|
1
|
Kasof GM, Goyal L and White E: Btf, a
novel death-promoting transcriptional repressor that interacts with
Bcl-2-related proteins. Mol Cell Biol. 19:4390–4404. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bracken CP, Wall SJ, Barré B, Panov KI,
Ajuh PM and Perkins ND: Regulation of cyclin D1 RNA stability by
SNIP1. Cancer Res. 68:7621–7628. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Savage KI, Gorski JJ, Barros EM, Irwin GW,
Manti L, Powell AJ, Pellagatti A, Lukashchuk N, McCance DJ,
McCluggage WG, et al: Identification of a BRCA1-mRNA splicing
complex required for efficient DNA repair and maintenance of
genomic stability. Mol Cell. 54:445–459. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Vohhodina J, Barros EM, Savage AL,
Liberante FG, Manti L, Bankhead P, Cosgrove N, Madden AF, Harkin DP
and Savage KI: The RNA processing factors THRAP3 and BCLAF1 promote
the DNA damage response through selective mRNA splicing and nuclear
export. Nucleic Acids Res. 45:12816–12833. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Varia S, Cheedu D, Markey M, Torres-Shafer
K, Battini VP, Bubulya A and Bubulya PA: Alignment of Mitotic
Chromosomes in Human Cells Involves SR-Like Splicing Factors Btf
and TRAP150. Int J Mol Sci. 18:19562017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Merz C, Urlaub H, Will CL and Lührmann R:
Protein composition of human mRNPs spliced in vitro and
differential requirements for mRNP protein recruitment. RNA.
13:116–128. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lee YY, Yu YB, Gunawardena HP, Xie L and
Chen X: BCLAF1 is a radiation-induced H2AX-interacting partner
involved in γH2AX-mediated regulation of apoptosis and DNA repair.
Cell Death Dis. 3:e3592012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Shao AW, Sun H, Geng Y, Peng Q, Wang P,
Chen J, Xiong T, Cao R and Tang J: Bclaf1 is an important NF-κB
signaling transducer and C/EBPβ regulator in DNA damage-induced
senescence. Cell Death Differ. 23:865–875. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu H, Lu ZG, Miki Y and Yoshida K:
Protein kinase C delta induces transcription of the TP53 tumor
suppressor gene by controlling death-promoting factor Btf in the
apoptotic response to DNA damage. Mol Cell Biol. 27:8480–8491.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ma Z, Wang H, Meng F, Han Y, Chen Y, Xiao
M, Jiang H, Yu Z and Xu B: Role of BCLAF-1 in PD-L1 stabilization
in response to ionizing irradiation. Cancer Sci. 112:4064–4074.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu J, Li J, Sun Z, Duan Y, Wang F, Wei G
and Yang JH: Bcl-2-associated transcription factor 1
Ser290 phosphorylation mediates DNA damage response and
regulates radiosensitivity in gastric cancer. J Transl Med.
19:3392021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
McPherson JP, Sarras H, Lemmers B, Tamblyn
L, Migon E, Matysiak-Zablocki E, Hakem A, Azami SA, Cardoso R, Fish
J, et al: Essential role for Bclaf1 in lung development and immune
system function. Cell Death Differ. 16:331–339. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lee SH, Kalejta RF, Kerry J, Semmes OJ,
O'Connor CM, Khan Z, Garcia BA, Shenk T and Murphy E: BclAF1
restriction factor is neutralized by proteasomal degradation and
microRNA repression during human cytomegalovirus infection. Proc
Natl Acad Sci USA. 109:9575–9580. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Qin C, Zhang R, Lang Y, Shao A, Xu A, Feng
W, Han J, Wang M, He W, Yu C, et al: Bclaf1 critically regulates
the type I interferon response and is degraded by alphaherpesvirus
US3. PLoS Pathog. 15:e10075592019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ziegelbauer JM, Sullivan CS and Ganem D:
Tandem array-based expression screens identify host mRNA targets of
virus-encoded microRNAs. Nat Genet. 41:130–134. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Nilsson K, Wu C and Schwartz S: Role of
the DNA Damage Response in Human Papillomavirus RNA Splicing and
Polyadenylation. Int J Mol Sci. 19:17352018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Meinke P, Nguyen TD and Wehnert MS: The
LINC complex and human disease. Biochem Soc Trans. 39:1693–1697.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Haraguchi T, Holaska JM, Yamane M, Koujin
T, Hashiguchi N, Mori C, Wilson KL and Hiraoka Y: Emerin binding to
Btf, a death-promoting transcriptional repressor, is disrupted by a
missense mutation that causes Emery-Dreifuss muscular dystrophy.
Eur J Biochem. 271:1035–1045. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lowe M, Lage J, Paatela E, Munson D,
Hostager R, Yuan C, Katoku-Kikyo N, Ruiz-Estevez M, Asakura Y,
Staats J, et al: Cry2 Is Critical for Circadian Regulation of
Myogenic Differentiation by Bclaf1-Mediated mRNA Stabilization of
Cyclin D1 and Tmem176b. Cell Rep. 22:2118–2132. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang Y, Li M, Wang Y, Liu J, Zhang M, Fang
X, Chen H and Zhang C: A Zfp609 circular RNA regulates myoblast
differentiation by sponging miR-194-5p. Int J Biol Macromol.
121:1308–1313. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lamy L, Ngo VN, Emre NC, Shaffer AL III,
Yang Y, Tian E, Nair V, Kruhlak MJ, Zingone A, Landgren O, et al:
Control of autophagic cell death by caspase-10 in multiple myeloma.
Cancer Cell. 23:435–449. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Shen B, Tan M, Mu X, Qin Y, Zhang F, Liu Y
and Fan Y: Upregulated SMYD3 promotes bladder cancer progression by
targeting BCLAF1 and activating autophagy. Tumour Biol.
37:7371–7381. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang Y, Zhang X, Cai B, Li Y, Jiang Y, Fu
X, Zhao Y, Gao H, Yang Y, Yang J, et al: The long noncoding RNA
lncCIRBIL disrupts the nuclear translocation of Bclaf1 alleviating
cardiac ischemia-reperfusion injury. Nat Commun. 12:5222021.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kong S, Kim SJ, Sandal B, Lee SM, Gao B,
Zhang DD and Fang D: The type III histone deacetylase Sirt1 protein
suppresses p300-mediated histone H3 lysine 56 acetylation at Bclaf1
promoter to inhibit T cell activation. J Biol Chem.
286:16967–16975. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Jarboui MA, Wynne K, Elia G, Hall WW and
Gautier VW: Proteomic profiling of the human T-cell nucleolus. Mol
Immunol. 49:441–452. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Philipps D, Celotto AM, Wang QQ, Tarng RS
and Graveley BR: Arginine/serine repeats are sufficient to
constitute a splicing activation domain. Nucleic Acids Res.
31:6502–6508. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Schaal TD and Maniatis T: Multiple
distinct splicing enhancers in the protein-coding sequences of a
constitutively spliced pre-mRNA. Mol Cell Biol. 19:261–273. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Smith CW and Valcárcel J: Alternative
pre-mRNA splicing: The logic of combinatorial control. Trends
Biochem Sci. 25:381–388. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sarras H, Alizadeh Azami S and McPherson
JP: In search of a function for BCLAF1. ScientificWorldJournal.
10:1450–1461. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wen Y, Zhou X, Lu M, He M, Tian Y, Liu L,
Wang M, Tan W, Deng Y, Yang X, et al: Bclaf1 promotes angiogenesis
by regulating HIF-1α transcription in hepatocellular carcinoma.
Oncogene. 38:1845–1859. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Mou SJ, Yang PF, Liu YP, Xu N, Jiang WW
and Yue WJ: BCLAF1 promotes cell proliferation, invasion and
drug-resistance though targeting lncRNA NEAT1 in hepatocellular
carcinoma. Life Sci. 242:1171772020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Rénert AF, Leprince P, Dieu M, Renaut J,
Raes M, Bours V, Chapelle JP, Piette J, Merville MP and Fillet M:
The proapoptotic C16-ceramide-dependent pathway requires the
death-promoting factor Btf in colon adenocarcinoma cells. J
Proteome Res. 8:4810–4822. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Orieux G, Picault L, Slembrouck A, Roger
JE, Guillonneau X, Sahel JA, Saule S, McPherson JP and Goureau O:
Involvement of Bcl-2-associated transcription factor 1 in the
differentiation of early-born retinal cells. J Neurosci.
34:1530–1541. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhou X, Li X, Cheng Y, Wu W, Xie Z, Xi Q,
Han J, Wu G, Fang J and Feng Y: BCLAF1 and its splicing regulator
SRSF10 regulate the tumorigenic potential of colon cancer cells.
Nat Commun. 5:45812014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li X, He Z, Cheng B, Fang Q, Ma D, Lu T,
Wei D, Kuang X, Tang S, Xiong J, et al: Effect of BCLAF1 on HDAC
inhibitor LMK-235-mediated apoptosis of diffuse large B cell
lymphoma cells and its mechanism. Cancer Biol Ther. 19:825–834.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen M, Zhang R, Lu L, Du J, Chen C, Ding
K, Wei X, Zhang G, Huang Y and Hou J: lncRNA PVT1 accelerates
malignant phenotypes of bladder cancer cells by modulating
miR-194-5p/BCLAF1 axis as a ceRNA. Aging (Albany NY).
12:22291–22312. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yu S, Wang X, Dou N, Zhou J, Gao Y and Li
Y: B-cell lymphoma-2-associated transcription factor 1 is
overexpressed and contributes to sorafenib resistance in
hepatocellular carcinoma. Hepatol Res. 49:1329–1340. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Dell'Aversana C, Giorgio C, D'Amato L,
Lania G, Matarese F, Saeed S, Di Costanzo A, Belsito Petrizzi V,
Ingenito C, Martens JHA, et al: miR-194-5p/BCLAF1 deregulation in
AML tumorigenesis. Leukemia. 31:2315–2325. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhou X, Wen Y, Tian Y, He M, Ke X, Huang
Z, He Y, Liu L, Scharf A, Lu M, et al: Heat Shock Protein
90α-Dependent B-Cell-2-Associated Transcription Factor 1 Promotes
Hepatocellular Carcinoma Proliferation by Regulating MYC
Proto-Oncogene c-MYC mRNA Stability. Hepatology. 69:1564–1581.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang X, Wei X, Yuan Y, Sun Q, Zhan J,
Zhang J, Tang Y, Li F, Ding L, Ye Q, et al: Src-mediated
phosphorylation converts FHL1 from tumor suppressor to tumor
promoter. J Cell Biol. 217:1335–1351. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Jiang T, Liu B, Wu D and Zhang F: BCLAF1
induces cisplatin resistance in lung cancer cells. Oncol Lett.
20:2272020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang S, Zhang M, Chen J, Zhao J, Su J and
Zhang X: Ginsenoside Compound K Regulates HIF-1α-Mediated
Glycolysis Through Bclaf1 to Inhibit the Proliferation of Human
Liver Cancer Cells. Front Pharmacol. 11:5833342020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yoshitomi T, Kawakami K, Enokida H,
Chiyomaru T, Kagara I, Tatarano S, Yoshino H, Arimura H, Nishiyama
K, Seki N, et al: Restoration of miR-517a expression induces cell
apoptosis in bladder cancer cell lines. Oncol Rep. 25:1661–1668.
2011.PubMed/NCBI
|
|
44
|
The National Center for Biotechnology
Information [OL], BCLAF1 BCL2 associated transcription factor 1
[Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/9774November
7–2021.
|
|
45
|
Black DL: Mechanisms of alternative
pre-messenger RNA splicing. Annu Rev Biochem. 72:291–336. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wahl MC, Will CL and Lührmann R: The
spliceosome: Design principles of a dynamic RNP machine. Cell.
136:701–718. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wu JY and Maniatis T: Specific
interactions between proteins implicated in splice site selection
and regulated alternative splicing. Cell. 75:1061–1070. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kohtz JD, Jamison SF, Will CL, Zuo P,
Lührmann R, Garcia-Blanco MA and Manley JL: Protein-protein
interactions and 5′-splice-site recognition in mammalian mRNA
precursors. Nature. 368:119–124. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ramsay RG and Gonda TJ: MYB function in
normal and cancer cells. Nat Rev Cancer. 8:523–534. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Shaulian E and Karin M: AP-1 as a
regulator of cell life and death. Nat Cell Biol. 4:E131–E136. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Nerlov C: The C/EBP family of
transcription factors: A paradigm for interaction between gene
expression and proliferation control. Trends Cell Biol. 17:318–324.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
LaGory EL and Giaccia AJ: The
ever-expanding role of HIF in tumour and stromal biology. Nat Cell
Biol. 18:356–365. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Keith B, Johnson RS and Simon MC: HIF1α
and HIF2α: Sibling rivalry in hypoxic tumour growth and
progression. Nat Rev Cancer. 12:9–22. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shao A, Lang Y, Wang M, Qin C, Kuang Y,
Mei Y, Lin D, Zhang S and Tang J: Bclaf1 is a direct target of
HIF-1 and critically regulates the stability of HIF-1α under
hypoxia. Oncogene. 39:2807–2818. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu F, Tai Y and Ma J: lncRNA
NEAT1/let-7a-5p axis regulates the cisplatin resistance in
nasopharyngeal carcinoma by targeting Rsf-1 and modulating the
Ras-MAPK pathway. Cancer Biol Ther. 19:534–542. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhang J, Zhao B, Chen X, Wang Z, Xu H and
Huang B: Silence of Long Noncoding RNA NEAT1 Inhibits Malignant
Biological Behaviors and Chemotherapy Resistance in Gastric Cancer.
Pathol Oncol Res. 24:109–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
An J, Lv W and Zhang Y: lncRNA NEAT1
contributes to paclitaxel resistance of ovarian cancer cells by
regulating ZEB1 expression via miR-194. OncoTargets Ther.
10:5377–5390. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Maloney A and Workman P: HSP90 as a new
therapeutic target for cancer therapy: The story unfolds. Expert
Opin Biol Ther. 2:3–24. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sirvent N, Imbert V, Frelin C, Griessinger
E and Peyron JF: Fighting cancer via NF-kappa B inhibition. Arch
Pediatr. 10:632–634. 2003.(In French). View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Haefner B: NF-κB: Arresting a major
culprit in cancer. Drug Discov Today. 7:653–663. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Barkett M and Gilmore TD: Control of
apoptosis by Rel/NF-kappaB transcription factors. Oncogene.
18:6910–6924. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Karin M, Cao Y, Greten FR and Li Z-W:
NF-kappaB in cancer: From innocent bystander to major culprit. Nat
Rev Cancer. 2:301–310. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
64
|
Karin M and Lin A: NF-kappaB at the
crossroads of life and death. Nat Immunol. 3:221–227. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wilson GK, Tennant DA and McKeating JA:
Hypoxia inducible factors in liver disease and hepatocellular
carcinoma: Current understanding and future directions. J Hepatol.
61:1397–1406. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kim DY, Yuan HD, Chung IK and Chung SH:
Compound K, intestinal metabolite of ginsenoside, attenuates
hepatic lipid accumulation via AMPK activation in human hepatoma
cells. J Agric Food Chem. 57:1532–1537. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Luo M, Li Z, Wang W, Zeng Y, Liu Z and Qiu
J: Long non-coding RNA H19 increases bladder cancer metastasis by
associating with EZH2 and inhibiting E-cadherin expression. Cancer
Lett. 333:213–221. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Varier RA and Timmers HT: Histone lysine
methylation and demethylation pathways in cancer. Biochim Biophys
Acta. 1815:75–89. 2011.PubMed/NCBI
|
|
70
|
Bian Y, Li W, Kremer DM, Sajjakulnukit P,
Li S, Crespo J, Nwosu ZC, Zhang L, Czerwonka A, Pawłowska A, et al:
Cancer SLC43A2 alters T cell methionine metabolism and histone
methylation. Nature. 585:277–282. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Luo XG, Zhang CL, Zhao WW, Liu ZP, Liu L,
Mu A, Guo S, Wang N, Zhou H and Zhang TC: Histone methyltransferase
SMYD3 promotes MRTF-A-mediated transactivation of MYL9 and
migration of MCF-7 breast cancer cells. Cancer Lett. 344:129–137.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Fenizia C, Bottino C, Corbetta S,
Fittipaldi R, Floris P, Gaudenzi G, Carra S, Cotelli F, Vitale G
and Caretti G: SMYD3 promotes the epithelial-mesenchymal transition
in breast cancer. Nucleic Acids Res. 47:1278–1293. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Pattingre S, Tassa A, Qu X, Garuti R,
Liang XH, Mizushima N, Packer M, Schneider MD and Levine B: Bcl-2
antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell.
122:927–939. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
da Costa JB, Gibb EA, Nykopp TK, Mannas M,
Wyatt AW and Black PC: Molecular tumor heterogeneity in muscle
invasive bladder cancer: Biomarkers, subtypes, and implications for
therapy. Urol Oncol. 2018:S1078-1439(18)30463-0. 2018.
|
|
75
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020:
GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36
Cancers in 185 Countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Burma S, Chen BP and Chen DJ: Role of
non-homologous end joining (NHEJ) in maintaining genomic integrity.
DNA Repair (Amst). 5:1042–1048. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wang Q, Gao F, Wang T, Flagg T and Deng X:
A nonhomologous end-joining pathway is required for protein
phosphatase 2A promotion of DNA double-strand break repair.
Neoplasia. 11:1012–1021. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li Z, Owonikoko TK, Sun SY, Ramalingam SS,
Doetsch PW, Xiao ZQ, Khuri FR, Curran WJ and Deng X: c-Myc
suppression of DNA double-strand break repair. Neoplasia.
14:1190–1202. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Niu C, Liang C, Guo J, Cheng L, Zhang H,
Qin X, Zhang Q, Ding L, Yuan B, Xu X, et al: Downregulation and
growth inhibitory role of FHL1 in lung cancer. Int J Cancer.
130:2549–2556. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ding L, Wang Z, Yan J, Yang X, Liu A, Qiu
W, Zhu J, Han J, Zhang H, Lin J, et al: Human four-and-a-half LIM
family members suppress tumor cell growth through a TGF-beta-like
signaling pathway. J Clin Invest. 119:349–361. 2009.PubMed/NCBI
|
|
81
|
Ding L, Niu C, Zheng Y, Xiong Z, Liu Y,
Lin J, Sun H, Huang K, Yang W, Li X, et al: FHL1 interacts with
oestrogen receptors and regulates breast cancer cell growth. J Cell
Mol Med. 15:72–85. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Xu X, Fan Z, Liang C, Li L, Wang L, Liang
Y, Wu J, Chang S, Yan Z, Lv Z, et al: A signature motif in LIM
proteins mediates binding to checkpoint proteins and increases
tumour radiosensitivity. Nat Commun. 8:140592017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Fennell DA, Summers Y, Cadranel J, Benepal
T, Christoph DC, Lal R, Das M, Maxwell F, Visseren-Grul C and Ferry
D: Cisplatin in the modern era: The backbone of first-line
chemotherapy for non-small cell lung cancer. Cancer Treat Rev.
44:42–50. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Perše M and Večerić-Haler Ž:
Cisplatin-Induced Rodent Model of Kidney Injury: Characteristics
and Challenges. BioMed Res Int. 2018:14628022018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Dasari S and Tchounwou PB: Cisplatin in
cancer therapy: Molecular mechanisms of action. Eur J Pharmacol.
740:364–378. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang A, Ning Z, Lu C, Gao W, Liang J, Yan
Q, Tan G and Liu J: USP22 Induces Cisplatin Resistance in Lung
Adenocarcinoma by Regulating γH2AX-Mediated DNA Damage Repair and
Ku70/Bax-Mediated Apoptosis. Front Pharmacol. 8:2742017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Park CH, Eun CS and Han DS: Intestinal
microbiota, chronic inflammation, and colorectal cancer. Intest
Res. 16:338–345. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kulik L and El-Serag HB: Epidemiology and
management of hepatocellular carcinoma. Gastroenterology.
156:477–491.e1. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Burns JS and Manda G: Metabolic Pathways
of the Warburg Effect in Health and Disease: Perspectives of
Choice, Chain or Chance. Int J Mol Sci. 18:27552017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yu L, Chen X, Sun X, Wang L and Chen S:
The Glycolytic Switch in Tumors: How Many Players Are Involved? J
Cancer. 8:3430–3440. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Turesson I, Bjorkholm M, Blimark CH,
Kristinsson S, Velez R and Landgren O: Rapidly changing myeloma
epidemiology in the general population: Increased incidence, older
patients, and longer survival. Eur J Haematol. 101:237–244. 2018.
View Article : Google Scholar
|
|
92
|
Wang J, Chun HJ, Wong W, Spencer DM and
Lenardo MJ: Caspase-10 is an initiator caspase in death receptor
signaling. Proc Natl Acad Sci USA. 98:13884–13888. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Horn S, Hughes MA, Schilling R, Sticht C,
Tenev T, Ploesser M, Meier P, Sprick MR, MacFarlane M and Leverkus
M: Caspase-10 Negatively Regulates Caspase-8-Mediated Cell Death,
Switching the Response to CD95L in Favor of NF-κB Activation and
Cell Survival. Cell Rep. 19:785–797. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Caimi PF, Hill BT, Hsi ED and Smith MR:
Clinical approach to diffuse large B cell lymphoma. Blood Rev.
30:477–491. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Mensah AA, Kwee I, Gaudio E, Rinaldi A,
Ponzoni M, Cascione L, Fossati G, Stathis A, Zucca E, Caprini G, et
al: Novel HDAC inhibitors exhibit pre-clinical efficacy in lymphoma
models and point to the importance of CDKN1A expression levels in
mediating their anti-tumor response. Oncotarget. 6:5059–5071. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ganai SA: Histone deacetylase inhibitor
givinostat: The small-molecule with promising activity against
therapeutically challenging haematological malignancies. J
Chemother. 28:247–254. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Adams CM, Hiebert SW and Eischen CM: Myc
Induces miRNA-Mediated Apoptosis in Response to HDAC Inhibition in
Hematologic Malignancies. Cancer Res. 76:736–748. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Marek L, Hamacher A, Hansen FK, Kuna K,
Gohlke H, Kassack MU and Kurz T: Histone deacetylase (HDAC)
inhibitors with a novel connecting unit linker region reveal a
selectivity profile for HDAC4 and HDAC5 with improved activity
against chemoresistant cancer cells. J Med Chem. 56:427–436. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Culp-Hill R, D'Alessandro A and Pietras
EM: Extinguishing the Embers: Targeting AML Metabolism. Trends Mol
Med. 27:332–344. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Safi S, Beckhove P, Warth A, Benner A,
Roeder F, Rieken S, Debus J, Dienemann H, Hoffmann H and Huber PE:
A randomized phase II study of radiation induced immune boost in
operable non-small cell lung cancer (RadImmune trial). BMC Cancer.
15:9882015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Baidoo KE, Yong K and Brechbiel MW:
Molecular pathways: Targeted α-particle radiation therapy. Clin
Cancer Res. 19:530–537. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Matsuoka S, Ballif BA, Smogorzewska A,
McDonald ER III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini
N, Lerenthal Y, et al: ATM and ATR substrate analysis reveals
extensive protein networks responsive to DNA damage. Science.
316:1160–1166. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Keir ME, Liang SC, Guleria I, Latchman YE,
Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH and Sharpe
AH: Tissue expression of PD-L1 mediates peripheral T cell
tolerance. J Exp Med. 203:883–895. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Schreiner B, Bailey SL, Shin T, Chen L and
Miller SD: PD-1 ligands expressed on myeloid-derived APC in the CNS
regulate T-cell responses in EAE. Eur J Immunol. 38:2706–2717.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Antonia SJ, Villegas A, Daniel D, Vicente
D, Murakami S, Hui R, Kurata T, Chiappori A, Lee KH, de Wit M, et
al PACIFIC Investigators, : Overall survival with durvalumab after
chemoradiotherapy in stage III NSCLC. N Engl J Med. 379:2342–2350.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Shaverdian N, Lisberg AE, Bornazyan K,
Veruttipong D, Goldman JW, Formenti SC, Garon EB and Lee P:
Previous radiotherapy and the clinical activity and toxicity of
pembrolizumab in the treatment of non-small-cell lung cancer: A
secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet Oncol.
18:895–903. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chang Y, Cesarman E, Pessin MS, Lee F,
Culpepper J, Knowles DM and Moore PS: Identification of
herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma.
Science. 266:1865–1869. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
1Gao SJ, Kingsley L, Hoover DR, Spira TJ,
Rinaldo CR, Saah A, Phair J, Detels R, Parry P, Chang Y, et al:
Seroconversion to antibodies against Kaposi's sarcoma-associated
herpesvirus-related latent nuclear antigens before the development
of Kaposi's sarcoma. N Engl J Med. 335:233–241. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Cesarman E, Chang Y, Moore PS, Said JW and
Knowles DM: Kaposi's sarcoma-associated herpesvirus-like DNA
sequences in AIDS-related body-cavity-based lymphomas. N Engl J
Med. 332:1186–1191. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Soulier J, Grollet L, Oksenhendler E,
Cacoub P, Cazals-Hatem D, Babinet P, d'Agay MF, Clauvel JP, Raphael
M, Degos L, et al: Kaposi's sarcoma-associated herpesvirus-like DNA
sequences in multicentric Castleman's disease. Blood. 86:1276–1280.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Boshoff C and Weiss R: AIDS-related
malignancies. Nat Rev Cancer. 2:373–382. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Griffante G, Gugliesi F, Pasquero S,
Dell'Oste V, Biolatti M, Salinger AJ, Mondal S, Thompson PR,
Weerapana E, Lebbink RJ, et al: Human cytomegalovirus-induced host
protein citrullination is crucial for viral replication. Nat
Commun. 12:39102021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Halenius A and Hengel H: Human
cytomegalovirus and autoimmune disease. BioMed Res Int.
2014:4729782014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Herbein G: The Human Cytomegalovirus, from
Oncomodulation to Oncogenesis. Viruses. 10:4082018. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Sadler AJ and Williams BR:
Interferon-inducible antiviral effectors. Nat Rev Immunol.
8:559–568. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
zur Hausen H: Papillomaviruses and cancer:
From basic studies to clinical application. Nat Rev Cancer.
2:342–350. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
117
|
You J, Srinivasan V, Denis GV, Harrington
WJ Jr, Ballestas ME, Kaye KM and Howley PM: Kaposi's
sarcoma-associated herpesvirus latency-associated nuclear antigen
interacts with bromodomain protein Brd4 on host mitotic
chromosomes. J Virol. 80:8909–8919. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Eltzschig HK and Eckle T: Ischemia and
reperfusion–from mechanism to translation. Nat Med. 17:1391–1401.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Kalogeris T, Baines CP, Krenz M and
Korthuis RJ: Ischemia/Reperfusion. Compr Physiol. 7:113–170. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Diella F, Cameron S, Gemünd C, Linding R,
Via A, Kuster B, Sicheritz-Pontén T, Blom N and Gibson TJ: Phospho.
ELM: A database of experimentally verified phosphorylation sites in
eukaryotic proteins. BMC Bioinformatics. 5:792004. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Wang Z, Song Y, Ye M, Dai X, Zhu X and Wei
W: The diverse roles of SPOP in prostate cancer and kidney cancer.
Nat Rev Urol. 17:339–350. 2020. View Article : Google Scholar : PubMed/NCBI
|