|
1
|
Allen BL and Taatjes DJ: The mediator
complex: A central integrator of transcription. Nat Rev Mol Cell
Biol. 16:155–166. 2015. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kornberg RD: Mediator and the mechanism of
transcriptional activation. Trends Biochem Sci. 30:235–239. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mo X, Kowenz-Leutz E, Xu H and Leutz A:
Ras induces mediator complex exchange on C/EBP beta. Mol Cell.
13:241–250. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Pavri R, Lewis B, Kim TK, Dilworth FJ,
Erdjument-Bromage H, Tempst P, de Murcia G, Evans R, Chambon P and
Reinberg D: PARP-1 determines specificity in a retinoid signaling
pathway via direct modulation of mediator. Mol Cell. 18:83–96.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bernecky C, Grob P, Ebmeier CC, Nogales E
and Taatjes DJ: Molecular architecture of the human Mediator-RNA
polymerase II-TFIIF assembly. PLoS Biol. 9:e10006032011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Elmlund H, Baraznenok V, Lindahl M,
Samuelsen CO, Koeck PJ, Holmberg S, Hebert H and Gustafsson CM: The
cyclin-dependent kinase 8 module sterically blocks Mediator
interactions with RNA polymerase II. Proc Natl Acad Sci USA.
103:15788–15793. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Knuesel MT, Meyer KD, Bernecky C and
Taatjes DJ: The human CDK8 subcomplex is a molecular switch that
controls Mediator coactivator function. Genes Dev. 23:439–451.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Turunen M, Spaeth JM, Keskitalo S, Park
MJ, Kivioja T, Clark AD, Mäkinen N, Gao F, Palin K, Nurkkala H, et
al: Uterine leiomyoma-linked MED12 mutations disrupt
mediator-associated CDK activity. Cell Rep. 7:654–660. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang X, Sun Q, Ding Z, Ji J, Wang J, Kong
X, Yang J and Cai G: Redefining the modular organization of the
core Mediator complex. Cell Res. 24:796–808. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Knuesel MT, Meyer KD, Donner AJ, Espinosa
JM and Taatjes DJ: The human CDK8 subcomplex is a histone kinase
that requires Med12 for activity and can function independently of
mediator. Mol Cell Biol. 29:650–661. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Xu W and Ji JY: Dysregulation of CDK8 and
Cyclin C in tumorigenesis. J Genetics. 38:439–452. 2011.PubMed/NCBI
|
|
12
|
Klatt F, Leitner A, Kim IV, Ho-Xuan H,
Schneider EV, Langhammer F, Weinmann R, Müller MR, Huber R, Meister
G and Kuhn CD: A precisely positioned MED12 activation helix
stimulates CDK8 kinase activity. Proc Natl Acad Sci USA.
117:2894–2905. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li YC, Chao TC, Kim HJ, Cholko T, Chen SF,
Li G, Snyder L, Nakanishi K, Chang CE, Murakami K, et al: Structure
and noncanonical Cdk8 activation mechanism within an
Argonaute-containing Mediator kinase module. Sci Adv.
7:eabd44842021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Holstege FC, Jennings EG, Wyrick JJ, Lee
TI, Hengartner CJ, Green MR, Golub TR, Lander ES and Young RA:
Dissecting the regulatory circuitry of a eukaryotic genome. Cell.
95:717–728. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Clark AD, Oldenbroek M and Boyer TG:
Mediator kinase module and human tumorigenesis. Crit Rev Biochem
Mol Biol. 50:393–426. 2015.PubMed/NCBI
|
|
16
|
Ajabnoor GMA, Mohammed NA, Banaganapalli
B, Abdullah LS, Bondagji ON, Mansouri N, Sahly NN, Vaidyanathan V,
Bondagji N, Elango R and Shaik NA: Expanded somatic mutation
spectrum of MED12 gene in uterine leiomyomas of Saudi Arabian
Women. Front Genet. 9:5522018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Banaganapalli B, Mohammed K, Khan IA,
Al-Aama JY, Elango R and Shaik NA: A Computational protein
phenotype prediction approach to analyze the deleterious mutations
of human MED12 gene. J Cell Biochem. 117:2023–2035. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Croce S and Chibon F: MED12 and uterine
smooth muscle oncogenesis: State of the art and perspectives. Eur J
Cancer. 51:1603–1610. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
de Graaff MA, Cleton-Jansen AM, Szuhai K
and Bovée JV: Mediator complex subunit 12 exon 2 mutation analysis
in different subtypes of smooth muscle tumors confirms genetic
heterogeneity. Hum Pathol. 44:1597–1604. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Heinonen HR, Sarvilinna NS, Sjöberg J,
Kämpjärvi K, Pitkänen E, Vahteristo P, Mäkinen N and Aaltonen LA:
MED12 mutation frequency in unselected sporadic uterine leiomyomas.
Fertil Steril. 102:1137–1142. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Je EM, Kim MR, Min KO, Yoo NJ and Lee SH:
Mutational analysis of MED12 exon 2 in uterine leiomyoma and other
common tumors. Int J Cancer. 131:E1044–E1047. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kämpjärvi K, Mäkinen N, Kilpivaara O,
Arola J, Heinonen HR, Böhm J, Abdel-Wahab O, Lehtonen HJ, Pelttari
LM, Mehine M, et al: Somatic MED12 mutations in uterine
leiomyosarcoma and colorectal cancer. Br J Cancer. 107:1761–1765.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Li N, Fassl A, Chick J, Inuzuka H, Li X,
Mansour MR, Liu L, Wang H, King B, Shaik S, et al: Cyclin C is a
haploinsufficient tumour suppressor. Nat Cell Biol. 16:1080–1091.
2014. View
Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mäkinen N, Heinonen HR, Moore S, Tomlinson
IP, van der Spuy ZM and Aaltonen LA: MED12 exon 2 mutations are
common in uterine leiomyomas from South African patients.
Oncotarget. 2:966–969. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mäkinen N, Mehine M, Tolvanen J, Kaasinen
E, Li Y, Lehtonen HJ, Gentile M, Yan J, Enge M, Taipale M, et al:
MED12, the mediator complex subunit 12 gene, is mutated at high
frequency in uterine leiomyomas. Science. 334:252–255. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Mäkinen N, Vahteristo P, Kämpjärvi K,
Arola J, Bützow R and Aaltonen LA: MED12 exon 2 mutations in
histopathological uterine leiomyoma variants. Eur J Hum Genet.
21:1300–1303. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Matsubara A, Sekine S, Yoshida M, Yoshida
A, Taniguchi H, Kushima R, Tsuda H and Kanai Y: Prevalence of MED12
mutations in uterine and extrauterine smooth muscle tumours.
Histopathology. 62:657–661. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
McGuire MM, Yatsenko A, Hoffner L, Jones
M, Surti U and Rajkovic A: Whole exome sequencing in a Random
Sample of North American Women with leiomyomas identifies MED12
mutations in majority of uterine leiomyomas. PLoS One.
7:e332512012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Mehine M, Kaasinen E, Mäkinen N, Katainen
R, Kämpjärvi K, Pitkänen E, Heinonen HR, Bützow R, Kilpivaara O,
Kuosmanen A, et al: Characterization of uterine leiomyomas by
whole-genome sequencing. N Engl J Med. 369:43–53. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Pérot G, Croce S, Ribeiro A, Lagarde P,
Velasco V, Neuville A, Coindre JM, Stoeckle E, Floquet A, MacGrogan
G and Chibon F: MED12 alterations in both human benign and
malignant uterine soft tissue tumors. PLoS One. 7:e400152012.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ravegnini G, Mariño-Enriquez A, Slater J,
Eilers G, Wang Y, Zhu M, Nucci MR, George S, Angelini S, Raut CP
and Fletcher JA: MED12 mutations in leiomyosarcoma and extrauterine
leiomyoma. Mod Pathol. 26:743–749. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Schwetye KE, Pfeifer JD and Duncavage EJ:
MED12 exon 2 mutations in uterine and extrauterine smooth muscle
tumors. Hum Pathol. 45:65–70. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang H, Shen Q, Ye LH and Ye J: MED12
mutations in human diseases. Protein Cell. 4:643–646. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang L, Hu S, Xin F, Zhao H, Li G, Ran W,
Xing X and Wang J: MED12 exon 2 mutation is uncommon in intravenous
leiomyomatosis: Clinicopathologic features and molecular study. Hum
Pathol. 99:36–42. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang Q, Ubago J, Li L, Guo H, Liu Y,
Qiang W, Kim JJ, Kong B and Wei JJ: Molecular analyses of 6
different types of uterine smooth muscle tumors: Emphasis in
atypical leiomyoma. Cancer. 120:3165–3177. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Park MJ, Shen H, Spaeth JM, Tolvanen JH,
Failor C, Knudtson JF, McLaughlin J, Halder SK, Yang Q, Bulun SE,
et al: Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt
allosteric activation of cyclin C-CDK8/19. J Biol Chem.
293:4870–4882. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kämpjärvi K, Järvinen TM, Heikkinen T,
Ruppert AS, Senter L, Hoag KW, Dufva O, Kontro M, Rassenti L,
Hertlein E, et al: Somatic MED12 mutations are associated with poor
prognosis markers in chronic lymphocytic leukemia. Oncotarget.
6:1884–1888. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lim WK, Ong CK, Tan J, Thike AA, Ng CC,
Rajasegaran V, Myint SS, Nagarajan S, Nasir ND, McPherson JR, et
al: Exome sequencing identifies highly recurrent MED12 somatic
mutations in breast fibroadenoma. Nat Genet. 46:877–880. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yoshida M, Sekine S, Ogawa R, Yoshida H,
Maeshima A, Kanai Y, Kinoshita T and Ochiai A: Frequent MED12
mutations in phyllodes tumours of the breast. Br J Cancer.
112:1703–1708. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kishi T, Ikeda A, Koyama N, Fukada J and
Nagao R: A refined two-hybrid system reveals that
SCF(Cdc4)-dependent degradation of Swi5 contributes to the
regulatory mechanism of S-phase entry. Proc Natl Acad Sci USA.
105:14497–14502. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Porter DC, Farmaki E, Altilia S, Schools
GP, West DK, Chen M, Chang BD, Puzyrev AT, Lim CU, Rokow-Kittell R,
et al: Cyclin-dependent kinase 8 mediates chemotherapy-induced
tumor-promoting paracrine activities. Proc Natl Acad Sci USA.
109:13799–13804. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Xu D, Li CF, Zhang X, Gong Z, Chan CH, Lee
SW, Jin G, Rezaeian AH, Han F, Wang J, et al: Skp2-macroH2A1-CDK8
axis orchestrates G2/M transition and tumorigenesis. Nat Commun.
6:66412015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ng CC, Tan J, Ong CK, Lim WK, Rajasegaran
V, Nasir ND, Lim JC, Thike AA, Salahuddin SA, Iqbal J, et al: MED12
is frequently mutated in breast phyllodes tumours: A study of 112
cases. J Clin Pathol. 68:685–691. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Darooei M, Khan F, Rehan M, Zubeda S,
Jeyashanker E, Annapurna S, Shah A, Maddali S and Hasan Q: MED12
somatic mutations encompassing exon 2 associated with benign breast
fibroadenomas and not breast carcinoma in Indian women. J Cell
Biochem. 120:182–191. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Huang S, Hölzel M, Knijnenburg T,
Schlicker A, Roepman P, McDermott U, Garnett M, Grernrum W, Sun C,
Prahallad A, et al: MED12 controls the response to multiple cancer
drugs through regulation of TGF-β receptor signaling. Cell.
151:937–950. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wu B, Słabicki M, Sellner L, Dietrich S,
Liu X, Jethwa A, Hüllein J, Walther T, Wagner L, Huang Z, et al:
MED12 mutations and NOTCH signalling in chronic lymphocytic
leukaemia. Br J Haematol. 179:421–429. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Bullerdiek J and Rommel B: Factors
targeting MED12 to drive tumorigenesis? F1000Res. 7:3592018.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Guièze R, Robbe P, Clifford R, de Guibert
S, Pereira B, Timbs A, Dilhuydy MS, Cabes M, Ysebaert L, Burns A,
et al: Presence of multiple recurrent mutations confers poor trial
outcome of relapsed/refractory CLL. Blood. 126:2110–2117. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Aster JC, Pear WS and Blacklow SC: The
varied roles of notch in cancer. Annu Rev Pathol. 12:245–275. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Meurette O and Mehlen P: Notch signaling
in the tumor microenvironment. Cancer Cell. 34:536–548. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Nowell CS and Radtke F: Notch as a tumour
suppressor. Nat Rev Cancer. 17:145–159. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ntziachristos P, Lim JS, Sage J and
Aifantis I: From fly wings to targeted cancer therapies: A
centennial for notch signaling. Cancer Cell. 25:318–334. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rosati E, Sabatini R, Rampino G, Tabilio
A, Di Ianni M, Fettucciari K, Bartoli A, Coaccioli S, Screpanti I
and Marconi P: Constitutively activated Notch signaling is involved
in survival and apoptosis resistance of B-CLL cells. Blood.
113:856–865. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lupien M and Brown M: Cistromics of
hormone-dependent cancer. Endocr Relat Cancer. 16:381–389. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shaikhibrahim Z, Offermann A, Braun M,
Menon R, Syring I, Nowak M, Halbach R, Vogel W, Ruiz C, Zellweger
T, et al: MED12 overexpression is a frequent event in
castration-resistant prostate cancer. Endocr Relat Cancer.
21:663–675. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Baca SC, Prandi D, Lawrence MS, Mosquera
JM, Romanel A, Drier Y, Park K, Kitabayashi N, MacDonald TY, Ghandi
M, et al: Punctuated evolution of prostate cancer genomes. Cell.
153:666–677. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Barbieri CE, Baca SC, Lawrence MS,
Demichelis F, Blattner M, Theurillat JP, White TA, Stojanov P, Van
Allen E, Stransky N, et al: Exome sequencing identifies recurrent
SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet.
44:685–689. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Grasso CS, Wu YM, Robinson DR, Cao X,
Dhanasekaran SM, Khan AP, Quist MJ, Jing X, Lonigro RJ, Brenner JC,
et al: The mutational landscape of lethal castration-resistant
prostate cancer. Nature. 487:239–243. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Risheg H, Graham JM Jr, Clark RD, Rogers
RC, Opitz JM, Moeschler JB, Peiffer AP, May M, Joseph SM, Jones JR,
et al: A recurrent mutation in MED12 leading to R961W causes
Opitz-Kaveggia syndrome. Nat Genet. 39:451–453. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Schwartz CE, Tarpey PS, Lubs HA, Verloes
A, May MM, Risheg H, Friez MJ, Futreal PA, Edkins S, Teague J, et
al: The original Lujan syndrome family has a novel missense
mutation (p.N1007S) in the MED12 gene. J Med Genet. 44:472–477.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Vulto-van Silfhout AT, de Vries BB, van
Bon BW, Hoischen A, Ruiterkamp-Versteeg M, Gilissen C, Gao F, van
Zwam M, Harteveld CL, van Essen AJ, et al: Mutations in MED12 cause
X-linked Ohdo syndrome. Am J Hum Genet. 92:401–406. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chen M, Carkner R and Buttyan R: The
hedgehog/Gli signaling paradigm in prostate cancer. Expert Rev
Endocrinol Metab. 6:453–467. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhou H, Kim S, Ishii S and Boyer TG:
Mediator modulates Gli3-dependent Sonic hedgehog signaling. Mol
Cell Biol. 26:8667–8682. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhou H, Spaeth JM, Kim NH, Xu X, Friez MJ,
Schwartz CE and Boyer TG: MED12 mutations link intellectual
disability syndromes with dysregulated GLI3-dependent Sonic
Hedgehog signaling. Proc Natl Acad Sci USA. 109:19763–19768. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Banerji S, Cibulskis K, Rangel-Escareno C,
Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY,
Sougnez C, Zou L, et al: Sequence analysis of mutations and
translocations across breast cancer subtypes. Nature. 486:405–409.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chao X, Tan W, Tsang JY, Tse GM, Hu J, Li
P, Hou J, Li M, He J and Sun P: Clinicopathologic and genetic
features of metaplastic breast cancer with osseous differentiation:
A series of 6 cases. Breast Cancer. 28:1100–1111. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Shah SP, Roth A, Goya R, Oloumi A, Ha G,
Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, et al: The clonal
and mutational evolution spectrum of primary triple-negative breast
cancers. Nature. 486:395–399. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang Y, Shi X, Zhang J, Chen X, Zhang P,
Liu A and Zhu T: A comprehensive analysis of somatic alterations in
Chinese ovarian cancer patients. Sci Rep. 11:3872021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang S, Liu F, Halfmann P, Behrens RT,
Liu P, McIlwain SJ, Ong IM, Donahue K, Wang Y, Kawaoka Y, et al:
Mediator complex subunit 12 is a gatekeeper of SARS-CoV-2 infection
in breast cancer cells. Genes Dis. Aug 17–2021.doi:
10.1016/j.gendis.2021.08.001 (Epub ahead of print).
|
|
70
|
Zhang S, O'Regan R and Xu W: The emerging
role of mediator complex subunit 12 in tumorigenesis and response
to chemotherapeutics. Cancer. 126:939–948. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang L, Zeng H, Wang Q, Zhao Z, Boyer TG,
Bian X and Xu W: MED12 methylation by CARM1 sensitizes human breast
cancer cells to chemotherapy drugs. Sci Adv. 1:e15004632015.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Peng BL, Li WJ, Ding JC, He YH, Ran T, Xie
BL, Wang ZR, Shen HF, Xiao RQ, Gao WW, et al: A hypermethylation
strategy utilized by enhancer-bound CARM1 to promote estrogen
receptor α-dependent transcriptional activation and breast
carcinogenesis. Theranostics. 10:3451–3473. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Schleicher EM, Dhoonmoon A, Jackson LM,
Clements KE, Stump CL, Nicolae CM and Moldovan GL: Dual genome-wide
CRISPR knockout and CRISPR activation screens identify mechanisms
that regulate the resistance to multiple ATR inhibitors. PLoS
Genet. 16:e10091762020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Reaper PM, Griffiths MR, Long JM, Charrier
JD, Maccormick S, Charlton PA, Golec JM and Pollard JR: Selective
killing of ATM- or p53-deficient cancer cells through inhibition of
ATR. Nat Chem Biol. 7:428–430. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Reinhardt HC, Aslanian AS, Lees JA and
Yaffe MB: p53-deficient cells rely on ATM- and ATR-mediated
checkpoint signaling through the p38MAPK/MK2 pathway for survival
after DNA damage. Cancer Cell. 11:175–189. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Vendetti FP, Lau A, Schamus S, Conrads TP,
O'Connor MJ and Bakkenist CJ: The orally active and bioavailable
ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of
cisplatin to resolve ATM-deficient non-small cell lung cancer in
vivo. Oncotarget. 6:44289–44305. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Luo XL, Deng CC, Su XD, Wang F, Chen Z, Wu
XP, Liang SB, Liu JH and Fu LW: Loss of MED12 induces tumor
dormancy in human epithelial ovarian cancer via downregulation of
EGFR. Cancer Res. 78:3532–3543. 2018.PubMed/NCBI
|
|
78
|
Srivastava S and Kulshreshtha R: Insights
into the regulatory role and clinical relevance of mediator
subunit, MED12, in human diseases. J Cell Physiol. 236:3163–3177.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Rosell R, Bivona TG and Karachaliou N:
Genetics and biomarkers in personalisation of lung cancer
treatment. Lancet. 382:720–731. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Broude EV, Győrffy B, Chumanevich AA, Chen
M, McDermott MS, Shtutman M, Catroppo JF and Roninson IB:
Expression of CDK8 and CDK8-interacting Genes as potential
biomarkers in breast cancer. Curr Cancer Drug Targets. 15:739–749.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ma D, Chen X, Shen XB, Sheng LQ and Liu
XH: Binding patterns and structure-activity relationship of CDK8
inhibitors. Bioorg Chem. 96:1036242020. View Article : Google Scholar : PubMed/NCBI
|