|
1
|
Kurman RJ: Origin and molecular
pathogenesis of ovarian high-grade serous carcinoma. Ann Oncol. 24
(Suppl 10):x16–x21. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Jaganjac M, Milkovic L, Sunjic SB and
Zarkovic N: The NRF2, Thioredoxin, and glutathione system in
tumorigenesis and anticancer therapies. Antioxidants (Basel).
9:11512020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gram M and Åkerström B: Editorial:
Biomarkers of oxidative stress. Front Physiol. 11:3382020.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sosa V, Moliné T, Somoza R, Paciucci R,
Kondoh H and LLeonart ME: Oxidative stress and cancer: An overview.
Ageing Res Rev. 12:376–390. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wang T, Shigdar S, Gantier MP, Hou Y, Wang
L, Li Y, Shamaileh HA, Yin W, Zhou SF, Zhao X and Duan W: Cancer
stem cell targeted therapy: Progress amid controversies.
Oncotarget. 6:44191–44206. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Meng Y, Fan XY, Yang LJ, Xu BQ, He D, Xu
Z, Wu D, Wang B, Cui HY, Wang SJ, et al: Detachment activated
CyPA/CD147 induces cancer stem cell potential in non-stem breast
cancer cells. Front Cell Dev Biol. 8:5438562020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mvunta DH, Miyamoto T, Asaka R, Yamada Y,
Ando H, Higuchi S, Ida K, Kashima H and Shiozawa T: SIRT1 regulates
the chemoresistance and invasiveness of ovarian carcinoma cells.
Transl Oncol. 10:621–631. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Shimizu T, Inoue K, Hachiya H, Shibuya N,
Shimoda M and Kubota K: Frequent alteration of the protein
synthesis of enzymes for glucose metabolism in hepatocellular
carcinomas. J Gastroenterol. 49:1324–1332. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Rutkowski DT, Arnold SM, Miller CN, Wu J,
Li J, Gunnison KM, Mori K, Sadighi Akha AA, Raden D and Kaufman RJ:
Adaptation to ER stress is mediated by differential stabilities of
pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol.
4:e3742006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Reuter S, Gupta SC, Chaturvedi MM and
Aggarwal BB: Oxidative stress, inflammation, and cancer: How are
they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hayes JD, Dinkova-Kostova AT and Tew KD:
Oxidative stress in cancer. Cancer Cell. 38:167–197. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Narayanan D, Ma S and Özcelik D: Targeting
the redox landscape in cancer therapy. Cancers (Basel).
12:17062020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Schiliro C and Firestein BL: Mechanisms of
metabolic reprogramming in cancer cells supporting enhanced growth
and proliferation. Cells. 10:10562021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chen L, Zhang Z, Hoshino A, Zheng HD,
Morley M, Arany Z and Rabinowitz JD: NADPH production by the
oxidative pentose-phosphate pathway supports folate metabolism. Nat
Metab. 1:404–415. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Jiang P, Du W, Wang X, Mancuso A, Gao X,
Wu M and Yang X: p53 regulates biosynthesis through direct
inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol.
13:310–316. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Nakashima C, Yamamoto K, Fujiwara-Tani R,
Luo Y, Matsushima S, Fujii K, Ohmori H, Sasahira T, Sasaki T,
Kitadai Y, et al: Expression of cytosolic malic enzyme (ME1) is
associated with disease progression in human oral squamous cell
carcinoma. Cancer Sci. 109:2036–2045. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu X and Gong Y: Isocitrate dehydrogenase
inhibitors in acute myeloid leukemia. Biomark Res. 7:222019.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Jiang P, Du W and Wu M: Regulation of the
pentose phosphate pathway in cancer. Protein Cell. 5:592–602. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Pramono AA, Rather GM, Herman H, Lestari K
and Bertino JR: NAD- and NADPH-contributing enzymes as therapeutic
targets in cancer: An overview. Biomolecules. 10:3582020.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gupta RK, Patel AK, Shah N, Chaudhary AK,
Jha UK, Yadav UC, Gupta PK and Pakuwal U: Oxidative stress and
antioxidants in disease and cancer: A review. Asian Pac J Cancer
Prev. 15:4405–4409. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kitamura H and Motohashi H: NRF2 addiction
in cancer cells. Cancer Sci. 109:900–911. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Malhotra D, Portales-Casamar E, Singh A,
Srivastava S, Arenillas D, Happel C, Shyr C, Wakabayashi N, Kensler
TW, Wasserman WW and Biswal S: Global mapping of binding sites for
Nrf2 identifies novel targets in cell survival response through
ChIP-Seq profiling and network analysis. Nucleic Acids Res.
38:5718–5734. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Mitsuishi Y, Taguchi K, Kawatani Y,
Shibata T, Nukiwa T, Aburatani H, Yamamoto M and Motohashi H: Nrf2
redirects glucose and glutamine into anabolic pathways in metabolic
reprogramming. Cancer Cell. 22:66–79. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tanaka G, Inoue K, Shimizu T, Akimoto K
and Kubota K: Dual pharmacological inhibition of glutathione and
thioredoxin systems synergizes to kill colorectal carcinoma stem
cells. Cancer Med. 5:2544–2557. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang YY, Chen J, Liu XM, Zhao R and Zhe H:
Nrf2-Mediated metabolic reprogramming in cancer. Oxid Med Cell
Longev. 2018:93040912018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Dodson M, de la Vega MR, Cholanians AB,
Schmidlin CJ, Chapman E and Zhang DD: Modulating NRF2 in disease:
Timing is everything. Annu Rev Pharmacol Toxicol. 59:555–575. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ma Q: Role of nrf2 in oxidative stress and
toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Menegon S, Columbano A and Giordano S: The
dual roles of NRF2 in cancer. Trends Mol Med. 22:578–593. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Moon EJ and Giaccia A: Dual roles of NRF2
in tumor prevention and progression: Possible implications in
cancer treatment. Free Radic Biol Med. 79:292–299. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li D, Hong X, Zhao F, Ci X and Zhang S:
Targeting Nrf2 may reverse the drug resistance in ovarian cancer.
Cancer Cell Int. 21:1162021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cho HY, Kim K, Kim YB, Kim H and No JH:
Expression patterns of Nrf2 and keap1 in ovarian cancer cells and
their prognostic role in disease recurrence and patient survival.
Int J Gynecol Cancer. 27:412–419. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Czogalla B, Kahaly M, Mayr D, Schmoeckel
E, Niesler B, Kolben T, Burges A, Mahner S, Jeschke U and Trillsch
F: Interaction of ERα and NRF2 impacts survival in ovarian cancer
patients. Int J Mol Sci. 20:1122018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Harris IS, Treloar AE, Inoue S, Sasaki M,
Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA,
et al: Glutathione and thioredoxin antioxidant pathways synergize
to drive cancer initiation and progression. Cancer Cell.
27:211–222. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liew PL, Hsu CS, Liu WM, Lee YC, Lee YC
and Chen CL: Prognostic and predictive values of Nrf2, Keap1, p16
and E-cadherin expression in ovarian epithelial carcinoma. Int J
Clin Exp Pathol. 8:5642–5649. 2015.PubMed/NCBI
|
|
35
|
Mizuno T, Suzuki N, Makino H, Furui T,
Morii E, Aoki H, Kunisada T, Yano M, Kuji S, Hirashima Y, et al:
Cancer stem-like cells of ovarian clear cell carcinoma are enriched
in the ALDH-high population associated with an accelerated
scavenging system in reactive oxygen species. Gynecol Oncol.
137:299–305. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pylväs-Eerola M, Liakka A, Puistola U,
Koivunen J and Karihtala P: Cancer stem cell properties as factors
predictive of chemoresistance in neoadjuvantly-treated patients
with ovarian cancer. Anticancer Res. 36:3425–3431. 2016.PubMed/NCBI
|
|
37
|
Mata-Greenwood E, Cuendet M, Sher D,
Gustin D, Stock W and Pezzuto JM: Brusatol-mediated induction of
leukemic cell differentiation and G(1) arrest is associated with
down-regulation of c-myc. Leukemia. 16:2275–2284. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang XJ, Hayes JD, Henderson CJ and Wolf
CR: Identification of retinoic acid as an inhibitor of
transcription factor Nrf2 through activation of retinoic acid
receptor alpha. Proc Natl Acad Sci USA. 104:19589–19594. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
van der Wijst MG, Huisman C, Mposhi A,
Roelfes G and Rots MG: Targeting Nrf2 in healthy and malignant
ovarian epithelial cells: Protection versus promotion. Mol Oncol.
9:1259–1273. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bollong MJ, Yun H, Sherwood L, Woods AK,
Lairson LL and Schultz PG: A small molecule inhibits deregulated
NRF2 transcriptional activity in cancer. ACS Chem Biol.
10:2193–2198. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Singh A, Venkannagari S, Oh KH, Zhang YQ,
Rohde JM, Liu L, Nimmagadda S, Sudini K, Brimacombe KR, Gajghate S,
et al: Small molecule inhibitor of NRF2 selectively intervenes
therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem
Biol. 11:3214–3225. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Choi EJ, Jung BJ, Lee SH, Yoo HS, Shin EA,
Ko HJ, Chang S, Kim SY and Jeon SM: A clinical drug library screen
identifies clobetasol propionate as an NRF2 inhibitor with
potential therapeutic efficacy in KEAP1 mutant lung cancer.
Oncogene. 36:5285–5295. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lin Y, Sui LC, Wu RH, Ma RJ, Fu HY, Xu JJ,
Qiu XH and Chen L: Nrf2 inhibition affects cell cycle progression
during early mouse embryo development. J Reprod Dev. 64:49–55.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lee YJ, Kim WI, Bae JH, Cho MK, Lee SH,
Nam HS, Choi IH and Cho SW: Overexpression of Nrf2 promotes colon
cancer progression via ERK and AKT signaling pathways. Ann Surg
Treat Res. 98:159–167. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Xu Y, Yang Y, Huang Y, Ma Q, Shang J, Guo
J, Cao X, Wang X and Li M: Inhibition of Nrf2/HO-1 signaling
pathway by dextran sulfate suppresses angiogenesis of gastric
cancer. J Cancer. 12:1042–1060. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bovilla VR, Kuruburu MG, Bettada VG,
Krishnamurthy J, Sukocheva OA, Thimmulappa RK, Shivananju NS,
Balakrishna JP and Madhunapantula SV: Targeted inhibition of
anti-inflammatory regulator Nrf2 results in breast cancer
retardation in vitro and in vivo. Biomedicines. 9:11192021.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Van der Wijst MG, Brown R and Rots MG:
Nrf2, the Master Redox Switch: The Achilles' heel of ovarian
cancer? Biochim Biophys Acta. 1846:494–509. 2014.PubMed/NCBI
|
|
48
|
Benhar M, Shytaj IL, Stamler JS and
Savarino A: Dual targeting of the thioredoxin and glutathione
systems in cancer and HIV. J Clin Invest. 126:1630–1639. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jang BI, Li Y, Graham DY and Cen P: The
Role of CD44 in the pathogenesis, diagnosis, and therapy of gastric
cancer. Gut Liver. 5:397–405. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ishimoto T, Nagano O, Yae T, Tamada M,
Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, et al:
CD44 variant regulates redox status in cancer cells by stabilizing
the xCT subunit of system xc(−) and thereby promotes tumor growth.
Cancer Cell. 19:387–400. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Nagano O, Okazaki S and Saya H: Redox
regulation in stem-like cancer cells by CD44 variant isoforms.
Oncogene. 32:5191–5198. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ogihara K, Kikuchi E, Okazaki S, Hagiwara
M, Takeda T, Matsumoto K, Kosaka T, Mikami S, Saya H and Oya M:
Sulfasalazine could modulate the CD44v9-xCT system and enhance
cisplatin-induced cytotoxic effects in metastatic bladder cancer.
Cancer Sci. 110:1431–1441. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jogo T, Oki E, Nakanishi R, Ando K,
Nakashima Y, Kimura Y, Saeki H, Oda Y, Maehara Y and Mori M:
Expression of CD44 variant 9 induces chemoresistance of gastric
cancer by controlling intracellular reactive oxygen spices
accumulation. Gastric Cancer. 24:1089–1099. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sato S, Miyauchi M, Kato M, Kitajima S,
Kitagawa S, Hiraoka M, Kudo Y, Ogawa I and Takata T: Upregulated
CD44v9 expression inhibits the invasion of oral squamous cell
carcinoma cells. Pathobiology. 71:171–175. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Miwa T, Nagata T, Kojima H, Sekine S and
Okumura T: Isoform switch of CD44 induces different chemotactic and
tumorigenic ability in gallbladder cancer. Int J Oncol. 51:771–780.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sato S, Miyauchi M, Takekoshi T, Zhao M,
Kudo Y, Ogawa I, Kitagawa S, Fujita M and Takata T: Reduced
expression of CD44 variant 9 is related to lymph node metastasis
and poor survival in squamous cell carcinoma of tongue. Oral Oncol.
36:545–549. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Umeda T, Ishida M, Murata S, Mori T, Kawai
Y, Itoi N, Tomida K, Tanaka A, Sakai S, Kitamura M, et al:
Immunohistochemical analyses of CD44 variant isoforms in invasive
micropapillary carcinoma of the breast: Comparison with a
concurrent conventional invasive carcinoma of no special type
component. Breast Cancer. 23:869–875. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yasui W, Kudo Y, Naka K, Fujimoto J, Ue T,
Yokozaki H and Tahara E: Expression of CD44 containing variant exon
9 (CD44v9) in gastric adenomas and adenocarcinomas: Relation to the
proliferation and progression. Int J Oncol. 12:1253–1258.
1998.PubMed/NCBI
|
|
59
|
Okano K, Shimoda T and Matsumura Y:
Clinicopathologic and immunohistochemical study of early colorectal
cancer with liver metastases. J Gastroenterol. 34:334–340. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Koyama S, Maruyama T and Adachi S:
Expression of epidermal growth factor receptor and CD44 splicing
variants sharing exons 6 and 9 on gastric and esophageal
carcinomas: A two-color flow-cytometric analysis. J Cancer Res Clin
Oncol. 125:47–54. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Goi T, Koneri K, Katayama K, Hirose K and
Yamaguchi A: Evaluation of clinicopathological factors and the
correlation between the adhesion molecule CD44 variant 9 expression
and pulmonary metastases from colorectal cancers. Int Surg.
87:130–136. 2002.PubMed/NCBI
|
|
62
|
Bánkfalvi A, Krassort M, Buchwalow IB,
Végh A, Felszeghy E and Piffkó J: Gains and losses of adhesion
molecules (CD44, E-cadherin, and beta-catenin) during oral
carcinogenesis and tumour progression. J Pathol. 198:343–351. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kakehashi A, Ishii N, Sugihara E, Gi M,
Saya H and Wanibuchi H: CD44 variant 9 is a potential biomarker of
tumor initiating cells predicting survival outcome in hepatitis C
virus-positive patients with resected hepatocellular carcinoma.
Cancer Sci. 107:609–618. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Go SI, Ko GH, Lee WS, Lee JH, Jeong SH,
Lee YJ, Hong SC and Ha WS: The use of CD44 Variant 9 and Ki-67
combination can predicts prognosis better than their single use in
early gastric cancer. Cancer Res Treat. 51:1411–1419. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Suwannakul N, Ma N, Midorikawa K, Oikawa
S, Kobayashi H, He F, Kawanishi S and Murata M: CD44v9 induces stem
cell-like phenotypes in human cholangiocarcinoma. Front Cell Dev
Biol. 8:4172020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Teal E, Dua-Awereh M, Hirshorn ST and
Zavros Y: Role of metaplasia during gastric regeneration. Am J
Physiol Cell Physiol. 319:C947–C954. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gout PW, Buckley AR, Simms CR and
Bruchovsky N: Sulfasalazine, a potent suppressor of lymphoma growth
by inhibition of the x(c)-cystine transporter: A new action for an
old drug. Leukemia. 15:1633–1640. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Thanee M, Loilome W, Techasen A, Sugihara
E, Okazaki S, Abe S, Ueda S, Masuko T, Namwat N, Khuntikeo N, et
al: CD44 variant-dependent redox status regulation in liver
fluke-associated cholangiocarcinoma: A target for
cholangiocarcinoma treatment. Cancer Sci. 107:991–1000. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wada F, Koga H, Akiba J, Niizeki T,
Iwamoto H, Ikezono Y, Nakamura T, Abe M, Masuda A, Sakaue T, et al:
High expression of CD44v9 and xCT in chemoresistant hepatocellular
carcinoma: Potential targets by sulfasalazine. Cancer Sci.
109:2801–2810. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
He L, He T, Farrar S, Ji L, Liu T and Ma
X: Antioxidants maintain cellular redox homeostasis by elimination
of reactive oxygen species. Cell Physiol Biochem. 44:532–553. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lu Z, Wen T, Wang Y, Kan W and Xun G:
Peripheral non-enzymatic antioxidants in patients with
schizophrenia: A case-control study. BMC Psychiatry. 20:2412020.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang J, Ye ZW, Janssen-Heininger Y,
Townsend DM and Tew KD: Development of Telintra as an inhibitor of
glutathione S-Transferase P. Handb Exp Pharmacol. 264:71–91. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Sprem M, Babić D, Abramić M, Vrhovec I,
Skrk J, Milicić D, Ambriović Ristov A, Kalafatić D and Osmak M:
Glutathione and glutathione S-transferases as early markers for
ovarian carcinomas: Case series. Croat Med J. 42:624–629.
2001.PubMed/NCBI
|
|
74
|
van Gisbergen MW, Cebula M, Zhang J,
Ottosson-Wadlund A, Dubois L, Lambin P, Tew KD, Townsend DM, Haenen
GR, Drittij-Reijnders MJ, et al: Chemical reactivity window
determines prodrug efficiency toward glutathione transferase
overexpressing cancer cells. Mol Pharm. 13:2010–2025. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang J, Yang L, Xiang X, Li Z, Qu K and
Li K: A panel of three oxidative stress-related genes predicts
overall survival in ovarian cancer patients received platinum-based
chemotherapy. Aging (Albany NY). 10:1366–1379. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Tong X, Zhao J, Zhang Y, Mu P and Wang X:
Expression levels of MRP1, GST-pi, and GSK3beta in ovarian cancer
and the relationship with drug resistance and prognosis of
patients. Oncol Lett. 18:22–28. 2019.PubMed/NCBI
|
|
77
|
Ferrandina G, Scambia G, Damia G,
Tagliabue G, Fagotti A, Benedetti Panici P, Mangioni C, Mancuso S
and D'Incalci M: Glutathione S-transferase activity in epithelial
ovarian cancer: Association with response to chemotherapy and
disease outcome. Ann Oncol. 8:343–350. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
De Luca A, Pellizzari Tregno F, Sau A,
Pastore A, Palumbo C, Alama A, Cicconi R, Federici G and Caccuri
AM: Glutathione S-transferase P1-1 as a target for mesothelioma
Treatment. Cancer Sci. 104:223–230. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Oommen D, Yiannakis D and Jha AN: BRCA1
deficiency increases the sensitivity of ovarian cancer cells to
auranofin. Mutat Res. 784–785. 8–15. 2016.PubMed/NCBI
|
|
80
|
Lyttle MH, Satyam A and Hocker MD:
Glutathione-S-transferase activates novel alkylating agents. J Med
Chem. 37:1501–1507. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kavanagh JJ, Levenback CF, Ramirez PT,
Wolf JL, Moore CL, Jones MR, Meng L, Brown GL and Bast RC Jr: Phase
2 study of canfosfamide in combination with pegylated liposomal
doxorubicin in platinum and paclitaxel refractory or resistant
epithelial ovarian cancer. J Hematol Oncol. 3:92010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tew KD, Manevich Y, Grek C, Xiong Y, Uys J
and Townsend DM: The role of glutathione S-transferase P in
signaling pathways and S-glutathionylation in cancer. Free Radic
Biol Med. 51:299–313. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Vergote I, Finkler NJ, Hall JB, Melnyk O,
Edwards RP, Jones M, Keck JG, Meng L, Brown GL, Rankin EM, et al:
Randomized phase III study of canfosfamide in combination with
pegylated liposomal doxorubicin compared with pegylated liposomal
doxorubicin alone in platinum-resistant ovarian cancer. Int J
Gynecol Cancer. 20:772–780. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Dourado DF, Fernandes PA, Ramos MJ and
Mannervik B: Mechanism of glutathione transferase P1-1-catalyzed
activation of the prodrug canfosfamide (TLK286, TELCYTA).
Biochemistry. 52:8069–8078. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Chandrasekaran A and Elias KM: Synthetic
lethality in ovarian cancer. Mol Cancer Ther. 20:2117–2128. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wethington SL, Park KJ, Soslow RA, Kauff
ND, Brown CL, Dao F, Otegbeye E, Sonoda Y, Abu-Rustum NR, Barakat
RR, et al: Clinical outcome of isolated serous tubal
intraepithelial carcinomas (STIC). Int J Gynecol Cancer.
23:1603–1611. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Kyo S, Ishikawa N, Nakamura K and Nakayama
K: The fallopian tube as origin of ovarian cancer: Change of
diagnostic and preventive strategies. Cancer Med. 9:421–431. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liu Y, Qiang W, Xu X, Dong R, Karst AM,
Liu Z, Kong B, Drapkin RI and Wei JJ: Role of miR-182 in response
to oxidative stress in the cell fate of human fallopian tube
epithelial cells. Oncotarget. 6:38983–38998. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Scutiero G, Iannone P, Bernardi G,
Bonaccorsi G, Spadaro S, Volta CA, Greco P and Nappi L: Oxidative
stress and endometriosis: A systematic review of the literature.
Oxid Med Cell Longev. 2017:72652382017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sugimoto S, Uchiyama T, Kawahara N,
Ohbayashi C and Kobayashi H: Immunohistochemical expression status
of p53, CD44v9, and Ki-67 in a series of fallopian tube lesions of
High-grade Serous Carcinoma. Int J Gynecol Pathol. 40:419–426.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Jiang Z, Fletcher NM, Ali-Fehmi R, Diamond
MP, Abu-Soud HM, Munkarah AR and Saed GM: Modulation of redox
signaling promotes apoptosis in epithelial ovarian cancer cells.
Gynecol Oncol. 122:418–423. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Khalil HS, Goltsov A, Langdon SP, Harrison
DJ, Bown J and Deeni Y: Quantitative analysis of NRF2 pathway
reveals key elements of the regulatory circuits underlying
antioxidant response and proliferation of ovarian cancer cells. J
Biotechnol. 202:12–30. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Worley BL, Kim YS, Mardini J, Zaman R,
Leon KE, Vallur PG, Nduwumwami A, Warrick JI, Timmins PF, Kesterson
JP, et al: GPx3 supports ovarian cancer progression by manipulating
the extracellular redox environment. Redox Biol. 25:1010512019.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Agnani D, Camacho-Vanegas O, Camacho C,
Lele S, Odunsi K, Cohen S, Dottino P and Martignetti JA: Decreased
levels of serum glutathione peroxidase 3 are associated with
papillary serous ovarian cancer and disease progression. J Ovarian
Res. 4:182011. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Jia W, Chen P and Cheng Y: PRDX4 and its
roles in various cancers. Technol Cancer Res Treat.
18:15330338198643132019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Martinez VD, Vucic EA, Thu KL, Pikor LA,
Hubaux R and Lam WL: Unique pattern of component gene disruption in
the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in
serous ovarian cancer. Biomed Res Int. 2014:1594592014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Hu Y, Rosen DG, Zhou Y, Feng L, Yang G and
Liu J: Mitochondrial manganese-superoxide dismutase expression in
ovarian cancer: Role in cell proliferation and response to
oxidative stress. J Biol Chem. 280:39485–39492. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Bae I, Fan S, Meng Q, Rih JK, Kim HJ, Kang
HJ, Xu J, Goldberg ID, Jaiswal AK and Rosen EM: BRCA1 induces
antioxidant gene expression and resistance to oxidative stress.
Cancer Res. 64:7893–7909. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hong T, Lei G, Chen X, Li H, Zhang X, Wu
N, Zhao Y, Zhang Y and Wang J: PARP inhibition promotes ferroptosis
via repressing SLC7A11 and synergizes with ferroptosis inducers in
BRCA-proficient ovarian cancer. Redox Biol. 42:1019282021.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Landis-Piwowar KR, Milacic V, Chen D, Yang
H, Zhao Y, Chan TH, Yan B and Dou QP: The proteasome as a potential
target for novel anticancer drugs and chemosensitizers. Drug Resist
Updat. 9:263–273. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Shafabakhsh R and Asemi Z: Quercetin: A
natural compound for ovarian cancer treatment. J Ovarian Res.
12:552019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Niedzwiecki A, Roomi MW, Kalinovsky T and
Rath M: Anticancer efficacy of polyphenols and their combinations.
Nutrients. 8:5522016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Tendulkar S and Dodamani S:
Chemoresistance in ovarian cancer: Prospects for new drugs.
Anticancer Agents Med Chem. 21:668–678. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Rogers LC, Davis RR, Said N, Hollis T and
Daniel LW: Blocking LPA-dependent signaling increases ovarian
cancer cell death in response to chemotherapy. Redox Biol.
15:380–386. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Nauman G, Gray JC, Parkinson R, Levine M
and Paller CJ: Systematic review of intravenous ascorbate in cancer
clinical trials. Antioxidants (Basel). 7:892018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bulavin DV and Fornace AJ Jr: p38 MAP
kinase's emerging role as a tumor suppressor. Adv Cancer Res.
92:95–118. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhang P, Hong J, Yoon IN, Kang JK, Hwang
JS and Kim H: Clostridium difficile Toxin A induces reactive
oxygen species production and p38 MAPK activation to exert cellular
toxicity in neuronal cells. J Microbiol Biotechnol. 27:1163–1170.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhang Z, Huang C, Li J, Leonard SS,
Lanciotti R, Butterworth L and Shi X: Vanadate-induced cell growth
regulation and the role of reactive oxygen species. Arch Biochem
Biophys. 392:311–320. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Hemachandra LP, Shin DH, Dier U, Iuliano
JN, Engelberth SA, Uusitalo LM, Murphy SK and Hempel N:
Mitochondrial superoxide dismutase has a protumorigenic role in
ovarian clear cell carcinoma. Cancer Res. 75:4973–4984. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Bykov VJ, Zhang Q, Zhang M, Ceder S,
Abrahmsen L and Wiman KG: Targeting of Mutant p53 and the cellular
redox balance by APR-246 as a strategy for efficient cancer
therapy. Front Oncol. 6:212016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wei D, Yu Y, Zhang X, Wang Y, Chen H, Zhao
Y, Wang F, Rong G, Wang W, Kang X, et al: Breaking the
intracellular redox balance with diselenium nanoparticles for
maximizing chemotherapy efficacy on patient-derived xenograft
models. ACS Nano. Dec 7–2020.(Epub ahead of print). View Article : Google Scholar
|
|
112
|
Xu Y, Gao W, Zhang Y, Wu S, Liu Y, Deng X,
Xie L, Yang J, Yu H, Su J and Sun L: ABT737 reverses cisplatin
resistance by targeting glucose metabolism of human ovarian cancer
cells. Int J Oncol. 53:1055–1068. 2018.PubMed/NCBI
|
|
113
|
Liu M, Wang D, Luo Y, Hu L, Bi Y, Ji J,
Huang H, Wang G, Zhu L, Ma J, et al: Selective killing of cancer
cells harboring mutant RAS by concomitant inhibition of NADPH
oxidase and glutathione biosynthesis. Cell Death Dis. 12:1892021.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Müller MF, Florian S, Pommer S, Osterhoff
M, Esworthy RS, Chu FF, Brigelius-Flohé R and Kipp AP: Deletion of
glutathione peroxidase-2 inhibits azoxymethane-induced colon cancer
development. PLoS One. 8:e720552013. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Krehl S, Loewinger M, Florian S, Kipp AP,
Banning A, Wessjohann LA, Brauer MN, Iori R, Esworthy RS, Chu FF
and Brigelius-Flohé R: Glutathione peroxidase-2 and selenium
decreased inflammation and tumors in a mouse model of
inflammation-associated carcinogenesis whereas sulforaphane effects
differed with selenium supply. Carcinogenesis. 33:620–628. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Li J, Wang Q, Yang Y, Lei C, Yang F, Liang
L, Chen C, Xia J, Wang K and Tang N: GSTZ1 deficiency promotes
hepatocellular carcinoma proliferation via activation of the
KEAP1/NRF2 pathway. J Exp Clin Cancer Res. 38:4382019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Taguchi K and Yamamoto M: The KEAP1-NRF2
system as a molecular target of cancer treatment. Cancers (Basel).
13:462020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Glasauer A and Chandel NS: Targeting
antioxidants for cancer therapy. Biochem Pharmacol. 92:90–101.
2014. View Article : Google Scholar : PubMed/NCBI
|