|
1
|
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2019. CA Cancer J Clin. 69:7–34. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Colombo N, Creutzberg C, Amant F, Bosse T, González-Martín A, Ledermann J, Marth C, Nout R, Querleu D, Mirza MR, et al ESMO-ESGO-ESTRO Endometrial Consensus Conference Working Group, : ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, treatment and follow-up. Ann Oncol. 27:16–41. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dowdy SC: Improving oncologic outcomes for women with endometrial cancer: Realigning our sights. Gynecol Oncol. 133:370–374. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Miller D, Filiaci V, Fleming G, Mannel R, Cohn D, Matsumoto T, Tewari K, DiSilvestro P, Pearl M and Zaino R: Late-Breaking Abstract 1: Randomized phase III noninferiority trial of first line chemotherapy for metastatic or recurrent endometrial carcinoma: A Gynecologic Oncology Group study. Gynecol Oncol. 125:7712012. View Article : Google Scholar
|
|
5
|
Fleming GF: Systemic chemotherapy for uterine carcinoma: Metastatic and adjuvant. J Clin Oncol. 25:2983–2990. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Morice P, Leary A, Creutzberg C, Abu-Rustum N and Darai E: Endometrial Cancer. 387:1094–1108. 2016.PubMed/NCBI
|
|
7
|
Markman M: Hormonal therapy of endometrial cancer. Eur J Cancer. 41:673–675. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Moxley KM and McMeekin DS: Endometrial carcinoma: A review of chemotherapy, drug resistance, and the search for new agents. Oncologist. 15:1026–1033. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bourla AB and Zamarin D: Immunotherapy: New strategies for the treatment of gynecologic malignancies. Oncology (Williston Park). 30:59–66, 69. 2016.PubMed/NCBI
|
|
10
|
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sun Z, Fourcade J, Pagliano O, Chauvin JM, Sander C, Kirkwood JM and Zarour HM: IL10 and PD-1 cooperate to limit the activity of tumor-specific CD8+ T cells. Cancer Res. 75:1635–1644. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, Chen S, Klein AP, Pardoll DM, Topalian SL, et al: Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 4:127ra372012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK and Iyer AK: PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol. 8:5612017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Brahmer JR, Tykodi SS, Chow LQM, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, Schuster SJ, Millenson MM, Cattry D, Freeman GJ, et al: PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med. 372:311–319. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, et al: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 373:23–34. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB, Powderly JD, et al: Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 32:1020–1030. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Herzog TJ, Arguello D, Reddy SK and Gatalica Z: PD-1, PD-L1 expression in 1599 gynecological cancers: Implications for immunotherapy. Gynecol Oncol. 137:204–205. 2015. View Article : Google Scholar
|
|
19
|
Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, et al Cancer Genome Atlas Research Network, : Integrated genomic characterization of endometrial carcinoma. Nature. 497:67–73. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J and Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. In: Journal of clinical epidemiology. J Clin Epidemiol. s62:e1–34. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Therkildsen C, Jensen LH, Rasmussen M and Bernstein I: An update on immune checkpoint therapy for the treatment of lynch syndrome. Clin Exp Gastroenterol. 14:181–197. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gómez-Raposo C, Merino Salvador M, Aguayo Zamora C, García de Santiago B and Casado Sáenz E: Immune checkpoint inhibitors in endometrial cancer. Crit Rev Oncol Hematol. 161:1033062021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Mo DC, Luo PH, Huang SX, Wang HL and Huang JF: Safety and efficacy of pembrolizumab plus lenvatinib versus pembrolizumab and lenvatinib monotherapies in cancers: A systematic review. Int Immunopharmacol. 91:1072812021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Oaknin A, León-Castillo A and Lorusso D: Progress in the management of endometrial cancer (subtypes, immunotherapy, alterations in PIK3CA pathway): Data and perspectives. Curr Opin Oncol. 32:471–480. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Musacchio L, Boccia SM, Caruso G, Santangelo G, Fischetti M, Tomao F, Perniola G, Palaia I, Muzii L, Pignata S, et al: Immune checkpoint inhibitors: A promising choice for endometrial cancer patients? J Clin Med. 9:17212020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Green AK, Feinberg J and Makker V: A Review of immune checkpoint blockade therapy in endometrial cancer. Am Soc Clin Oncol Educ Book. 40:1–7. 2020.PubMed/NCBI
|
|
27
|
Rubinstein MM and Makker V: Optimizing immunotherapy for gynecologic cancers. Curr Opin Obstet Gynecol. 32:1–8. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sobecki-Rausch J and Barroilhet L: Anti-programmed Death-1 immunotherapy for endometrial cancer with microsatellite instability-high tumors. Curr Treat Options Oncol. 20:832019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Grywalska E, Sobstyl M, Putowski L and Roliński J: Current possibilities of gynecologic cancer treatment with the use of immune checkpoint inhibitors. Int J Mol Sci. 20:202019. View Article : Google Scholar
|
|
30
|
Brooks RA, Fleming GF, Lastra RR, Lee NK, Moroney JW, Son CH, Tatebe K and Veneris JL: Current recommendations and recent progress in endometrial cancer. CA Cancer J Clin. 69:258–279. 2019.PubMed/NCBI
|
|
31
|
Pan K, Gong J, Huynh K and Cristea M: Current systemic treatment landscape of advanced gynecologic malignancies. Target Oncol. 14:269–283. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Barrington DA, Dilley SE, Smith HJ and Straughn JM Jr: Pembrolizumab in advanced recurrent endometrial cancer: A cost-effectiveness analysis. Gynecol Oncol. 153:381–384. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Richardson DL: New and novel therapies for gynecologic cancers. Semin Oncol Nurs. 35:217–219. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Garcia C and Ring KL: The role of PD-1 checkpoint inhibition in gynecologic malignancies. Curr Treat Options Oncol. 19:702018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Arend RC, Jones BA, Martinez A and Goodfellow P: Endometrial cancer: Molecular markers and management of advanced stage disease. Gynecol Oncol. 150:569–580. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Makker V, Green AK, Wenham RM, Mutch D, Davidson B and Miller DS: New therapies for advanced, recurrent, and metastatic endometrial cancers. Gynecol Oncol Res Pract. 4:192017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Mittica G, Ghisoni E, Giannone G, Aglietta M, Genta S and Valabrega G: Checkpoint inhibitors in endometrial cancer: Preclinical rationale and clinical activity. Oncotarget. 8:90532–90544. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Tomao F, Panici PB and Tomao S: Pembrolizumab in programmed death ligand 1-positive endometrial cancer. J Clin Oncol. 35:36332017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Danley K, Schmitz K, Ghai R, Sclamberg JS, Buckingham LE, Burgess K, Kuzel TM and Usha L: A durable response to pembrolizumab in a patient with uterine serous carcinoma and lynch syndrome due to the MSH6 germline mutation. Oncologist. May 20–2021.(Epub ahead of print). doi: 10.1002/onco.13832. View Article : Google Scholar
|
|
40
|
Carvalho JP, Del Giglio A, Achatz MI and Carvalho FM: Complete clinical response in stage IVB endometrioid endometrial carcinoma after first-line pembrolizumab therapy: Report of a case with isolated loss of PMS2 protein. Case Rep Oncol. 13:1067–1074. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ramos A, Del Carmen M and Yeku O: PD-1 inhibitor therapy in a patient with preexisting P-ANCA vasculitis: A case report and review of the literature. Case Rep Oncol Med. 2020:34289452020.PubMed/NCBI
|
|
42
|
Chan JK, Lakomy DS, McDonald Y and Kapp DS: Long-term durable responses after pembrolizumab immunotherapy for recurrent, resistant endometrial cancer. Gynecol Oncol Rep. 33:1005812020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Takeda A, Koike W and Watanabe K: Rapid regression of microsatellite instability-high/programmed cell death ligand 1-negative recurrent endometrial carcinoma by immune checkpoint blockade with pembrolizumab: A case report and literature review. Gynecol Oncol Rep. 32:1005532020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Veneris JT, Lee EK, Goebel EA, Nucci MR, Lindeman N, Horowitz NS, Lee L, Raut CP, Crotzer D, Matulonis U, et al: Diagnosis and management of a recurrent polymerase-epsilon (POLE)-mutated endometrial cancer. Gynecol Oncol. 153:471–478. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Dizon DS, Dias-Santagata D, Bregar A, Sullivan L, Filipi J, DiTavi E, Miller L, Ellisen L, Birrer M and DelCarmen M: Complete remission following pembrolizumab in a woman with mismatch repair-deficient endometrial cancer and a germline BRCA1 mutation. Oncologist. 23:650–653. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mehnert JM, Panda A, Zhong H, Hirshfield K, Damare S, Lane K, Sokol L, Stein MN, Rodriguez-Rodriquez L, Kaufman HL, et al: Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J Clin Invest. 126:2334–2340. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ott PA, Bang YJ, Berton-Rigaud D, Elez E, Pishvaian MJ, Rugo HS, Puzanov I, Mehnert JM, Aung KL, Lopez J, et al: Safety and antitumor activity of pembrolizumab in advanced programmed death ligand 1-positive endometrial cancer: Results from the KEYNOTE-028 study. J Clin Oncol. 35:2535–2541. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Choi MC, Moon YW, Jung SG, Park H, Joo WD, Song SH, Lee C, Kim G and Kim KA: Real-world experience with pembrolizumab treatment in patients with heavily treated recurrent gynecologic malignancies. Yonsei Med J. 61:844–850. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Roque DM, Bellone S, Siegel ER, Buza N, Bonazzoli E, Guglielmi A, Zammataro L, Nagarkatti N, Zaidi S, Lee J, et al: A phase II evaluation of pembrolizumab in recurrent microsatellite instability-high (MSI-H) endometrial cancer patients with Lynch-like versus MLH-1 methylated characteristics (NCT02899793). J Clin Oncol. 39 (Suppl 15):5523. 2021. View Article : Google Scholar
|
|
50
|
How J: The use of pembrolizumab and lenvatinib combination therapy in endometrial cancer. An examination of toxicity and treatment efficacy in clinical practice Presented at: The virtual 2021 SGO Annual Meeting on Womens Cancer; March 19–25, 2021, . Abstract 10775.
|
|
51
|
Makker V, Taylor MH, Aghajanian C, Oaknin A, Mier J, Cohn AL, Romeo M, Bratos R, Brose MS, DiSimone C, et al: Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer. J Clin Oncol. 38:2981–2992. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, Geva R, Gottfried M, Penel N, Hansen AR, et al: Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: Results from the phase II KEYNOTE-158 study. J Clin Oncol. 38:1–10. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Fader AN, Diaz LA, Armstrong DK, Tanner EJ III, Uram J, Eyring A, Wang H, Fisher G, Greten T and Le D: Preliminary results of a phase II study: PD-1 blockade in mismatch repair-deficient, recurrent or persistent endometrial cancer. Gynecol Oncol. 141:206–207. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Makker V: A multicenter, open-label, randomized, phases III study to compare the efficacy and safety of lenvatinib in combination with pembrolizumab versus treatment of physician's choice in patients with advanced endometrial cancer. Abstract ID: 11512. Presented at the Society of Gynecologic Oncology Virtual Annual Meeting on Women's Cancer. March 19-25–2021.
|
|
55
|
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et al: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 357:409–413. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
O'Malley D, Marabelle A, De Jesus-Acosta A, Piha-Paul SA, Arkhipov A, Longo F, Motola-Kuba D, Shapira-Frommer R, Geva R, Rimel BJ, et al: Pembrolizumab in patients with MSI-H advanced endometrial cancer from the KEYNOTE-158 study. Ann Oncol. 30:v425–v426. 2019. View Article : Google Scholar
|
|
57
|
Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, Daud A, Carlino MS, McNeil C, Lotem M, et al KEYNOTE-006 investigators, : Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 372:2521–2532. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ, Powell SF, et al KEYNOTE-189 investigators, : pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 378:2078–2092. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, Uenaka T and Asada M: E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 122:664–671. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tohyama O, Matsui J, Kodama K, Hata-Sugi N, Kimura T, Okamoto K, Minoshima Y, Iwata M and Funahashi Y: Antitumor activity of lenvatinib (E7080): An angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014:6387472014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Okamoto K, Kodama K, Takase K, Sugi NH, Yamamoto Y, Iwata M and Tsuruoka A: Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 340:97–103. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
ClinicalTrials.gov. Pembrolizumab (MK-3475) Plus Lenvatinib (E7080/MK-7902) Versus Chemotherapy for Endometrial Carcinoma (ENGOT-en9/MK-7902-001) (LEAP-001). ClinicalTrials.gov Identifier: NCT03884101. https://www.clinicaltrials.gov/ct2/show/NCT03884101June 16–2021
|
|
63
|
ClinicalTrials.gov. Pembrolizumab (MK-3475) Plus Lenvatinib (E7080/MK-7902) Versus Chemotherapy for Endometrial Carcinoma (ENGOT-en9 MK-7902-001). China Extension Study (LEAP −001). ClinicalTrials.gov Identifier: NCT04865289. https://clinicaltrials.gov/ct2/show/NCT04865289June 16–2021
|
|
64
|
Klopp A, Smith BD, Alektiar K, Cabrera A, Damato AL, Erickson B, Fleming G, Gaffney D, Greven K, Lu K, et al: The role of postoperative radiation therapy for endometrial cancer: Executive summary of an American Society for Radiation Oncology evidence-based guideline. Pract Radiat Oncol. 4:137–144. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tang C, Wang X, Soh H, Seyedin S, Cortez MA, Krishnan S, Massarelli E, Hong D, Naing A, Diab A, et al: Combining radiation and immunotherapy: A new systemic therapy for solid tumors? Cancer Immunol Res. 2:831–838. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J, et al: Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 203:1259–1271. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
ClinicalTrials.gov. Testing the Addition of the Immunotherapy Drug, Pembrolizumab, to the Usual Radiation Treatment for Newly Diagnosed Early Stage High Intermediate Risk Endometrial Cancer. ClinicalTrials.gov Identifier: NCT04214067. https://clinicaltrials.gov/ct2/show/NCT04214067June 16–2021
|
|
68
|
Patel SP and Kurzrock R: PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 14:847–856. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mukherji D, Jabbour MN, Saroufim M, Temraz S, Nasr R, Charafeddine M, Assi R, Shamseddine A and Tawil AN: Programmed death-ligand 1 expression in muscle-invasive bladder cancer cystectomy specimens and lymph node metastasis: A reliable treatment selection biomarker? Clin Genitourin Cancer. 14:183–187. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Schlötterer C: Evolutionary dynamics of microsatellite DNA. Chromosoma. 109:365–371. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Murali R, Soslow RA and Weigelt B: Classification of endometrial carcinoma: More than two types. Lancet Oncol. 15:e268–e278. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Rayner E, van Gool IC, Palles C, Kearsey SE, Bosse T, Tomlinson I and Church DN: A panoply of errors: Polymerase proofreading domain mutations in cancer. Nat Rev Cancer. 16:71–81. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Bellone S, Centritto F, Black J, Schwab C, English D, Cocco E, Lopez S, Bonazzoli E, Predolini F, Ferrari F, et al: Polymerase ε (POLE) ultra-mutated tumors induce robust tumor-specific CD4+ T cell responses in endometrial cancer patients. Gynecol Oncol. 138:11–17. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Uryvaev A, Passhak M, Hershkovits D, Sabo E and Bar-Sela G: The role of tumor-infiltrating lymphocytes (TILs) as a predictive biomarker of response to anti-PD1 therapy in patients with metastatic non-small cell lung cancer or metastatic melanoma. Med Oncol. 35:252018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wang F, Zhao Q, Wang YN, Jin Y, He MM, Liu ZX and Xu RH: Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncol. 5:1504–1506. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K, Chung HC, Kindler HL, Lopez-Martin JA, Miller WH Jr, et al: Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 21:1353–1365. 2020. View Article : Google Scholar : PubMed/NCBI
|