Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
March-2022 Volume 23 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2022 Volume 23 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Revisiting therapeutic strategies for ovarian cancer by focusing on redox homeostasis (Review)

  • Authors:
    • Hiroshi Kobayashi
    • Shogo Imanaka
    • Hiroshi Shigetomi
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Nara 634‑8522, Japan
    Copyright: © Kobayashi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 80
    |
    Published online on: January 11, 2022
       https://doi.org/10.3892/ol.2022.13200
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Recent advances in molecular genetics have expanded our understanding of ovarian cancer. High levels of reactive oxygen species (ROS) and upregulation of antioxidant genes are common characteristic features of human cancers. This review reconsiders novel therapeutic strategies for ovarian cancer by focusing on redox homeostasis. A literature search was performed for preclinical and clinical studies published between January 1998 and October 2021 in the PubMed database using a combination of specific terms. ROS serves a central role in tumor suppression and progression by inducing DNA damage and mutations, genomic instability, and aberrant anti‑ and pro‑tumorigenic signaling. Cancer cells increase their antioxidant capacity to neutralize the extra ROS. Additionally, antioxidants, such as CD44 variant isoform 9 (CD44v9) and nuclear factor erythroid 2‑related factor 2 (Nrf2), mediate redox homeostasis in ovarian cancer. Furthermore, studies conducted on different cancer types revealed the dual role of antioxidants in tumor progression and inhibition. However, in animal models, genetic loss of antioxidant capacity in the host cannot block cancer initiation and progression. Host‑derived antioxidant systems are essential to suppress carcinogenesis, suggesting that antioxidants serve a pivotal role in suppressing cancer development. By contrast, antioxidant activation in cancer cells confers aggressive phenotypes. Antioxidant inhibitors can promote cancer cell death by enhancing ROS levels. Concurrent inhibition of CD44v9 and Nrf2 may trigger apoptosis induction, potentiate chemosensitivity and enhance antitumor activities through the ROS‑activated p38/p21 pathway. Antioxidants may have tumor‑promoting and ‑suppressive functions. Therefore, an improved understanding of the role of antioxidants in redox homeostasis and developing antioxidant‑specific inhibitors is necessary for treating ovarian cancer.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Kurman RJ: Origin and molecular pathogenesis of ovarian high-grade serous carcinoma. Ann Oncol. 24 (Suppl 10):x16–x21. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Jaganjac M, Milkovic L, Sunjic SB and Zarkovic N: The NRF2, Thioredoxin, and glutathione system in tumorigenesis and anticancer therapies. Antioxidants (Basel). 9:11512020. View Article : Google Scholar : PubMed/NCBI

3 

Gram M and Åkerström B: Editorial: Biomarkers of oxidative stress. Front Physiol. 11:3382020. View Article : Google Scholar : PubMed/NCBI

4 

Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H and LLeonart ME: Oxidative stress and cancer: An overview. Ageing Res Rev. 12:376–390. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Wang T, Shigdar S, Gantier MP, Hou Y, Wang L, Li Y, Shamaileh HA, Yin W, Zhou SF, Zhao X and Duan W: Cancer stem cell targeted therapy: Progress amid controversies. Oncotarget. 6:44191–44206. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Meng Y, Fan XY, Yang LJ, Xu BQ, He D, Xu Z, Wu D, Wang B, Cui HY, Wang SJ, et al: Detachment activated CyPA/CD147 induces cancer stem cell potential in non-stem breast cancer cells. Front Cell Dev Biol. 8:5438562020. View Article : Google Scholar : PubMed/NCBI

7 

Mvunta DH, Miyamoto T, Asaka R, Yamada Y, Ando H, Higuchi S, Ida K, Kashima H and Shiozawa T: SIRT1 regulates the chemoresistance and invasiveness of ovarian carcinoma cells. Transl Oncol. 10:621–631. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Shimizu T, Inoue K, Hachiya H, Shibuya N, Shimoda M and Kubota K: Frequent alteration of the protein synthesis of enzymes for glucose metabolism in hepatocellular carcinomas. J Gastroenterol. 49:1324–1332. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM, Mori K, Sadighi Akha AA, Raden D and Kaufman RJ: Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol. 4:e3742006. View Article : Google Scholar : PubMed/NCBI

10 

Reuter S, Gupta SC, Chaturvedi MM and Aggarwal BB: Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI

11 

Hayes JD, Dinkova-Kostova AT and Tew KD: Oxidative stress in cancer. Cancer Cell. 38:167–197. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Narayanan D, Ma S and Özcelik D: Targeting the redox landscape in cancer therapy. Cancers (Basel). 12:17062020. View Article : Google Scholar : PubMed/NCBI

13 

Schiliro C and Firestein BL: Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells. 10:10562021. View Article : Google Scholar : PubMed/NCBI

14 

Chen L, Zhang Z, Hoshino A, Zheng HD, Morley M, Arany Z and Rabinowitz JD: NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat Metab. 1:404–415. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M and Yang X: p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol. 13:310–316. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Nakashima C, Yamamoto K, Fujiwara-Tani R, Luo Y, Matsushima S, Fujii K, Ohmori H, Sasahira T, Sasaki T, Kitadai Y, et al: Expression of cytosolic malic enzyme (ME1) is associated with disease progression in human oral squamous cell carcinoma. Cancer Sci. 109:2036–2045. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Liu X and Gong Y: Isocitrate dehydrogenase inhibitors in acute myeloid leukemia. Biomark Res. 7:222019. View Article : Google Scholar : PubMed/NCBI

18 

Jiang P, Du W and Wu M: Regulation of the pentose phosphate pathway in cancer. Protein Cell. 5:592–602. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Pramono AA, Rather GM, Herman H, Lestari K and Bertino JR: NAD- and NADPH-contributing enzymes as therapeutic targets in cancer: An overview. Biomolecules. 10:3582020. View Article : Google Scholar : PubMed/NCBI

20 

Gupta RK, Patel AK, Shah N, Chaudhary AK, Jha UK, Yadav UC, Gupta PK and Pakuwal U: Oxidative stress and antioxidants in disease and cancer: A review. Asian Pac J Cancer Prev. 15:4405–4409. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Kitamura H and Motohashi H: NRF2 addiction in cancer cells. Cancer Sci. 109:900–911. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Malhotra D, Portales-Casamar E, Singh A, Srivastava S, Arenillas D, Happel C, Shyr C, Wakabayashi N, Kensler TW, Wasserman WW and Biswal S: Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 38:5718–5734. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M and Motohashi H: Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 22:66–79. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Tanaka G, Inoue K, Shimizu T, Akimoto K and Kubota K: Dual pharmacological inhibition of glutathione and thioredoxin systems synergizes to kill colorectal carcinoma stem cells. Cancer Med. 5:2544–2557. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Wang YY, Chen J, Liu XM, Zhao R and Zhe H: Nrf2-Mediated metabolic reprogramming in cancer. Oxid Med Cell Longev. 2018:93040912018. View Article : Google Scholar : PubMed/NCBI

26 

Dodson M, de la Vega MR, Cholanians AB, Schmidlin CJ, Chapman E and Zhang DD: Modulating NRF2 in disease: Timing is everything. Annu Rev Pharmacol Toxicol. 59:555–575. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Ma Q: Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Menegon S, Columbano A and Giordano S: The dual roles of NRF2 in cancer. Trends Mol Med. 22:578–593. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Moon EJ and Giaccia A: Dual roles of NRF2 in tumor prevention and progression: Possible implications in cancer treatment. Free Radic Biol Med. 79:292–299. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Li D, Hong X, Zhao F, Ci X and Zhang S: Targeting Nrf2 may reverse the drug resistance in ovarian cancer. Cancer Cell Int. 21:1162021. View Article : Google Scholar : PubMed/NCBI

31 

Cho HY, Kim K, Kim YB, Kim H and No JH: Expression patterns of Nrf2 and keap1 in ovarian cancer cells and their prognostic role in disease recurrence and patient survival. Int J Gynecol Cancer. 27:412–419. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Czogalla B, Kahaly M, Mayr D, Schmoeckel E, Niesler B, Kolben T, Burges A, Mahner S, Jeschke U and Trillsch F: Interaction of ERα and NRF2 impacts survival in ovarian cancer patients. Int J Mol Sci. 20:1122018. View Article : Google Scholar : PubMed/NCBI

33 

Harris IS, Treloar AE, Inoue S, Sasaki M, Gorrini C, Lee KC, Yung KY, Brenner D, Knobbe-Thomsen CB, Cox MA, et al: Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell. 27:211–222. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Liew PL, Hsu CS, Liu WM, Lee YC, Lee YC and Chen CL: Prognostic and predictive values of Nrf2, Keap1, p16 and E-cadherin expression in ovarian epithelial carcinoma. Int J Clin Exp Pathol. 8:5642–5649. 2015.PubMed/NCBI

35 

Mizuno T, Suzuki N, Makino H, Furui T, Morii E, Aoki H, Kunisada T, Yano M, Kuji S, Hirashima Y, et al: Cancer stem-like cells of ovarian clear cell carcinoma are enriched in the ALDH-high population associated with an accelerated scavenging system in reactive oxygen species. Gynecol Oncol. 137:299–305. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Pylväs-Eerola M, Liakka A, Puistola U, Koivunen J and Karihtala P: Cancer stem cell properties as factors predictive of chemoresistance in neoadjuvantly-treated patients with ovarian cancer. Anticancer Res. 36:3425–3431. 2016.PubMed/NCBI

37 

Mata-Greenwood E, Cuendet M, Sher D, Gustin D, Stock W and Pezzuto JM: Brusatol-mediated induction of leukemic cell differentiation and G(1) arrest is associated with down-regulation of c-myc. Leukemia. 16:2275–2284. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Wang XJ, Hayes JD, Henderson CJ and Wolf CR: Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proc Natl Acad Sci USA. 104:19589–19594. 2007. View Article : Google Scholar : PubMed/NCBI

39 

van der Wijst MG, Huisman C, Mposhi A, Roelfes G and Rots MG: Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion. Mol Oncol. 9:1259–1273. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Bollong MJ, Yun H, Sherwood L, Woods AK, Lairson LL and Schultz PG: A small molecule inhibits deregulated NRF2 transcriptional activity in cancer. ACS Chem Biol. 10:2193–2198. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM, Liu L, Nimmagadda S, Sudini K, Brimacombe KR, Gajghate S, et al: Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol. 11:3214–3225. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Choi EJ, Jung BJ, Lee SH, Yoo HS, Shin EA, Ko HJ, Chang S, Kim SY and Jeon SM: A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene. 36:5285–5295. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Lin Y, Sui LC, Wu RH, Ma RJ, Fu HY, Xu JJ, Qiu XH and Chen L: Nrf2 inhibition affects cell cycle progression during early mouse embryo development. J Reprod Dev. 64:49–55. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Lee YJ, Kim WI, Bae JH, Cho MK, Lee SH, Nam HS, Choi IH and Cho SW: Overexpression of Nrf2 promotes colon cancer progression via ERK and AKT signaling pathways. Ann Surg Treat Res. 98:159–167. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Xu Y, Yang Y, Huang Y, Ma Q, Shang J, Guo J, Cao X, Wang X and Li M: Inhibition of Nrf2/HO-1 signaling pathway by dextran sulfate suppresses angiogenesis of gastric cancer. J Cancer. 12:1042–1060. 2021. View Article : Google Scholar : PubMed/NCBI

46 

Bovilla VR, Kuruburu MG, Bettada VG, Krishnamurthy J, Sukocheva OA, Thimmulappa RK, Shivananju NS, Balakrishna JP and Madhunapantula SV: Targeted inhibition of anti-inflammatory regulator Nrf2 results in breast cancer retardation in vitro and in vivo. Biomedicines. 9:11192021. View Article : Google Scholar : PubMed/NCBI

47 

Van der Wijst MG, Brown R and Rots MG: Nrf2, the Master Redox Switch: The Achilles' heel of ovarian cancer? Biochim Biophys Acta. 1846:494–509. 2014.PubMed/NCBI

48 

Benhar M, Shytaj IL, Stamler JS and Savarino A: Dual targeting of the thioredoxin and glutathione systems in cancer and HIV. J Clin Invest. 126:1630–1639. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Jang BI, Li Y, Graham DY and Cen P: The Role of CD44 in the pathogenesis, diagnosis, and therapy of gastric cancer. Gut Liver. 5:397–405. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, et al: CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell. 19:387–400. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Nagano O, Okazaki S and Saya H: Redox regulation in stem-like cancer cells by CD44 variant isoforms. Oncogene. 32:5191–5198. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Ogihara K, Kikuchi E, Okazaki S, Hagiwara M, Takeda T, Matsumoto K, Kosaka T, Mikami S, Saya H and Oya M: Sulfasalazine could modulate the CD44v9-xCT system and enhance cisplatin-induced cytotoxic effects in metastatic bladder cancer. Cancer Sci. 110:1431–1441. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Jogo T, Oki E, Nakanishi R, Ando K, Nakashima Y, Kimura Y, Saeki H, Oda Y, Maehara Y and Mori M: Expression of CD44 variant 9 induces chemoresistance of gastric cancer by controlling intracellular reactive oxygen spices accumulation. Gastric Cancer. 24:1089–1099. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Sato S, Miyauchi M, Kato M, Kitajima S, Kitagawa S, Hiraoka M, Kudo Y, Ogawa I and Takata T: Upregulated CD44v9 expression inhibits the invasion of oral squamous cell carcinoma cells. Pathobiology. 71:171–175. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Miwa T, Nagata T, Kojima H, Sekine S and Okumura T: Isoform switch of CD44 induces different chemotactic and tumorigenic ability in gallbladder cancer. Int J Oncol. 51:771–780. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Sato S, Miyauchi M, Takekoshi T, Zhao M, Kudo Y, Ogawa I, Kitagawa S, Fujita M and Takata T: Reduced expression of CD44 variant 9 is related to lymph node metastasis and poor survival in squamous cell carcinoma of tongue. Oral Oncol. 36:545–549. 2000. View Article : Google Scholar : PubMed/NCBI

57 

Umeda T, Ishida M, Murata S, Mori T, Kawai Y, Itoi N, Tomida K, Tanaka A, Sakai S, Kitamura M, et al: Immunohistochemical analyses of CD44 variant isoforms in invasive micropapillary carcinoma of the breast: Comparison with a concurrent conventional invasive carcinoma of no special type component. Breast Cancer. 23:869–875. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Yasui W, Kudo Y, Naka K, Fujimoto J, Ue T, Yokozaki H and Tahara E: Expression of CD44 containing variant exon 9 (CD44v9) in gastric adenomas and adenocarcinomas: Relation to the proliferation and progression. Int J Oncol. 12:1253–1258. 1998.PubMed/NCBI

59 

Okano K, Shimoda T and Matsumura Y: Clinicopathologic and immunohistochemical study of early colorectal cancer with liver metastases. J Gastroenterol. 34:334–340. 1999. View Article : Google Scholar : PubMed/NCBI

60 

Koyama S, Maruyama T and Adachi S: Expression of epidermal growth factor receptor and CD44 splicing variants sharing exons 6 and 9 on gastric and esophageal carcinomas: A two-color flow-cytometric analysis. J Cancer Res Clin Oncol. 125:47–54. 1999. View Article : Google Scholar : PubMed/NCBI

61 

Goi T, Koneri K, Katayama K, Hirose K and Yamaguchi A: Evaluation of clinicopathological factors and the correlation between the adhesion molecule CD44 variant 9 expression and pulmonary metastases from colorectal cancers. Int Surg. 87:130–136. 2002.PubMed/NCBI

62 

Bánkfalvi A, Krassort M, Buchwalow IB, Végh A, Felszeghy E and Piffkó J: Gains and losses of adhesion molecules (CD44, E-cadherin, and beta-catenin) during oral carcinogenesis and tumour progression. J Pathol. 198:343–351. 2002. View Article : Google Scholar : PubMed/NCBI

63 

Kakehashi A, Ishii N, Sugihara E, Gi M, Saya H and Wanibuchi H: CD44 variant 9 is a potential biomarker of tumor initiating cells predicting survival outcome in hepatitis C virus-positive patients with resected hepatocellular carcinoma. Cancer Sci. 107:609–618. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Go SI, Ko GH, Lee WS, Lee JH, Jeong SH, Lee YJ, Hong SC and Ha WS: The use of CD44 Variant 9 and Ki-67 combination can predicts prognosis better than their single use in early gastric cancer. Cancer Res Treat. 51:1411–1419. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Suwannakul N, Ma N, Midorikawa K, Oikawa S, Kobayashi H, He F, Kawanishi S and Murata M: CD44v9 induces stem cell-like phenotypes in human cholangiocarcinoma. Front Cell Dev Biol. 8:4172020. View Article : Google Scholar : PubMed/NCBI

66 

Teal E, Dua-Awereh M, Hirshorn ST and Zavros Y: Role of metaplasia during gastric regeneration. Am J Physiol Cell Physiol. 319:C947–C954. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Gout PW, Buckley AR, Simms CR and Bruchovsky N: Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)-cystine transporter: A new action for an old drug. Leukemia. 15:1633–1640. 2001. View Article : Google Scholar : PubMed/NCBI

68 

Thanee M, Loilome W, Techasen A, Sugihara E, Okazaki S, Abe S, Ueda S, Masuko T, Namwat N, Khuntikeo N, et al: CD44 variant-dependent redox status regulation in liver fluke-associated cholangiocarcinoma: A target for cholangiocarcinoma treatment. Cancer Sci. 107:991–1000. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Wada F, Koga H, Akiba J, Niizeki T, Iwamoto H, Ikezono Y, Nakamura T, Abe M, Masuda A, Sakaue T, et al: High expression of CD44v9 and xCT in chemoresistant hepatocellular carcinoma: Potential targets by sulfasalazine. Cancer Sci. 109:2801–2810. 2018. View Article : Google Scholar : PubMed/NCBI

70 

He L, He T, Farrar S, Ji L, Liu T and Ma X: Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem. 44:532–553. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Lu Z, Wen T, Wang Y, Kan W and Xun G: Peripheral non-enzymatic antioxidants in patients with schizophrenia: A case-control study. BMC Psychiatry. 20:2412020. View Article : Google Scholar : PubMed/NCBI

72 

Zhang J, Ye ZW, Janssen-Heininger Y, Townsend DM and Tew KD: Development of Telintra as an inhibitor of glutathione S-Transferase P. Handb Exp Pharmacol. 264:71–91. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Sprem M, Babić D, Abramić M, Vrhovec I, Skrk J, Milicić D, Ambriović Ristov A, Kalafatić D and Osmak M: Glutathione and glutathione S-transferases as early markers for ovarian carcinomas: Case series. Croat Med J. 42:624–629. 2001.PubMed/NCBI

74 

van Gisbergen MW, Cebula M, Zhang J, Ottosson-Wadlund A, Dubois L, Lambin P, Tew KD, Townsend DM, Haenen GR, Drittij-Reijnders MJ, et al: Chemical reactivity window determines prodrug efficiency toward glutathione transferase overexpressing cancer cells. Mol Pharm. 13:2010–2025. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Zhang J, Yang L, Xiang X, Li Z, Qu K and Li K: A panel of three oxidative stress-related genes predicts overall survival in ovarian cancer patients received platinum-based chemotherapy. Aging (Albany NY). 10:1366–1379. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Tong X, Zhao J, Zhang Y, Mu P and Wang X: Expression levels of MRP1, GST-pi, and GSK3beta in ovarian cancer and the relationship with drug resistance and prognosis of patients. Oncol Lett. 18:22–28. 2019.PubMed/NCBI

77 

Ferrandina G, Scambia G, Damia G, Tagliabue G, Fagotti A, Benedetti Panici P, Mangioni C, Mancuso S and D'Incalci M: Glutathione S-transferase activity in epithelial ovarian cancer: Association with response to chemotherapy and disease outcome. Ann Oncol. 8:343–350. 1997. View Article : Google Scholar : PubMed/NCBI

78 

De Luca A, Pellizzari Tregno F, Sau A, Pastore A, Palumbo C, Alama A, Cicconi R, Federici G and Caccuri AM: Glutathione S-transferase P1-1 as a target for mesothelioma Treatment. Cancer Sci. 104:223–230. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Oommen D, Yiannakis D and Jha AN: BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin. Mutat Res. 784–785. 8–15. 2016.PubMed/NCBI

80 

Lyttle MH, Satyam A and Hocker MD: Glutathione-S-transferase activates novel alkylating agents. J Med Chem. 37:1501–1507. 1994. View Article : Google Scholar : PubMed/NCBI

81 

Kavanagh JJ, Levenback CF, Ramirez PT, Wolf JL, Moore CL, Jones MR, Meng L, Brown GL and Bast RC Jr: Phase 2 study of canfosfamide in combination with pegylated liposomal doxorubicin in platinum and paclitaxel refractory or resistant epithelial ovarian cancer. J Hematol Oncol. 3:92010. View Article : Google Scholar : PubMed/NCBI

82 

Tew KD, Manevich Y, Grek C, Xiong Y, Uys J and Townsend DM: The role of glutathione S-transferase P in signaling pathways and S-glutathionylation in cancer. Free Radic Biol Med. 51:299–313. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Vergote I, Finkler NJ, Hall JB, Melnyk O, Edwards RP, Jones M, Keck JG, Meng L, Brown GL, Rankin EM, et al: Randomized phase III study of canfosfamide in combination with pegylated liposomal doxorubicin compared with pegylated liposomal doxorubicin alone in platinum-resistant ovarian cancer. Int J Gynecol Cancer. 20:772–780. 2010. View Article : Google Scholar : PubMed/NCBI

84 

Dourado DF, Fernandes PA, Ramos MJ and Mannervik B: Mechanism of glutathione transferase P1-1-catalyzed activation of the prodrug canfosfamide (TLK286, TELCYTA). Biochemistry. 52:8069–8078. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Chandrasekaran A and Elias KM: Synthetic lethality in ovarian cancer. Mol Cancer Ther. 20:2117–2128. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Wethington SL, Park KJ, Soslow RA, Kauff ND, Brown CL, Dao F, Otegbeye E, Sonoda Y, Abu-Rustum NR, Barakat RR, et al: Clinical outcome of isolated serous tubal intraepithelial carcinomas (STIC). Int J Gynecol Cancer. 23:1603–1611. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Kyo S, Ishikawa N, Nakamura K and Nakayama K: The fallopian tube as origin of ovarian cancer: Change of diagnostic and preventive strategies. Cancer Med. 9:421–431. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Liu Y, Qiang W, Xu X, Dong R, Karst AM, Liu Z, Kong B, Drapkin RI and Wei JJ: Role of miR-182 in response to oxidative stress in the cell fate of human fallopian tube epithelial cells. Oncotarget. 6:38983–38998. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Scutiero G, Iannone P, Bernardi G, Bonaccorsi G, Spadaro S, Volta CA, Greco P and Nappi L: Oxidative stress and endometriosis: A systematic review of the literature. Oxid Med Cell Longev. 2017:72652382017. View Article : Google Scholar : PubMed/NCBI

90 

Sugimoto S, Uchiyama T, Kawahara N, Ohbayashi C and Kobayashi H: Immunohistochemical expression status of p53, CD44v9, and Ki-67 in a series of fallopian tube lesions of High-grade Serous Carcinoma. Int J Gynecol Pathol. 40:419–426. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Jiang Z, Fletcher NM, Ali-Fehmi R, Diamond MP, Abu-Soud HM, Munkarah AR and Saed GM: Modulation of redox signaling promotes apoptosis in epithelial ovarian cancer cells. Gynecol Oncol. 122:418–423. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Khalil HS, Goltsov A, Langdon SP, Harrison DJ, Bown J and Deeni Y: Quantitative analysis of NRF2 pathway reveals key elements of the regulatory circuits underlying antioxidant response and proliferation of ovarian cancer cells. J Biotechnol. 202:12–30. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Worley BL, Kim YS, Mardini J, Zaman R, Leon KE, Vallur PG, Nduwumwami A, Warrick JI, Timmins PF, Kesterson JP, et al: GPx3 supports ovarian cancer progression by manipulating the extracellular redox environment. Redox Biol. 25:1010512019. View Article : Google Scholar : PubMed/NCBI

94 

Agnani D, Camacho-Vanegas O, Camacho C, Lele S, Odunsi K, Cohen S, Dottino P and Martignetti JA: Decreased levels of serum glutathione peroxidase 3 are associated with papillary serous ovarian cancer and disease progression. J Ovarian Res. 4:182011. View Article : Google Scholar : PubMed/NCBI

95 

Jia W, Chen P and Cheng Y: PRDX4 and its roles in various cancers. Technol Cancer Res Treat. 18:15330338198643132019. View Article : Google Scholar : PubMed/NCBI

96 

Martinez VD, Vucic EA, Thu KL, Pikor LA, Hubaux R and Lam WL: Unique pattern of component gene disruption in the NRF2 inhibitor KEAP1/CUL3/RBX1 E3-ubiquitin ligase complex in serous ovarian cancer. Biomed Res Int. 2014:1594592014. View Article : Google Scholar : PubMed/NCBI

97 

Hu Y, Rosen DG, Zhou Y, Feng L, Yang G and Liu J: Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: Role in cell proliferation and response to oxidative stress. J Biol Chem. 280:39485–39492. 2005. View Article : Google Scholar : PubMed/NCBI

98 

Bae I, Fan S, Meng Q, Rih JK, Kim HJ, Kang HJ, Xu J, Goldberg ID, Jaiswal AK and Rosen EM: BRCA1 induces antioxidant gene expression and resistance to oxidative stress. Cancer Res. 64:7893–7909. 2004. View Article : Google Scholar : PubMed/NCBI

99 

Hong T, Lei G, Chen X, Li H, Zhang X, Wu N, Zhao Y, Zhang Y and Wang J: PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 42:1019282021. View Article : Google Scholar : PubMed/NCBI

100 

Landis-Piwowar KR, Milacic V, Chen D, Yang H, Zhao Y, Chan TH, Yan B and Dou QP: The proteasome as a potential target for novel anticancer drugs and chemosensitizers. Drug Resist Updat. 9:263–273. 2006. View Article : Google Scholar : PubMed/NCBI

101 

Shafabakhsh R and Asemi Z: Quercetin: A natural compound for ovarian cancer treatment. J Ovarian Res. 12:552019. View Article : Google Scholar : PubMed/NCBI

102 

Niedzwiecki A, Roomi MW, Kalinovsky T and Rath M: Anticancer efficacy of polyphenols and their combinations. Nutrients. 8:5522016. View Article : Google Scholar : PubMed/NCBI

103 

Tendulkar S and Dodamani S: Chemoresistance in ovarian cancer: Prospects for new drugs. Anticancer Agents Med Chem. 21:668–678. 2021. View Article : Google Scholar : PubMed/NCBI

104 

Rogers LC, Davis RR, Said N, Hollis T and Daniel LW: Blocking LPA-dependent signaling increases ovarian cancer cell death in response to chemotherapy. Redox Biol. 15:380–386. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Nauman G, Gray JC, Parkinson R, Levine M and Paller CJ: Systematic review of intravenous ascorbate in cancer clinical trials. Antioxidants (Basel). 7:892018. View Article : Google Scholar : PubMed/NCBI

106 

Bulavin DV and Fornace AJ Jr: p38 MAP kinase's emerging role as a tumor suppressor. Adv Cancer Res. 92:95–118. 2004. View Article : Google Scholar : PubMed/NCBI

107 

Zhang P, Hong J, Yoon IN, Kang JK, Hwang JS and Kim H: Clostridium difficile Toxin A induces reactive oxygen species production and p38 MAPK activation to exert cellular toxicity in neuronal cells. J Microbiol Biotechnol. 27:1163–1170. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Zhang Z, Huang C, Li J, Leonard SS, Lanciotti R, Butterworth L and Shi X: Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch Biochem Biophys. 392:311–320. 2001. View Article : Google Scholar : PubMed/NCBI

109 

Hemachandra LP, Shin DH, Dier U, Iuliano JN, Engelberth SA, Uusitalo LM, Murphy SK and Hempel N: Mitochondrial superoxide dismutase has a protumorigenic role in ovarian clear cell carcinoma. Cancer Res. 75:4973–4984. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Bykov VJ, Zhang Q, Zhang M, Ceder S, Abrahmsen L and Wiman KG: Targeting of Mutant p53 and the cellular redox balance by APR-246 as a strategy for efficient cancer therapy. Front Oncol. 6:212016. View Article : Google Scholar : PubMed/NCBI

111 

Wei D, Yu Y, Zhang X, Wang Y, Chen H, Zhao Y, Wang F, Rong G, Wang W, Kang X, et al: Breaking the intracellular redox balance with diselenium nanoparticles for maximizing chemotherapy efficacy on patient-derived xenograft models. ACS Nano. Dec 7–2020.(Epub ahead of print). View Article : Google Scholar

112 

Xu Y, Gao W, Zhang Y, Wu S, Liu Y, Deng X, Xie L, Yang J, Yu H, Su J and Sun L: ABT737 reverses cisplatin resistance by targeting glucose metabolism of human ovarian cancer cells. Int J Oncol. 53:1055–1068. 2018.PubMed/NCBI

113 

Liu M, Wang D, Luo Y, Hu L, Bi Y, Ji J, Huang H, Wang G, Zhu L, Ma J, et al: Selective killing of cancer cells harboring mutant RAS by concomitant inhibition of NADPH oxidase and glutathione biosynthesis. Cell Death Dis. 12:1892021. View Article : Google Scholar : PubMed/NCBI

114 

Müller MF, Florian S, Pommer S, Osterhoff M, Esworthy RS, Chu FF, Brigelius-Flohé R and Kipp AP: Deletion of glutathione peroxidase-2 inhibits azoxymethane-induced colon cancer development. PLoS One. 8:e720552013. View Article : Google Scholar : PubMed/NCBI

115 

Krehl S, Loewinger M, Florian S, Kipp AP, Banning A, Wessjohann LA, Brauer MN, Iori R, Esworthy RS, Chu FF and Brigelius-Flohé R: Glutathione peroxidase-2 and selenium decreased inflammation and tumors in a mouse model of inflammation-associated carcinogenesis whereas sulforaphane effects differed with selenium supply. Carcinogenesis. 33:620–628. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Li J, Wang Q, Yang Y, Lei C, Yang F, Liang L, Chen C, Xia J, Wang K and Tang N: GSTZ1 deficiency promotes hepatocellular carcinoma proliferation via activation of the KEAP1/NRF2 pathway. J Exp Clin Cancer Res. 38:4382019. View Article : Google Scholar : PubMed/NCBI

117 

Taguchi K and Yamamoto M: The KEAP1-NRF2 system as a molecular target of cancer treatment. Cancers (Basel). 13:462020. View Article : Google Scholar : PubMed/NCBI

118 

Glasauer A and Chandel NS: Targeting antioxidants for cancer therapy. Biochem Pharmacol. 92:90–101. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kobayashi H, Imanaka S and Shigetomi H: Revisiting therapeutic strategies for ovarian cancer by focusing on redox homeostasis (Review). Oncol Lett 23: 80, 2022.
APA
Kobayashi, H., Imanaka, S., & Shigetomi, H. (2022). Revisiting therapeutic strategies for ovarian cancer by focusing on redox homeostasis (Review). Oncology Letters, 23, 80. https://doi.org/10.3892/ol.2022.13200
MLA
Kobayashi, H., Imanaka, S., Shigetomi, H."Revisiting therapeutic strategies for ovarian cancer by focusing on redox homeostasis (Review)". Oncology Letters 23.3 (2022): 80.
Chicago
Kobayashi, H., Imanaka, S., Shigetomi, H."Revisiting therapeutic strategies for ovarian cancer by focusing on redox homeostasis (Review)". Oncology Letters 23, no. 3 (2022): 80. https://doi.org/10.3892/ol.2022.13200
Copy and paste a formatted citation
x
Spandidos Publications style
Kobayashi H, Imanaka S and Shigetomi H: Revisiting therapeutic strategies for ovarian cancer by focusing on redox homeostasis (Review). Oncol Lett 23: 80, 2022.
APA
Kobayashi, H., Imanaka, S., & Shigetomi, H. (2022). Revisiting therapeutic strategies for ovarian cancer by focusing on redox homeostasis (Review). Oncology Letters, 23, 80. https://doi.org/10.3892/ol.2022.13200
MLA
Kobayashi, H., Imanaka, S., Shigetomi, H."Revisiting therapeutic strategies for ovarian cancer by focusing on redox homeostasis (Review)". Oncology Letters 23.3 (2022): 80.
Chicago
Kobayashi, H., Imanaka, S., Shigetomi, H."Revisiting therapeutic strategies for ovarian cancer by focusing on redox homeostasis (Review)". Oncology Letters 23, no. 3 (2022): 80. https://doi.org/10.3892/ol.2022.13200
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team