a in cancer. J Cancer. 7:1233–1241. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Hamilton MP, Rajapakshe KI, Bader DA, Cerne JZ, Smith EA, Coarfa C, Hartig SM and McGuire SE: The landscape of microRNA targeting in prostate cancer defined by AGO-PAR-CLIP. Neoplasia. 18:356–370. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Yu B, Lv X, Su L, Li J, Yu Y, Gu Q, Yan M, Zhu Z and Liu B: MiR-148a functions as a tumor suppressor by targeting CCK-BR via inactivating STAT3 and akt in human gastric cancer. PLoS One. 11:e01589612016. View Article : Google Scholar : PubMed/NCBI

47 

Guo SL, Peng Z, Yang X, Fan KJ, Ye H, Li ZH, Wang Y, Xu XL, Li J, Wang YL, et al: miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int J Biol Sci. 7:567–574. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Walter BA, Valera VA, Pinto PA and Merino MJ: Comprehensive microRNA profiling of prostate cancer. J Cancer. 4:350–357. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL and Visakorpi T: MicroRNA expression profiling in prostate cancer. Cancer Res. 67:6130–6135. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Kim J, Zhang Y, Skalski M, Hayes J, Kefas B, Schiff D, Purow B, Parsons S, Lawler S and Abounader R: microRNA-148a is a prognostic oncomiR that targets MIG6 and BIM to regulate EGFR and apoptosis in glioblastoma. Cancer Res. 74:1541–1553. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Dybos SA, Flatberg A, Halgunset J, Viset T, Rolfseng T, Kvam S and Skogseth H: Increased levels of serum miR-148a-3p are associated with prostate cancer. APMIS. 126:722–731. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Szczyrba J, Löprich E, Wach S, Jung V, Unteregger G, Barth S, Grobholz R, Wieland W, Stöhr R, Hartmann A, et al: The MicroRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res. 8:529–538. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Zhu C, Li J, Ding Q, Cheng G, Zhou H, Tao L, Cai H, Li P, Cao Q, Ju X, et al: miR-152 controls migration and invasive potential by targeting TGFα in prostate cancer cell lines. Prostate. 73:1082–1089. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Theodore SC, Davis M, Zhao F, Wang H, Chen D, Rhim J, Dean-Colomb W, Turner T, Ji W, Zeng G, et al: MicroRNA profiling of novel African American and Caucasian prostate cancer cell lines reveals a reciprocal regulatory relationship of miR-152 and DNA methyltranferase 1. Oncotarget. 5:3512–3525. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Li B, Xie Z and Li B: miR-152 functions as a tumor suppressor in colorectal cancer by targeting PIK3R3. Tumor Biol. 37:10075–10084. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Braconi C, Huang N and Patel T: MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology. 51:881–890. 2010.PubMed/NCBI

57 

Huang S, Li X and Zhu H: MicroRNA-152 targets phosphatase and tensin homolog to inhibit apoptosis and promote cell migration of nasopharyngeal carcinoma cells. Med Sci Monit. 22:4330–4337. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Chen H, Liu H, Zou H, Chen R, Dou Y, Sheng S, Dai S, Ai J, Melson J, Kittles RA, et al: Evaluation of plasma miR-21 and miR-152 as diagnostic biomarkers for common types of human cancers. J Cancer. 7:490–499. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Moya L, Meijer J, Schubert S, Matin F and Batra J: Assessment of miR-98-5p, miR-152-3p, miR-326 and miR-4289 expression as biomarker for prostate cancer diagnosis. Int J Mol Sci. 20:11542019. View Article : Google Scholar : PubMed/NCBI

60 

Carter JV, O'Brien SJ, Burton JF, Oxford BG, Stephen V, Hallion J, Bishop C, Galbraith NJ, Eichenberger MR, Sarojini H, et al: The microRNA-200 family acts as an oncogene in colorectal cancer by inhibiting the tumor suppressor RASSF2. Oncol Lett. 18:3994–4007. 2019.PubMed/NCBI

61 

Yang R, Xu J, Hua X, Tian Z, Xie Q, Li J, Jiang G, Cohen M, Sun H and Huang C: Overexpressed miR-200a promotes bladder cancer invasion through direct regulating Dicer/miR-16/JNK2/MMP-2 axis. Oncogene. 39:1983–1996. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Schliekelman MJ, Gibbons DL, Faca VM, Creighton CJ, Rizvi ZH, Zhang Q, Wong CH, Wang H, Ungewiss C, Ahn YH, et al: Targets of the tumor suppressor miR-200 in regulation of the epithelial-mesenchymal transition in cancer. Cancer Res. 71:7670–7682. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Wong CM, Wei L, Au SL, Fan DN, Zhou Y, Tsang FH, Law CT, Lee JM, He X, Shi J, et al: MiR-200b/200c/429 subfamily negatively regulates Rho/ROCK signaling pathway to suppress hepatocellular carcinoma metastasis. Oncotarget. 6:13658–13670. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Osella M, Riba A, Testori A, Corà D and Caselle M: Interplay of microRNA and epigenetic regulation in the human regulatory network. Front Genet. 5:3452014. View Article : Google Scholar : PubMed/NCBI

65 

Nakagawa T, Kanai Y, Ushijima S, Kitamura T, Kakizoe T and Hirohashi S: DNA hypermethylation on multiple CpG islands associated with increased DNA methyltransferase DNMT1 protein expression during multistage urothelial carcinogenesis. J Urol. 173:1767–1771. 2005. View Article : Google Scholar : PubMed/NCBI

66 

Nakagawa T, Kanai YAE, Saito Y, Kitamura T, Kakizoe T and Hirohashi S: Increased DNA methyltransferase 1 protein expression in human transitional cell carcinoma of the bladder. J Urol. 170:2463–2466. 2003. View Article : Google Scholar : PubMed/NCBI

67 

Patra SK, Patra A, Zhao H and Dahiya R: DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog. 33:163–171. 2002. View Article : Google Scholar : PubMed/NCBI

68 

Zhang W and Xu J: DNA methyltransferases and their roles in tumorigenesis. Biomark Res. 5:12017. View Article : Google Scholar : PubMed/NCBI

69 

Qi D, Li J, Que B, Su J, Li M, Zhang C, Yang M, Zhou G and Ji W: Long non-coding RNA DBCCR1-003 regulate the expression of DBCCR1 via DNMT1 in bladder cancer. Cancer Cell Int. 16:812016. View Article : Google Scholar : PubMed/NCBI

70 

Roscigno G, Quintavalle C, Donnarumma E, Puoti I, Diaz-Lagares A, Iaboni M, Fiore D, Russo V, Todaro M, Romano G, et al: MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget. 7:580–592. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Pang Y, Liu J, Li X, Xiao G, Wang H, Yang G, Li Y, Tang SC, Qin S, Du N, et al: MYC and DNMT3A-mediated DNA methylation represses microRNA-200b in triple negative breast cancer. J Cell Mol Med. 22:6262–6274. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Ma HS, Wang EL, Xu WF, Yamada S, Yoshimoto K, Qian ZR, Shi L, Liu LL and Li XH: Overexpression of DNA (Cytosine-5)-methyltransferase 1 (DNMT1) And DNA (Cytosine-5)-methyltransferase 3A (DNMT3A) is associated with aggressive behavior and hypermethylation of tumor suppressor genes in human pituitary adenomas. Med Sci Monit. 24:4841–4850. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Li M, Wang Y, Song Y, Bu R, Yin B, Fei X, Guo Q and Wu B: Aberrant DNA methyltransferase 1 expression in clear cell renal cell carcinoma development and progression. Chin J Cancer Res. 26:371–381. 2014.PubMed/NCBI

74 

Graça I, Sousa EJ, Costa-Pinheiro P, Vieira FQ, Torres-Ferreira J, Martins MG, Henrique R and Jerónimo C: Anti-neoplastic properties of hydralazine in prostate cancer. Oncotarget. 5:5950–5964. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Jagadeesh S, Sinha S, Pal BC, Bhattacharya S and Banerjee PP: Mahanine reverses an epigenetically silenced tumor suppressor gene RASSF1A in human prostate cancer cells. Biochem Biophys Res Commun. 362:212–217. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Agarwal S, Amin KS, Jagadeesh S, Baishay G, Rao PG, Barua NC, Bhattacharya S and Banerjee PP: Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells. Mol Cancer. 12:992013. View Article : Google Scholar : PubMed/NCBI

77 

Le Magnen C, Virk RK, Dutta A, Kim JY, Panja S, Lopez-Bujanda ZA, Califano A, Drake CG, Mitrofanova A and Abate-Shen C: Cooperation of loss of NKX3.1 and inflammation in prostate cancer initiation. Dis Model Mech. 11:dmm0351392018. View Article : Google Scholar : PubMed/NCBI

78 

Shiina M, Hashimoto Y, Kato T, Yamamura S, Tanaka Y, Majid S, Saini S, Varahram S, Kulkarni P, Dasgupta P, et al: Differential expression of miR-34b and androgen receptor pathway regulate prostate cancer aggressiveness between African-Americans and caucasians. Oncotarget. 8:8356–8368. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Chamani F, Sadeghizadeh M, Masoumi M and Babashah S: Evaluation of MiR-34 family and DNA methyltransferases 1, 3A, 3B gene expression levels in hepatocellular carcinoma following treatment with dendrosomal nanocurcumin. Asian Pac J Cancer Prev. 17:219–224. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Sengupta D, Deb M and Patra SK: Antagonistic activities of miR-148a and DNMT1: Ectopic expression of miR-148a impairs DNMT1 mRNA and dwindle cell proliferation and survival. Gene. 660:68–79. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Duursma AM, Kedde M, Schrier M, le Sage C and Agami R: miR-148 targets human DNMT3b protein coding region. RNA. 14:872–877. 2008. View Article : Google Scholar : PubMed/NCBI

82 

Hua D, Mo F, Ding D, Li L, Han X, Zhao N, Foltz G, Lin B, Lan Q and Huang Q: A catalogue of glioblastoma and brain MicroRNAs identified by deep sequencing. OMICS. 16:690–699. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Ma W, Zhang X, Chai J, Chen P, Ren P and Gong M: Circulating miR-148a is a significant diagnostic and prognostic biomarker for patients with osteosarcoma. Tumour Biol. 35:12467–12472. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Zhang H, Wang Y, Xu T, Li C, Wu J, He Q, Wang G, Ding C, Liu K, Tang H and Ji F: Increased expression of microRNA-148a in osteosarcoma promotes cancer cell growth by targeting PTEN. Oncol Lett. 12:3208–3214. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Yuan K, Lian Z, Sun B, Clayton MM, Ng IOL and Feitelson MA: Role of miR-148a in hepatitis B associated hepatocellular carcinoma. PLoS One. 7:e353312012. View Article : Google Scholar : PubMed/NCBI

86 

Ramalho-Carvalho J, Gonçalves CS, Graça I, Bidarra D, Pereira-Silva E, Salta S, Godinho MI, Gomez A, Esteller M, Costa BM, et al: A multiplatform approach identifies miR-152-3p as a common epigenetically regulated onco-suppressor in prostate cancer targeting TMEM97. Clin Epigenetics. 10:402018. View Article : Google Scholar : PubMed/NCBI

87 

Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C and Camussi G: Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One. 5:e118032010. View Article : Google Scholar : PubMed/NCBI

88 

Jiang X, Du L, Wang L, Li J, Liu Y, Zheng G, Qu A, Zhang X, Pan H, Yang Y and Wang C: Serum microRNA expression signatures as novel noninvasive biomarkers for prediction and prognosis of muscle-invasive bladder cancer. Oncotarget. 7:36733–36742. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Dudziec E, Miah S, Choudhry HM, Owen HC, Blizard S, Glover M, Hamdy FC and Catto JW: Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res. 17:1287–1296. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Kim J, Yao F, Xiao Z, Sun Y and Ma L: MicroRNAs and metastasis: Small RNAs play big roles. Cancer Metastasis Rev. 37:5–15. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Pan J, Ding M, Xu K, Yang C and Mao LJ: Exosomes in diagnosis and therapy of prostate cancer. Oncotarget. 8:97693–97700. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Turchinovich A, Samatov T, Tonevitsky A and Burwinkel B: Circulating miRNAs: Cell-cell communication function? Front Genet. 4:1192013. View Article : Google Scholar : PubMed/NCBI

93 

Pang Y, Young CY and Yuan H: MicroRNAs and prostate cancer. Acta Biochim Biophys Sin (Shanghai). 42:363–369. 2010. View Article : Google Scholar : PubMed/NCBI

94 

Guo F, Kerrigan BC, Yang D, Hu L, Shmulevich I, Sood AK, Xue F and Zhang W: Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. J Hematol Oncol. 7:192014. View Article : Google Scholar : PubMed/NCBI

95 

Wu Q, Lu RL, Li JX and Rong LJ: MiR-200a and miR-200b target PTEN to regulate the endometrial cancer cell growth in vitro. Asian Pac J Trop Med. 10:498–502. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Yoneyama K, Ishibashi O, Kawase R, Kurose K and Takeshita T: miR-200a, miR-200b and miR-429 are onco-miRs that Target the PTEN gene in endometrioid endometrial carcinoma. Anticancer Res. 35:1401–1410. 2015.PubMed/NCBI

97 

Suo HB, Zhang KC and Zhao J: MiR-200a promotes cell invasion and migration of ovarian carcinoma by targeting PTEN. Eur Rev Med Pharmacol Sci. 22:4080–4089. 2018.PubMed/NCBI

98 

Liu J, Zhang X, Huang Y, Zhang Q, Zhou J, Zhang X and Wang X: miR-200b and miR-200c co-contribute to the cisplatin sensitivity of ovarian cancer cells by targeting DNA methyltransferases. Oncol Lett. 17:1453–1460. 2019.PubMed/NCBI

99 

Zeng X, Qu X, Zhao C, Xu L, Hou K, Liu Y, Zhang N, Feng J, Shi S, Zhang L, et al: FEN1 mediates miR-200a methylation and promotes breast cancer cell growth via MET and EGFR signaling. FASEB J. 33:10717–10730. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gurbuz V, Sozen S, Bilen CY and Konac E: miR‑148a, miR‑152 and miR‑200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression. Oncol Lett 22: 805, 2021.
APA
Gurbuz, V., Sozen, S., Bilen, C.Y., & Konac, E. (2021). miR‑148a, miR‑152 and miR‑200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression. Oncology Letters, 22, 805. https://doi.org/10.3892/ol.2021.13066
MLA
Gurbuz, V., Sozen, S., Bilen, C. Y., Konac, E."miR‑148a, miR‑152 and miR‑200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression". Oncology Letters 22.5 (2021): 805.
Chicago
Gurbuz, V., Sozen, S., Bilen, C. Y., Konac, E."miR‑148a, miR‑152 and miR‑200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression". Oncology Letters 22, no. 5 (2021): 805. https://doi.org/10.3892/ol.2021.13066
Copy and paste a formatted citation
x
Spandidos Publications style
Gurbuz V, Sozen S, Bilen CY and Konac E: miR‑148a, miR‑152 and miR‑200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression. Oncol Lett 22: 805, 2021.
APA
Gurbuz, V., Sozen, S., Bilen, C.Y., & Konac, E. (2021). miR‑148a, miR‑152 and miR‑200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression. Oncology Letters, 22, 805. https://doi.org/10.3892/ol.2021.13066
MLA
Gurbuz, V., Sozen, S., Bilen, C. Y., Konac, E."miR‑148a, miR‑152 and miR‑200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression". Oncology Letters 22.5 (2021): 805.
Chicago
Gurbuz, V., Sozen, S., Bilen, C. Y., Konac, E."miR‑148a, miR‑152 and miR‑200b promote prostate cancer metastasis by targeting DNMT1 and PTEN expression". Oncology Letters 22, no. 5 (2021): 805. https://doi.org/10.3892/ol.2021.13066
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team