Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
January-2022 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2022 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

MCP‑1 targeting: Shutting off an engine for tumor development (Review)

  • Authors:
    • Liang Wang
    • Jinxin Lan
    • Jiaping Tang
    • Na Luo
  • View Affiliations / Copyright

    Affiliations: Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China, Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 26
    |
    Published online on: November 19, 2021
       https://doi.org/10.3892/ol.2021.13144
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

A large amount of research has proven that monocyte chemotactic protein‑1 (MCP‑1) is associated with different types of disease, including autoimmune, metabolic and cardiovascular diseases. In addition, several studies have found that MCP‑1 is associated with tumor development. MCP‑1 expression level in the tumor microenvironment is associated with tumor development, including in tumor invasion and metastasis, angiogenesis, and immune cell infiltration. However, the precise mechanism involved is currently being investigated. MCP‑1 exerts its effects mainly via the MCP‑1/C‑C motif chemokine receptor 2 axis and leads to the activation of classical signaling pathways, such as PI3K/Akt/mTOR, ERK/GSK‑3β/Snail, c‑Raf/MEK/ERK and MAPK in different cells. The specific mechanism is still under debate; however, target therapy utilizing MCP‑1 as a neutralizing antibody has been found to have a detrimental effect on tumor development. The aim of the present review was to examine the effect of MCP‑1 on tumor development from several aspects, including its structure, its involvement in signaling pathways, the participating cells, and the therapeutic agents targeting MCP‑1. The improved understanding into the structure of MCP‑1 and the mechanism of action may facilitate new and practical therapeutic agents to achieve maximum performance in the treatment of patients with cancer.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

da Cunha Santos G, Shepherd FA and Tsao MS: EGFR mutations and lung cancer. Annu Rev Pathol. 6:49–69. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al: EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science. 304:1497–1500. 2004. View Article : Google Scholar : PubMed/NCBI

3 

Deshmane SL, Kremlev S, Amini S and Sawaya BE: Monocyte chemoattractant protein-1 (MCP-1): An overview. J Interferon Cytokine Res. 29:313–326. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Blanpain CD, Migeotte I, Lee B, Vakili J, Doranz BJ, Govaerts C, Vassart G, Doms RW and Parmentier M: CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist. Blood. 94:1899–1905. 1999. View Article : Google Scholar : PubMed/NCBI

5 

Bonini JA, Martin SK, Dralyuk F, Roe MW, Philipson LH and Steiner DF: Cloning, expression, and chromosomal mapping of a novel human CC-chemokine receptor (CCR10) that displays high-affinity binding for MCP-1 and MCP-3. DNA Cell Biol. 16:1249–1256. 1997. View Article : Google Scholar : PubMed/NCBI

6 

Hemmerich S, Paavola C, Bloom A, Bhakta S, Freedman R, Grunberger D, Krstenansky J, Lee S, McCarley D, Mulkins M, et al: Identification of residues in the monocyte chemotactic protein-1 that contact the MCP-1 receptor, CCR2. Biochemistry. 38:13013–13025. 1999. View Article : Google Scholar : PubMed/NCBI

7 

Kashiwazaki M, Tanaka T, Kanda H, Ebisuno Y, Izawa D, Fukuma N, Akimitsu N, Sekimizu K, Monden M and Miyasaka M: A high endothelial venule-expressing promiscuous chemokine receptor DARC can bind inflammatory, but not lymphoid, chemokines and is dispensable for lymphocyte homing under physiological conditions. Int Immunol. 15:1219–1227. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Schweickart VL, Epp A, Raport CJ and Gray PW: CCR11 is a functional receptor for the monocyte chemoattractant protein family of chemokines. J Biol Chem. 275:9550–9556. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Robinson EA, Yoshimura T, Leonard EJ, Tanaka S, Griffin PR, Shabanowitz J, Hunt DF and Appella E: Complete amino acid sequence of a human monocyte chemoattractant, a putative mediator of cellular immune reactions. Proc Natl Acad Sci USA. 86:1850–1854. 1989. View Article : Google Scholar : PubMed/NCBI

10 

Yoshimura T, Robinson EA, Tanaka S, Appella E and Leonard EJ: Purification and amino acid analysis of two human monocyte chemoattractants produced by phytohemagglutinin-stimulated human blood mononuclear leukocytes. J Immunol. 142:1956–1962. 1989.PubMed/NCBI

11 

Yoshimura T, Yuhki N, Moore SK, Appella E, Lerman MI and Leonard EJ: Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Lett. 244:487–493. 1989. View Article : Google Scholar : PubMed/NCBI

12 

Bottazzi B, Colotta F, Sica A, Nobili N and Mantovani A: A chemoattractant expressed in human sarcoma cells (tumor-derived chemotactic factor, TDCF) is identical to monocyte chemoattractant protein-1/monocyte chemotactic and activating factor (MCP-1/MCAF). Int J Cancer. 45:795–797. 1990. View Article : Google Scholar : PubMed/NCBI

13 

Fujisaki K, Fujimoto H, Sangai T, Nagashima T, Sakakibara M, Shiina N, Kuroda M, Aoyagi Y and Miyazaki M: Cancer-mediated adipose reversion promotes cancer cell migration via IL-6 and MCP-1. Breast Cancer Res Treat. 150:255–263. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Wu Q, Li B, Li Z, Li J and Sun S and Sun S: Cancer-associated adipocytes: Key players in breast cancer progression. J Hematol Oncol. 12:952019. View Article : Google Scholar : PubMed/NCBI

15 

Mehrabian M, Sparkes RS, Mohandas T, Fogelman AM and Lusis AJ: Localization of monocyte chemotactic protein-1 gene (SCYA2) to human chromosome 17q11.2-q21.1. Genomics. 9:200–203. 1991. View Article : Google Scholar : PubMed/NCBI

16 

Lubkowski J, Bujacz G, Boqué L, Domaille PJ, Handel TM and Wlodawer A: The structure of MCP-1 in two crystal forms provides a rare example of variable quaternary interactions. Nat Struct Biol. 4:64–69. 1997. View Article : Google Scholar : PubMed/NCBI

17 

Zhang Y, Ernst CA and Rollins BJ: MCP-1: Structure/activity analysis. Methods. 10:93–103. 1996. View Article : Google Scholar : PubMed/NCBI

18 

Handel TM and Domaille PJ: Heteronuclear (1H, 13C, 15N) NMR assignments and solution structure of the monocyte chemoattractant protein-1 (MCP-1) dimer. Biochemistry. 35:6569–6584. 1996. View Article : Google Scholar : PubMed/NCBI

19 

Proost P, Struyf S, Couvreur M, Lenaerts JP, Conings R, Menten P, Verhaert P, Wuyts A and Damme JV: Posttranslational modifications affect the activity of the human monocyte chemotactic proteins MCP-1 and MCP-2: Identification of MCP-2(6–76) as a natural chemokine inhibitor. J Immunol. 160:4034–4041. 1998.PubMed/NCBI

20 

Jung Y, Ahn SH, Park H, Park SH, Choi K, Choi C, Kang JL and Choi YH: MCP-1 and MIP-3α secreted from necrotic cell-treated glioblastoma cells promote migration/infiltration of microglia. Cell Physiol Biochem. 48:1332–1346. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Lee CH, Hung PF, Lu SC, Chung HL, Chiang SL, Wu CT, Chou WC and Sun CY: MCP-1/MCPIP-1 signaling modulates the effects of IL-1β in renal cell carcinoma through ER stress-mediated apoptosis. Int J Mol Sci. 20:61012019. View Article : Google Scholar : PubMed/NCBI

22 

Yue Y, Lian J, Wang T, Luo C, Yuan Y, Qin G, Zhang B and Zhang Y: Interleukin-33-nuclear factor-κB-CCL2 signaling pathway promotes progression of esophageal squamous cell carcinoma by directing regulatory T cells. Cancer Sci. 111:795–806. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Nakatsumi H, Matsumoto M and Nakayama KI: Noncanonical pathway for regulation of CCL2 expression by an mTORC1-FOXK1 axis promotes recruitment of tumor-associated macrophages. Cell Rep. 21:2471–2486. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Chen C, He W, Huang J, Wang B, Li H, Cai Q, Su F, Bi J, Liu H, Zhang B, et al: LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat Commun. 9:38262018. View Article : Google Scholar : PubMed/NCBI

25 

Liu S, Liu D, Zeng X, Wang J, Liu J, Cheng J, Lei K, Bai H, Ji N, Zhou M, et al: PA28γ acts as a dual regulator of IL-6 and CCL2 and contributes to tumor angiogenesis in oral squamous cell carcinoma. Cancer Lett. 428:192–200. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Castiñeiras-Landeira MI, Rodiño-Janeiro BK, Paradela-Dobarro B, Batista-Oliveira AL, Raposeiras-Roubín S, González-Peteiro M, González-Juanatey JR and Álvarez E: Change of concept about the regulation of angiotensin II-induced monocyte chemoattractant protein-1 production in human endothelial cells. Vascul Pharmacol. 80:20–34. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Rollins BJ and Pober JS: Interleukin-4 induces the synthesis and secretion of MCP-1/JE by human endothelial cells. Am J Pathol. 138:1315–1319. 1991.PubMed/NCBI

28 

Hembruff SL, Jokar I, Yang L and Cheng N: Loss of transforming growth factor-beta signaling in mammary fibroblasts enhances CCL2 secretion to promote mammary tumor progression through macrophage-dependent and -independent mechanisms. Neoplasia. 12:425–433. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Kuper C, Beck FX and Neuhofer W: Autocrine MCP-1/CCR2 signaling stimulates proliferation and migration of renal carcinoma cells. Oncol Lett. 12:2201–2209. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Lu Y, Cai Z, Galson DL, Xiao G, Liu Y, George DE, Melhem MF, Yao Z and Zhang J: Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. Prostate. 66:1311–1318. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Mohamed HT, El-Ghonaimy EA, El-Shinawi M, Hosney M, Götte M, Woodward WA, El-Mamlouk T and Mohamed MM: IL-8 and MCP-1/CCL2 regulate proteolytic activity in triple negative inflammatory breast cancer a mechanism that might be modulated by Src and Erk1/2. Toxicol Appl Pharmacol. 401:1150922020. View Article : Google Scholar : PubMed/NCBI

32 

Fridlender ZG, Kapoor V, Buchlis G, Cheng G, Sun J, Wang LC, Singhal S, Snyder LA and Albelda SM: Monocyte chemoattractant protein-1 blockade inhibits lung cancer tumor growth by altering macrophage phenotype and activating CD8+ cells. Am J Respir Cell Mol Biol. 44:230–237. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Loberg RD, Ying C, Craig M, Yan L, Snyder LA and Pienta KJ: CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia. 9:556–562. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Sun C, Li X, Guo E, Li N, Zhou B, Lu H, Huang J, Xia M, Shan W, Wang B, et al: MCP-1/CCR-2 axis in adipocytes and cancer cell respectively facilitates ovarian cancer peritoneal metastasis. Oncogene. 39:1681–1695. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Teng KY, Han J, Zhang X, Hsu SH, He S, Wani NA, Barajas JM, Snyder LA, Frankel WL, Caligiuri MA, et al: Blocking the CCL2-CCR2 axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model. Mol Cancer Ther. 16:312–322. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Bakst RL, Xiong H, Chen CH, Deborde S, Lyubchik A, Zhou Y, He S, McNamara W, Lee SY, Olson OC, et al: Inflammatory monocytes promote perineural invasion via CCL2-mediated recruitment and cathepsin B expression. Cancer Res. 77:6400–6414. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Salacz M, Kast RE, Saki N, Brüning A, Karpel-Massler G and Halatsch ME: Toward a noncytotoxic glioblastoma therapy: Blocking MCP-1 with the MTZ regimen. Onco Targets Ther. 27:2535–2545. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H and Matsushima K: Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res. 6:3282–3289. 2000.PubMed/NCBI

40 

Kuziel G, Thompson V, D'Amato JV and Arendt LM: Stromal CCL2 signaling promotes mammary tumor fibrosis through recruitment of myeloid-lineage cells. Cancers (Basel). 12:20832020. View Article : Google Scholar : PubMed/NCBI

41 

Cho HR, Kumari N, Vu HT, Kim H, Park CK and Choi SH: Increased antiangiogenic effect by blocking CCL2-dependent macrophages in a rodent glioblastoma model: Correlation study with dynamic susceptibility contrast perfusion MRI. Sci Rep. 9:110852019. View Article : Google Scholar : PubMed/NCBI

42 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

43 

Guru SK, Pathania AS, Kumar S, Ramesh D, Kumar M, Rana S, Kumar A, Malik F, Sharma PR, Chandan BK, et al: Secalonic acid-D represses HIF1alpha/VEGF-mediated angiogenesis by regulating the Akt/mTOR/p70S6K signaling cascade. Cancer Res. 75:2886–2896. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Zhang J, Lu Y and Pienta KJ: Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst. 102:522–528. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Chen Q, Sun W, Liao Y, Zeng H, Shan L, Yin F, Wang Z, Zhou Z, Hua Y and Cai Z: Monocyte chemotactic protein-1 promotes the proliferation and invasion of osteosarcoma cells and upregulates the expression of AKT. Mol Med Rep. 12:219–225. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Loberg RD, Day LL, Harwood J, Ying C, John LN, Giles R, Neeley CK and Pienta KJ: CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia. 8:578–586. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Liu JF, Chen PC, Chang TM and Hou CH: Monocyte chemoattractant protein-1 promotes cancer cell migration via c-Raf/MAPK/AP-1 pathway and MMP-9 production in osteosarcoma. J Exp Clin Cancer Res. 39:2542020. View Article : Google Scholar : PubMed/NCBI

48 

He S and Zhang X: The rs1024611 in the CCL2 gene and risk of gynecological cancer in Asians: A meta-analysis. World J Surg Oncol. 16:342018. View Article : Google Scholar : PubMed/NCBI

49 

Ito Y, Ishiguro H, Kobayashi N, Hasumi H, Watanabe M, Yao M and Uemura H: Adipocyte-derived monocyte chemotactic protein-1 (MCP-1) promotes prostate cancer progression through the induction of MMP-2 activity. Prostate. 75:1009–1019. 2015. View Article : Google Scholar : PubMed/NCBI

50 

An J, Xue Y, Long M, Zhang G, Zhang J and Su H: Targeting CCR2 with its antagonist suppresses viability, motility and invasion by downregulating MMP-9 expression in non-small cell lung cancer cells. Oncotarget. 8:39230–39240. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Tang CH and Tsai CC: CCL2 increases MMP-9 expression and cell motility in human chondrosarcoma cells via the Ras/Raf/MEK/ERK/NF-κB signaling pathway. Biochem Pharmacol. 83:335–344. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Yang CQ, Li W, Li SQ, Li J, Li YW, Kong SX, Liu RM, Wang SM and Lv WM: MCP-1 stimulates MMP-9 expression via ERK 1/2 and p38 MAPK signaling pathways in human aortic smooth muscle cells. Cell Physiol Biochem. 34:266–276. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Orlichenko LS and Radisky DC: Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis. 25:593–600. 2008. View Article : Google Scholar : PubMed/NCBI

54 

Li S, Lu J, Chen Y, Xiong N, Li L, Zhang J, Yang H, Wu C, Zeng H and Liu Y: MCP-1-induced ERK/GSK-3β/snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells. Cell Mol Immunol. 14:621–630. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Liu W, Wang L, Zhang J, Qiao L, Liu Y, Yang X, Zhang J, Zheng W and Ma Z: Purification of recombinant human chemokine CCL2 in E. coli and its function in ovarian cancer. 3 Biotech. 11:82021. View Article : Google Scholar : PubMed/NCBI

56 

Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ and Murphy WJ: Human endothelial cells express CCR2 and respond to MCP-1: Direct role of MCP-1 in angiogenesis and tumor progression. Blood. 96:34–40. 2000. View Article : Google Scholar : PubMed/NCBI

57 

Wang S, Xu M, Li F, Wang X, Bower KA, Frank JA, Lu Y, Chen G, Zhang Z, Ke Z, et al: Ethanol promotes mammary tumor growth and angiogenesis: The involvement of chemoattractant factor MCP-1. Breast Cancer Res Treat. 133:1037–1048. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Deng W, Gu X, Lu Y, Gu C, Zheng Y, Zhang Z, Chen L, Yao Z and Li LY: Down-modulation of TNFSF15 in ovarian cancer by VEGF and MCP-1 is a pre-requisite for tumor neovascularization. Angiogenesis. 15:71–85. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Arefieva TI, Kukhtina NB, Antonova OA and Krasnikova TL: MCP-1-stimulated chemotaxis of monocytic and endothelial cells is dependent on activation of different signaling cascades. Cytokine. 31:439–446. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, et al: Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 7:121502016. View Article : Google Scholar : PubMed/NCBI

61 

Yang H, Zhang Q, Xu M, Wang L, Chen X, Feng Y, Li Y, Zhang X, Cui W and Jia X: CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol Cancer. 19:412020. View Article : Google Scholar : PubMed/NCBI

62 

Guilliams M, Mildner A and Yona S: Developmental and functional heterogeneity of monocytes. Immunity. 49:595–613. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Shand FH, Ueha S, Otsuji M, Koid SS, Shichino S, Tsukui T, Kosugi-Kanaya M, Abe J, Tomura M, Ziogas J and Matsushima K: Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes. Proc Natl Acad Sci USA. 111:7771–7776. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, Dang Y, Chu Y, Fan J and He R: FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76:4124–4135. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Laviron M and Boissonnas A: Ontogeny of tumor-associated macrophages. Front Immunol. 10:17992019. View Article : Google Scholar : PubMed/NCBI

66 

Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X, et al: Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 66:157–167. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Cranford TL, Velázquez KT, Enos RT, Bader JE, Carson MS, Chatzistamou L, Nagarkatti M and Murphy EA: Loss of monocyte chemoattractant protein-1 expression delays mammary tumorigenesis and reduces localized inflammation in the C3(1)/SV40Tag triple negative breast cancer model. Cancer Biol Ther. 18:85–93. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Li F, Kitajima S, Kohno S, Yoshida A, Tange S, Sasaki S, Okada N, Nishimoto Y, Muranaka H, Nagatani N, et al: Retinoblastoma inactivation induces a protumoral microenvironment via enhanced CCL2 secretion. Cancer Res. 79:3903–3915. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Zheng Y, Wang Z, Wei S, Liu Z and Chen G: Epigenetic silencing of chemokine CCL2 represses macrophage infiltration to potentiate tumor development in small cell lung cancer. Cancer Lett. 499:148–163. 2021. View Article : Google Scholar : PubMed/NCBI

70 

Zhu Z, Hou Q and Guo H: NT5DC2 knockdown inhibits colorectal carcinoma progression by repressing metastasis, angiogenesis and tumor-associated macrophage recruitment: A mechanism involving VEGF signaling. Exp Cell Res. 397:1123112020. View Article : Google Scholar : PubMed/NCBI

71 

Sodhi A and Biswas SK: Monocyte chemoattractant protein-1-induced activation of p42/44 MAPK and c-Jun in murine peritoneal macrophages: A potential pathway for macrophage activation. J Interferon Cytokine Res. 22:517–526. 2002. View Article : Google Scholar : PubMed/NCBI

72 

Biswas SK and Sodhi A: Tyrosine phosphorylation-mediated signal transduction in MCP-1-induced macrophage activation: Role for receptor dimerization, focal adhesion protein complex and JAK/STAT pathway. Int Immunopharmacol. 2:1095–1107. 2002. View Article : Google Scholar : PubMed/NCBI

73 

Kuroda T, Kitadai Y, Tanaka S, Yang X, Mukaida N, Yoshihara M and Chayama K: Monocyte chemoattractant protein-1 transfection induces angiogenesis and tumorigenesis of gastric carcinoma in nude mice via macrophage recruitment. Clin Cancer Res. 11:7629–7636. 2005. View Article : Google Scholar : PubMed/NCBI

74 

Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, Kanojia D, Pituch KC, Qiao J, Pytel P, et al: CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76:5671–5682. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Mittal P, Wang L, Akimova T, Leach CA, Clemente JC, Sender MR, Chen Y, Turunen BJ and Hancock WW: The CCR2/MCP-1 chemokine pathway and lung adenocarcinoma. Cancers (Basel). 12:37232020. View Article : Google Scholar : PubMed/NCBI

76 

Sun W, Li WJ, Wei FQ, Wong TS, Lei WB, Zhu XL, Li J and Wen WP: Blockade of MCP-1/CCR4 signaling-induced recruitment of activated regulatory cells evokes an antitumor immune response in head and neck squamous cell carcinoma. Oncotarget. 7:37714–37727. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Svensson S, Abrahamsson A, Rodriguez GV, Olsson AK, Jensen L, Cao Y and Dabrosin C: CCL2 and CCL5 are novel therapeutic targets for estrogen-dependent breast cancer. Clin Cancer Res. 21:3794–3805. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Yao M, Smart C, Hu Q and Cheng N: Continuous delivery of neutralizing antibodies elevate CCL2 levels in mice bearing MCF10CA1d breast tumor xenografts. Transl Oncol. 10:734–743. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Wichmann G, Körner C, Boehm A, Mozet C and Dietz A: Stimulation by monocyte chemoattractant protein-1 modulates the ex-vivo colony formation by head and neck squamous cell carcinoma cells. Anticancer Res. 35:3917–3924. 2015.PubMed/NCBI

80 

Van Coillie E, Van Damme J and Opdenakker G: The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev. 10:61–86. 1999. View Article : Google Scholar : PubMed/NCBI

81 

Yoshimura T: The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine. 98:71–78. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Laird BJA, Fallon M, Hjermstad MJ, Tuck S, Kaasa S, Klepstad P and McMillan DC: Quality of life in patients with advanced cancer: Differential association with performance status and systemic inflammatory response. J Clin Oncol. 34:2769–2775. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T and Bentires-Alj M: Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 515:130–133. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Shen C, Lie P, Miao T, Yu M, Lu Q, Feng T, Li J, Zu T, Liu X and Li H: Conditioned medium from umbilical cord mesenchymal stem cells induces migration and angiogenesis. Mol Med Rep. 12:20–30. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Luo Y, Laning J, Hayashi M, Hancock PR, Rollins B and Dorf ME: Serologic analysis of the mouse beta chemokine JE/monocyte chemoattractant protein-1. J Immunol. 153:3708–3716. 1994.PubMed/NCBI

86 

Peri G, Milanese C, Matteucci C, Ruco L, Zhou D, Sozzani S, Coletta I and Mantovani A: A new monoclonal antibody (5D3-F7) which recognizes human monocyte-chemotactic protein-1 but not related chemokines. Development of a sandwich ELISA and in situ detection of producing cells. J Immunol Methods. 174:249–257. 1994. View Article : Google Scholar : PubMed/NCBI

87 

Zhao C, Bu X, Wang W, Ma T and Ma H: GEC-derived SFRP5 inhibits Wnt5a-induced macrophage chemotaxis and activation. PLoS One. 9:e850582014. View Article : Google Scholar : PubMed/NCBI

88 

Fujimoto H, Sangai T, Ishii G, Ikehara A, Nagashima T, Miyazaki M and Ochiai A: Stromal MCP-1 in mammary tumors induces tumor-associated macrophage infiltration and contributes to tumor progression. Int J Cancer. 125:1276–1284. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Roy RM, Wuthrich M and Klein BS: Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung. J Immunol. 189:2545–2552. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Arakaki R, Yamasaki T, Kanno T, Shibasaki N, Sakamoto H, Utsunomiya N, Sumiyoshi T, Shibuya S, Tsuruyama T, Nakamura E, et al: CCL2 as a potential therapeutic target for clear cell renal cell carcinoma. Cancer Med. 5:2920–2933. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Lai SW, Liu YS, Lu DY and Tsai CF: Melatonin modulates the microenvironment of glioblastoma multiforme by targeting sirtuin 1. Nutrients. 11:13432019. View Article : Google Scholar : PubMed/NCBI

92 

Zhan Z, Xie X, Cao H, Zhou X, Zhang XD, Fan H and Liu Z: Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy. 10:257–268. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Loberg RD, Ying C, Craig M, Day LL, Sargent E, Neeley C, Wojno K, Snyder LA, Yan L and Pienta KJ: Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res. 67:9417–9424. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang L, Lan J, Tang J and Luo N: MCP‑1 targeting: Shutting off an engine for tumor development (Review). Oncol Lett 23: 26, 2022.
APA
Wang, L., Lan, J., Tang, J., & Luo, N. (2022). MCP‑1 targeting: Shutting off an engine for tumor development (Review). Oncology Letters, 23, 26. https://doi.org/10.3892/ol.2021.13144
MLA
Wang, L., Lan, J., Tang, J., Luo, N."MCP‑1 targeting: Shutting off an engine for tumor development (Review)". Oncology Letters 23.1 (2022): 26.
Chicago
Wang, L., Lan, J., Tang, J., Luo, N."MCP‑1 targeting: Shutting off an engine for tumor development (Review)". Oncology Letters 23, no. 1 (2022): 26. https://doi.org/10.3892/ol.2021.13144
Copy and paste a formatted citation
x
Spandidos Publications style
Wang L, Lan J, Tang J and Luo N: MCP‑1 targeting: Shutting off an engine for tumor development (Review). Oncol Lett 23: 26, 2022.
APA
Wang, L., Lan, J., Tang, J., & Luo, N. (2022). MCP‑1 targeting: Shutting off an engine for tumor development (Review). Oncology Letters, 23, 26. https://doi.org/10.3892/ol.2021.13144
MLA
Wang, L., Lan, J., Tang, J., Luo, N."MCP‑1 targeting: Shutting off an engine for tumor development (Review)". Oncology Letters 23.1 (2022): 26.
Chicago
Wang, L., Lan, J., Tang, J., Luo, N."MCP‑1 targeting: Shutting off an engine for tumor development (Review)". Oncology Letters 23, no. 1 (2022): 26. https://doi.org/10.3892/ol.2021.13144
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team