Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
March-2022 Volume 23 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2022 Volume 23 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Update on the role of C1GALT1 in cancer (Review)

  • Authors:
    • Tong Xia
    • Ting Xiang
    • Hailong Xie
  • View Affiliations / Copyright

    Affiliations: Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
    Copyright: © Xia et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 97
    |
    Published online on: January 27, 2022
       https://doi.org/10.3892/ol.2022.13217
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer remains one of the most difficult diseases to treat. In the quest for early diagnoses to improve patient survival and prognosis, targeted therapies have become a hot research topic in recent years. Glycosylation is the most common posttranslational modification in mammalian cells. Core 1β1,3‑galactosyltransferase (C1GALT1) is a key glycosyltransferase in the glycosylation process and is the key enzyme in the formation of the core 1 structure on which most complex and branched O‑glycans are formed. A recent study reported that C1GALT1 was aberrantly expressed in tumors. In cancer cells, C1GALT1 is regulated by different factors. In the present review, the expression of C1GALT1 in different tumors and its possible molecular mechanisms of action are described and the role of C1GALT1 in cancer development is discussed.
View Figures

Figure 1

Figure 2

View References

1 

Lis H and Sharon N: Protein glycosylation. Structural and functional aspects. Eur J Biochem. 218:1–27. 1993. View Article : Google Scholar : PubMed/NCBI

2 

Spiro RG: Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 12:43R–56R. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Arike L and Hansson GC: The Densely O-Glycosylated MUC2 mucin protects the intestine and provides food for the commensal bacteria. J Mol Biol. 428:3221–3229. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA and Tabak LA: Control of mucin-type O-glycosylation: A classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 22:736–756. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Liu CH, Hu RH, Huang MJ, Lai IR, Chen CH, Lai HS, Wu YM and Huang MC: C1GALT1 promotes invasive phenotypes of hepatocellular carcinoma cells by modulating integrin β1 glycosylation and activity. PLoS One. 9:e949952014. View Article : Google Scholar : PubMed/NCBI

6 

Ju T and Cummings RD: A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci USA. 99:16613–16618. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Ju T, Otto VI and Cummings RD: The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed Engl. 50:1770–1791. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Galvan M, Tsuboi S, Fukuda M and Baum LG: Expression of a specific glycosyltransferase enzyme regulates T cell death mediated by galectin-1. J Biol Chem. 275:16730–16737. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Ju T, Cummings RD and Canfield WM: Purification, characterization, and subunit structure of rat core 1 Beta1,3-galactosyltransferase. J Biol Chem. 277:169–177. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Ju T, Brewer K, D'Souza A, Cummings RD and Canfield WM: Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem. 277:178–186. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Kudo T, Sato T, Hagiwara K, Kozuma Y, Yamaguchi T, Ikehara Y, Hamada M, Matsumoto K, Ema M, Murata S, et al: C1galt1-deficient mice exhibit thrombocytopenia due to abnormal terminal differentiation of megakaryocytes. Blood. 122:1649–1657. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI

13 

Vajaria BN and Patel PS: Glycosylation: A hallmark of cancer? Glycoconj J. 34:147–156. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Munkley J and Elliott DJ: Hallmarks of glycosylation in cancer. Oncotarget. 7:35478–35489. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Liu F, Fu J, Bergstrom K, Shan X, McDaniel JM, McGee S, Bai X, Chen W and Xia L: Core 1-derived mucin-type O-glycosylation protects against spontaneous gastritis and gastric cancer. J Exp Med. 217:e201823252020. View Article : Google Scholar : PubMed/NCBI

16 

Chou CH, Huang MJ, Chen CH, Shyu MK, Huang J, Hung JS, Huang CS and Huang MC: Up-regulation of C1GALT1 promotes breast cancer cell growth through MUC1-C signaling pathway. Oncotarget. 6:6123–6135. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Fu J, Gerhardt H, McDaniel JM, Xia B, Liu X, Ivanciu L, Ny A, Hermans K, Silasi-Mansat R, McGee S, et al: Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest. 118:3725–3737. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Kuo TC, Wu MH, Yang SH, Chen ST, Hsu TW, Jhuang JY, Liao YY, Tien YW and Huang MC: C1GALT1 high expression is associated with poor survival of patients with pancreatic ductal adenocarcinoma and promotes cell invasiveness through integrin αv. Oncogene. 40:1242–1254. 2021. View Article : Google Scholar : PubMed/NCBI

19 

Lee PC, Chen ST, Kuo TC, Lin TC, Lin MC, Huang J, Hung JS, Hsu CL, Juan HF, Lee PH and Huang MC: C1GALT1 is associated with poor survival and promotes soluble Ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer. Oncogene. 39:2724–2740. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Lin MC, Chien PH, Wu HY, Chen ST, Juan HF, Lou PJ and Huang MC: C1GALT1 predicts poor prognosis and is a potential therapeutic target in head and neck cancer. Oncogene. 37:5780–5793. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Dong X, Luo Z, Wang Y, Meng L, Duan Q, Qiu L, Peng F and Shen L: Altered O-glycosylation is associated with inherent radioresistance and malignancy of human laryngeal carcinoma. Exp Cell Res. 362:302–310. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Chou CH, Huang MJ, Liao YY, Chen CH and Huang MC: C1GALT1 seems to promote in vitro disease progression in ovarian cancer. Int J Gynecol Cancer. 27:863–871. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Wu YM, Liu CH, Huang MJ, Lai HS, Lee PH, Hu RH and Huang MC: C1GALT1 enhances proliferation of hepatocellular carcinoma cells via modulating MET glycosylation and dimerization. Cancer Res. 73:5580–5590. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Karsten U and Goletz S: What controls the expression of the core-1 (Thomsen-Friedenreich) glycotope on tumor cells? Biochemistry (Mosc). 80:801–807. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Numa F, Tsunaga N, Michioka T, Nawata S, Ogata H and Kato H: Tissue expression of Sialyl Tn antigen in gynecologic tumors. J Obstet Gynaecol (Tokyo 1995). 21:385–389. 1995. View Article : Google Scholar : PubMed/NCBI

26 

Laack E, Nikbakht H, Peters A, Kugler C, Jasiewicz Y, Edler L, Hossfeld DK and Schumacher U: Lectin histochemistry of resected adenocarcinoma of the lung: Helix pomatia agglutinin binding is an independent prognostic factor. Am J Pathol. 160:1001–1008. 2002. View Article : Google Scholar : PubMed/NCBI

27 

Konno A, Hoshino Y, Terashima S, Motoki R and Kawaguchi T: Carbohydrate expression profile of colorectal cancer cells is relevant to metastatic pattern and prognosis. Clin Exp Metastasis. 19:61–70. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Suzuki H, Moldoveanu Z, Hall S, Brown R, Vu HL, Novak L, Julian BA, Tomana M, Wyatt RJ, Edberg JC, et al: IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest. 118:629–639. 2008.PubMed/NCBI

29 

Narimatsu Y, Kubota T, Furukawa S, Shimojima M, Iwasaki H, Tozawa Y, Tachibana K and Narimatsu H: Co-translational function of Cosmc, core 1 synthase specific molecular chaperone, revealed by a cell-free translation system. FEBS Lett. 585:1276–1280. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Alexander WS, Viney EM, Zhang JG, Metcalf D, Kauppi M, Hyland CD, Carpinelli MR, Stevenson W, Croker BA, Hilton AA, et al: Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene. Proc Natl Acad Sci USA. 103:16442–16447. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Piller V, Piller F and Fukuda M: Biosynthesis of truncated O-glycans in the T cell line Jurkat. Localization of O-glycan initiation. J Biol Chem. 265:9264–9271. 1990. View Article : Google Scholar : PubMed/NCBI

32 

Ju T, Lanneau GS, Gautam T, Wang Y, Xia B, Stowell SR, Willard MT, Wang W, Xia JY, Zuna RE, et al: Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res. 68:1636–1646. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Aryal RP, Ju T and Cummings RD: Tight complex formation between Cosmc chaperone and its specific client non-native T-synthase leads to enzyme activity and client-driven dissociation. J Biol Chem. 287:15317–15329. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Aryal RP, Ju T and Cummings RD: The endoplasmic reticulum chaperone Cosmc directly promotes in vitro folding of T-synthase. J Biol Chem. 285:2456–2462. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Ellis RJ: The molecular chaperone concept. Semin Cell Biol. 1:1–9. 1990.PubMed/NCBI

36 

Ju T, Aryal RP, Stowell CJ and Cummings RD: Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J Cell Biol. 182:531–542. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Ju T and Cummings RD: Protein glycosylation: Chaperone mutation in Tn syndrome. Nature. 437:12522005. View Article : Google Scholar : PubMed/NCBI

38 

Fidler IJ: The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 3:453–458. 2003. View Article : Google Scholar : PubMed/NCBI

39 

An G, Wei B, Xia B, McDaniel JM, Ju T, Cummings RD, Braun J and Xia L: Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J Exp Med. 204:1417–1429. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Guda K, Moinova H, He J, Jamison O, Ravi L, Natale L, Lutterbaugh J, Lawrence E, Lewis S, Willson JK, et al: Inactivating germ-line and somatic mutations in polypeptide N-acetylgalactosaminyltransferase 12 in human colon cancers. Proc Natl Acad Sci USA. 106:12921–12925. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Brockhausen I: Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta. 1473:67–95. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Shin S, Jung Y, Uhm H, Song M, Son S, Goo J, Jeong C, Song JJ, Kim VN and Hohng S: Quantification of purified endogenous miRNAs with high sensitivity and specificity. Nat Commun. 11:60332020. View Article : Google Scholar : PubMed/NCBI

43 

Saliminejad K, Khorram Khorshid HR, Soleymani Fard S and Ghaffari SH: An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 234:5451–5465. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM and Voinea SC: miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells. 9:2762020. View Article : Google Scholar : PubMed/NCBI

45 

Chen H, Xiao Z, Yu R, Wang Y, Xu R and Zhu X: miR-181d-5p-FOXP1 feedback loop modulates the progression of osteosarcoma. Biochem Biophys Res Commun. 503:1434–1441. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Wang H, Wei H, Wang J, Li L, Chen A and Li Z: MicroRNA-181d-5p-containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer. Mol Ther Nucleic Acids. 19:654–667. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Gao LM, Zheng Y, Wang P, Zheng L, Zhang WL, Di Y, Chen LL, Yin XB, Tian Q, Shi SS and Xu SF: Tumor-suppressive effects of microRNA-181d-5p on non-small-cell lung cancer through the CDKN3-mediated Akt signaling pathway in vivo and in vitro. Am J Physiol Lung Cell Mol Physiol. 316:L918–L933. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Dong X, Liu Y, Deng X, Shao J, Tian S, Chen S, Huang R, Lin Z, Chen C and Shen L: C1GALT1, negatively regulated by miR-181d-5p, promotes tumor progression via upregulating RAC1 in lung adenocarcinoma. Front Cell Dev Biol. 9:7079702021. View Article : Google Scholar : PubMed/NCBI

49 

Feng F, Liu H, Chen A, Xia Q, Zhao Y, Jin X and Huang J: miR-148-3p and miR-152-3p synergistically regulate prostate cancer progression via repressing KLF4. J Cell Biochem. 120:17228–17239. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Sun J, Tian X, Zhang J, Huang Y, Lin X, Chen L and Zhang S: Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2: MiR-152-3p regulate glioma cell apoptosis and invasion. J Exp Clin Cancer Res. 36:1002017. View Article : Google Scholar : PubMed/NCBI

51 

Ma P, Li L, Liu F and Zhao Q: HNF1A-induced lncRNA HCG18 facilitates gastric cancer progression by upregulating DNAJB12 via miR-152-3p. Onco Targets Ther. 13:7641–7652. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Dong X, Chen C, Deng X, Liu Y, Duan Q, Peng Z, Luo Z and Shen L: A novel mechanism for C1GALT1 in the regulation of gastric cancer progression. Cell Biosci. 11:1662021. View Article : Google Scholar : PubMed/NCBI

53 

Nguyen LK, Kholodenko BN and von Kriegsheim A: Rac1 and RhoA: Networks, loops and bistability. Small GTPases. 9:316–321. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Zou T, Mao X, Yin J, Li X, Chen J, Zhu T, Li Q, Zhou H and Liu Z: Emerging roles of RAC1 in treating lung cancer patients. Clin Genet. 91:520–528. 2017. View Article : Google Scholar : PubMed/NCBI

55 

De P, Aske JC and Dey N: RAC1 Takes the lead in solid tumors. Cells. 8:3822019. View Article : Google Scholar : PubMed/NCBI

56 

Kazanietz MG and Caloca MJ: The Rac GTPase in Cancer: From old concepts to new paradigms. Cancer Res. 77:5445–5451. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Chen L, Zhang D, Ding T, Liu F, Xu X, Tian Y, Xiao J and Shen H: LncRNA NR2F2-AS1 upregulates Rac1 to increase cancer stemness in clear cell renal cell carcinoma. Cancer Biother Radiopharm. 35:301–306. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Zeng Y, Ren M, Li Y, Chen C, Su J, Su B, Xia H, Liu F, Jiang H, Ling H, et al: Knockdown of RhoGDI2 represses human gastric cancer cell proliferation, invasion and drug resistance via the Rac1/Pak1/LIMK1 pathway. Cancer Lett. 492:136–146. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Chen HH, Yu HI, Cho WC and Tarn WY: DDX3 modulates cell adhesion and motility and cancer cell metastasis via Rac1-mediated signaling pathway. Oncogene. 34:2790–2800. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Hung JS, Huang J, Lin YC, Huang MJ, Lee PH, Lai HS, Liang JT and Huang MC: C1GALT1 overexpression promotes the invasive behavior of colon cancer cells through modifying O-glycosylation of FGFR2. Oncotarget. 5:2096–2106. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Liu SY, Shun CT, Hung KY, Juan HF, Hsu CL, Huang MC and Lai IR: Mucin glycosylating enzyme GALNT2 suppresses malignancy in gastric adenocarcinoma by reducing MET phosphorylation. Oncotarget. 7:11251–11262. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Wu YM, Liu CH, Hu RH, Huang MJ, Lee JJ, Chen CH, Huang J, Lai HS, Lee PH, Hsu WM, et al: Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor. Cancer Res. 71:7270–7279. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Huang MJ, Hu RH, Chou CH, Hsu CL, Liu YW, Huang J, Hung JS, Lai IR, Juan HF, Yu SL, et al: Knockdown of GALNT1 suppresses malignant phenotype of hepatocellular carcinoma by suppressing EGFR signaling. Oncotarget. 6:5650–5665. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Bradley CA, Salto-Tellez M, Laurent-Puig P, Bardelli A, Rolfo C, Tabernero J, Khawaja HA, Lawler M, Johnston PG and Van Schaeybroeck S; MErCuRIC consortium, : Targeting c-MET in gastrointestinal tumours: Rationale, opportunities and challenges. Nat Rev Clin Oncol. 14:562–576. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Sierra JC, Asim M, Verriere TG, Piazuelo MB, Suarez G, Romero-Gallo J, Delgado AG, Wroblewski LE, Barry DP, Peek RM Jr, et al: Epidermal growth factor receptor inhibition downregulates-induced epithelial inflammatory responses, DNA damage and gastric carcinogenesis. Gut. 67:1247–1260. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Kania A and Klein R: Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol. 17:240–256. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Xi HQ, Wu XS, Wei B and Chen L: Eph receptors and ephrins as targets for cancer therapy. J Cell Mol Med. 16:2894–2909. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Vaught D, Brantley-Sieders DM and Chen J: Eph receptors in breast cancer: Roles in tumor promotion and tumor suppression. Breast Cancer Res. 10:2172008. View Article : Google Scholar : PubMed/NCBI

69 

Herath NI and Boyd AW: The role of Eph receptors and ephrin ligands in colorectal cancer. Int J Cancer. 126:2003–2011. 2010.PubMed/NCBI

70 

Lisle JE, Mertens-Walker I, Rutkowski R, Herington AC and Stephenson SA: Eph receptors and their ligands: Promising molecular biomarkers and therapeutic targets in prostate cancer. Biochim Biophys Acta. 1835:243–257. 2013.PubMed/NCBI

71 

Pasquale EB: Eph receptors and ephrins in cancer: Bidirectional signalling and beyond. Nat Rev Cancer. 10:165–180. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Boyd AW, Bartlett PF and Lackmann M: Therapeutic targeting of EPH receptors and their ligands. Nat Rev Drug Discov. 13:39–62. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Yuan WJ, Ge J, Chen ZK, Wu SB, Shen H, Yang P, Hu B, Zhang GW and Chen ZH: Over-expression of EphA2 and EphrinA-1 in human gastric adenocarcinoma and its prognostic value for postoperative patients. Dig Dis Sci. 54:2410–2417. 2009. View Article : Google Scholar : PubMed/NCBI

74 

Nakamura R, Kataoka H, Sato N, Kanamori M, Ihara M, Igarashi H, Ravshanov S, Wang YJ, Li ZY, Shimamura T, et al: EPHA2/EFNA1 expression in human gastric cancer. Cancer Sci. 96:42–47. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Yuan W, Chen Z, Chen Z, Wu S, Guo J, Ge J, Yang P and Huang J: Silencing of EphA2 inhibits invasion of human gastric cancer SGC-7901 cells in vitro and in vivo. Neoplasma. 59:105–113. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Zender L, Villanueva A, Tovar V, Sia D, Chiang DY and Llovet JM: Cancer gene discovery in hepatocellular carcinoma. J Hepatol. 52:921–929. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Marquardt JU, Galle PR and Teufel A: Molecular diagnosis and therapy of hepatocellular carcinoma (HCC): An emerging field for advanced technologies. J Hepatol. 56:267–275. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Herr P, Korniychuk G, Yamamoto Y, Grubisic K and Oelgeschläger M: Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1. Development. 135:1813–1822. 2008. View Article : Google Scholar : PubMed/NCBI

79 

Kaposi-Novak P, Lee JS, Gòmez-Quiroz L, Coulouarn C, Factor VM and Thorgeirsson SS: Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest. 116:1582–1595. 2006. View Article : Google Scholar : PubMed/NCBI

80 

Ke AW, Shi GM, Zhou J, Wu FZ, Ding ZB, Hu MY, Xu Y, Song ZJ, Wang ZJ, Wu JC, et al: Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology. 49:491–503. 2009. View Article : Google Scholar : PubMed/NCBI

81 

D'Errico A, Fiorentino M, Ponzetto A, Daikuhara Y, Tsubouchi H, Brechot C, Scoazec JY and Grigioni WF: Liver hepatocyte growth factor does not always correlate with hepatocellular proliferation in human liver lesions: Its specific receptor c-met does. Hepatology. 24:60–64. 1996. View Article : Google Scholar : PubMed/NCBI

82 

Ma PC, Maulik G, Christensen J and Salgia R: c-Met: Structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 22:309–325. 2003. View Article : Google Scholar : PubMed/NCBI

83 

Birchmeier C, Birchmeier W, Gherardi E and Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 4:915–925. 2003. View Article : Google Scholar : PubMed/NCBI

84 

Casaletto JB and McClatchey AI: Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer. 12:387–400. 2012. View Article : Google Scholar : PubMed/NCBI

85 

Matsuda Y, Ueda J and Ishiwata T: Fibroblast growth factor receptor 2: Expression, roles, and potential as a novel molecular target for colorectal cancer. Patholog Res Int. 2012:5747682012.PubMed/NCBI

86 

Hatch NE, Hudson M, Seto ML, Cunningham ML and Bothwell M: Intracellular retention, degradation, and signaling of glycosylation-deficient FGFR2 and craniosynostosis syndrome-associated FGFR2C278F. J Biol Chem. 281:27292–27305. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Schlessinger J: Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell. 110:669–672. 2002. View Article : Google Scholar : PubMed/NCBI

88 

Leemans CR, Snijders PJF and Brakenhoff RH: The molecular landscape of head and neck cancer. Nat Rev Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Tsai CH, Tzeng SF, Chao TK, Tsai CY, Yang YC, Lee MT, Hwang JJ, Chou YC, Tsai MH, Cha TL and Hsiao PW: Metastatic progression of prostate cancer is mediated by autonomous binding of Galectin-4-O-Glycan to cancer cells. Cancer Res. 76:5756–5767. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Marcucci F, Bellone M, Caserta CA and Corti A: Pushing tumor cells towards a malignant phenotype: Stimuli from the microenvironment, intercellular communications and alternative roads. Int J Cancer. 135:1265–1276. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Guo W and Giancotti FG: Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 5:816–826. 2004. View Article : Google Scholar : PubMed/NCBI

92 

Mueller MM and Fusenig NE: Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 4:839–849. 2004. View Article : Google Scholar : PubMed/NCBI

93 

Hood JD and Cheresh DA: Role of integrins in cell invasion and migration. Nat Rev Cancer. 2:91–100. 2002. View Article : Google Scholar : PubMed/NCBI

94 

Fransvea E, Mazzocca A, Antonaci S and Giannelli G: Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology. 49:839–850. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Yang C, Zeisberg M, Lively JC, Nyberg P, Afdhal N and Kalluri R: Integrin alpha1beta1 and alpha2beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res. 63:8312–8317. 2003.PubMed/NCBI

96 

Ke AW, Shi GM, Zhou J, Huang XY, Shi YH, Ding ZB, Wang XY, Devbhandari RP and Fan J: CD151 amplifies signaling by integrin α6β1 to PI3K and induces the epithelial-mesenchymal transition in HCC cells. Gastroenterology. 140:1629–1641.e15. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Lee SH, Hatakeyama S, Yu SY, Bao X, Ohyama C, Khoo KH, Fukuda MN and Fukuda M: Core3 O-glycan synthase suppresses tumor formation and metastasis of prostate carcinoma PC3 and LNCaP cells through down-regulation of alpha2beta1 integrin complex. J Biol Chem. 284:17157–17169. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Clément M, Rocher J, Loirand G and Le Pendu J: Expression of sialyl-Tn epitopes on beta1 integrin alters epithelial cell phenotype, proliferation and haptotaxis. J Cell Sci. 117:5059–5069. 2004. View Article : Google Scholar : PubMed/NCBI

99 

Liao WC, Chen CH, Liu CH, Huang MJ, Chen CW, Hung JS, Chou CH, Chen CH, Che MI, Chang HM, et al: Expression of GALNT2 in human extravillous trophoblasts and its suppressive role in trophoblast invasion. Placenta. 33:1005–1011. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Huang MC, Chen HY, Huang HC, Huang J, Liang JT, Shen TL, Lin NY, Ho CC, Cho IM and Hsu SM: C2GnT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells. Oncogene. 25:3267–3276. 2006. View Article : Google Scholar : PubMed/NCBI

101 

Park JH, Katagiri T, Chung S, Kijima K and Nakamura Y: Polypeptide N-acetylgalactosaminyltransferase 6 disrupts mammary acinar morphogenesis through O-glycosylation of fibronectin. Neoplasia. 13:320–326. 2011. View Article : Google Scholar : PubMed/NCBI

102 

Zhang H, Meng F, Wu S, Kreike B, Sethi S, Chen W, Miller FR and Wu G: Engagement of I-branching {beta}-1, 6-N-acetylglucosaminyltransferase 2 in breast cancer metastasis and TGF-{beta} signaling. Cancer Res. 71:4846–4856. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Chang HH, Chen CH, Chou CH, Liao YF, Huang MJ, Chen YH, Wang WJ, Huang J, Hung JS, Ho WL, et al: β-1,4-Galactosyltransferase III enhances invasive phenotypes via β1-integrin and predicts poor prognosis in neuroblastoma. Clin Cancer Res. 19:1705–1716. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Seguin L, Desgrosellier JS, Weis SM and Cheresh DA: Integrins and cancer: Regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol. 25:234–240. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Desgrosellier JS and Cheresh DA: Integrins in cancer: Biological implications and therapeutic opportunities. Nat Rev Cancer. 10:9–22. 2010. View Article : Google Scholar : PubMed/NCBI

106 

Marsico G, Russo L, Quondamatteo F and Pandit A: Glycosylation and integrin regulation in cancer. Trends Cancer. 4:537–552. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Ju JA, Godet I, Ye IC, Byun J, Jayatilaka H, Lee SJ, Xiang L, Samanta D, Lee MH, Wu PH, et al: Hypoxia selectively enhances integrin αβ receptor expression in breast cancer to promote metastasis. Mol Cancer Res. 15:723–734. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Li XQ, Lu JT, Tan CC, Wang QS and Feng YM: RUNX2 promotes breast cancer bone metastasis by increasing integrin α5-mediated colonization. Cancer Lett. 380:78–86. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Pantano F, Croset M, Driouch K, Bednarz-Knoll N, Iuliani M, Ribelli G, Bonnelye E, Wikman H, Geraci S, Bonin F, et al: Integrin alpha5 in human breast cancer is a mediator of bone metastasis and a therapeutic target for the treatment of osteolytic lesions. Oncogene. 40:1284–1299. 2021. View Article : Google Scholar : PubMed/NCBI

110 

Wang JF, Wang Y, Zhang SW, Chen YY, Qiu Y, Duan SY, Li BP and Chen JQ: Expression and prognostic analysis of integrins in gastric cancer. J Oncol. 2020:88622282020. View Article : Google Scholar : PubMed/NCBI

111 

Hakamada K: Cancer stroma-targeting therapy: A new tool for fighting pancreatic cancer? Ann Gastroenterol Surg. 3:120–121. 2019. View Article : Google Scholar : PubMed/NCBI

112 

Guan JL: Role of focal adhesion kinase in integrin signaling. Int J Biochem Cell Biol. 29:1085–1096. 1997. View Article : Google Scholar : PubMed/NCBI

113 

Mitra SK, Mikolon D, Molina JE, Hsia DA, Hanson DA, Chi A, Lim ST, Bernard-Trifilo JA, Ilic D, Stupack DG, et al: Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors. Oncogene. 25:5969–5984. 2006. View Article : Google Scholar : PubMed/NCBI

114 

Chen CH, Shyu MK, Wang SW, Chou CH, Huang MJ, Lin TC, Chen ST, Lin HH and Huang MC: MUC20 promotes aggressive phenotypes of epithelial ovarian cancer cells via activation of the integrin β1 pathway. Gynecol Oncol. 140:131–137. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Guan JL: Integrin signaling through FAK in the regulation of mammary stem cells and breast cancer. IUBMB Life. 62:268–276. 2010.PubMed/NCBI

116 

Nath S and Mukherjee P: MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 20:332–342. 2014. View Article : Google Scholar : PubMed/NCBI

117 

Taylor-Papadimitriou J, Burchell JM, Plunkett T, Graham R, Correa I, Miles D and Smith M: MUC1 and the immunobiology of cancer. J Mammary Gland Biol Neoplasia. 7:209–221. 2002. View Article : Google Scholar : PubMed/NCBI

118 

Kufe DW: Mucins in cancer: Function, prognosis and therapy. Nat Rev Cancer. 9:874–885. 2009. View Article : Google Scholar : PubMed/NCBI

119 

Apostolopoulos V, Stojanovska L and Gargosky SE: MUC1 (CD227): A multi-tasked molecule. Cell Mol Life Sci. 72:4475–4500. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Chen CH, Wang SW, Chen CW, Huang MR, Hung JS, Huang HC, Lin HH, Chen RJ, Shyu MK and Huang MC: MUC20 overexpression predicts poor prognosis and enhances EGF-induced malignant phenotypes via activation of the EGFR-STAT3 pathway in endometrial cancer. Gynecol Oncol. 128:560–567. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Chen CH, Hsiao SM, Chang TC, Wu WY and Lin HH: Clinical and urodynamic effects of baclofen in women with functional bladder outlet obstruction: Preliminary report. J Obstet Gynaecol Res. 42:560–565. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Pinho SS and Reis CA: Glycosylation in cancer: Mechanisms and clinical implications. Nat Rev Cancer. 15:540–555. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Razawi H, Kinlough CL, Staubach S, Poland PA, Rbaibi Y, Weisz OA, Hughey RP and Hanisch FG: Evidence for core 2 to core 1 O-glycan remodeling during the recycling of MUC1. Glycobiology. 23:935–945. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Kufe DW: MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches. Oncogene. 32:1073–1081. 2013. View Article : Google Scholar : PubMed/NCBI

125 

Xu HL, Zhao X, Zhang KM, Tang W and Kokudo N: Inhibition of KL-6/MUC1 glycosylation limits aggressive progression of pancreatic cancer. World J Gastroenterol. 20:12171–12181. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Wang Y, Liao X, Ye Q and Huang L: Clinic implication of MUC1 O-glycosylation and C1GALT1 in esophagus squamous cell carcinoma. Sci China Life Sci. 61:1389–1395. 2018. View Article : Google Scholar : PubMed/NCBI

127 

Gendler SJ, Spicer AP, Lalani EN, Duhig T, Peat N, Burchell J, Pemberton L, Boshell M and Taylor-Papadimitriou J: Structure and biology of a carcinoma-associated mucin, MUC1. Am Rev Respir Dis. 144 (Suppl 1):S42–S47. 1991. View Article : Google Scholar : PubMed/NCBI

128 

Posey AD, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM, et al: Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity. 44:1444–1454. 2016. View Article : Google Scholar : PubMed/NCBI

129 

Kato T, Ujiie H, Hatanaka KC, Nange A, Okumura A, Tsubame K, Naruchi K, Sato M, Kaga K, Matsuno Y, et al: A novel Tn antigen epitope-recognizing antibody for MUC1 predicts clinical outcome in patients with primary lung adenocarcinoma. Oncol Lett. 21:2022021. View Article : Google Scholar : PubMed/NCBI

130 

Allen A, Hutton DA and Pearson JP: The MUC2 gene product: A human intestinal mucin. Int J Biochem Cell Biol. 30:797–801. 1998. View Article : Google Scholar : PubMed/NCBI

131 

Tytgat KM, Büller HA, Opdam FJ, Kim YS, Einerhand AW and Dekker J: Biosynthesis of human colonic mucin: Muc2 is the prominent secretory mucin. Gastroenterology. 107:1352–1363. 1994. View Article : Google Scholar : PubMed/NCBI

132 

van Klinken BJ, Einerhand AW, Duits LA, Makkink MK, Tytgat KM, Renes IB, Verburg M, Büller HA and Dekker J: Gastrointestinal expression and partial cDNA cloning of murine Muc2. Am J Physiol. 276:G115–G124. 1999.PubMed/NCBI

133 

Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L and Hansson GC: The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA. 105:15064–15069. 2008. View Article : Google Scholar : PubMed/NCBI

134 

Bergstrom K, Fu J, Johansson ME, Liu X, Gao N, Wu Q, Song J, McDaniel JM, McGee S, Chen W, et al: Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunol. 10:91–103. 2017. View Article : Google Scholar : PubMed/NCBI

135 

Bergstrom K, Liu X, Zhao Y, Gao N, Wu Q, Song K, Cui Y, Li Y, McDaniel JM, McGee S, et al: Defective intestinal Mucin-type O-Glycosylation causes spontaneous colitis-associated cancer in mice. Gastroenterology. 151:152–164.e11. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Gao N, Bergstrom K, Fu J, Xie B, Chen W and Xia L: Loss of intestinal O-glycans promotes spontaneous duodenal tumors. Am J Physiol Gastrointest Liver Physiol. 311:G74–G83. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Johansson MEV, Sjövall H and Hansson GC: The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol. 10:352–361. 2013. View Article : Google Scholar : PubMed/NCBI

138 

Chugh S, Barkeer S, Rachagani S, Nimmakayala RK, Perumal N, Pothuraju R, Atri P, Mahapatra S, Thapa I, Talmon GA, et al: Disruption of C1galt1 Gene promotes development and metastasis of pancreatic adenocarcinomas in mice. Gastroenterology. 155:1608–1624. 2018. View Article : Google Scholar : PubMed/NCBI

139 

da Fonseca LM, da Silva VA, Freire-de-Lima L, Previato JO, Mendonça-Previato L and Capella MAM: Glycosylation in Cancer: Interplay between Multidrug resistance and Epithelial-to-Mesenchymal Transition? Front Oncol. 6:1582016. View Article : Google Scholar : PubMed/NCBI

140 

Ma H, Miao X, Ma Q, Zheng W, Zhou H and Jia L: Functional roles of glycogene and N-glycan in multidrug resistance of human breast cancer cells. IUBMB Life. 65:409–422. 2013. View Article : Google Scholar : PubMed/NCBI

141 

Wu J, Qin H, Li T, Cheng K, Dong J, Tian M, Chai N, Guo H, Li J, You X, et al: Characterization of site-specific glycosylation of secreted proteins associated with multi-drug resistance of gastric cancer. Oncotarget. 7:25315–25327. 2016. View Article : Google Scholar : PubMed/NCBI

142 

Huang C, Huang M, Chen W, Zhu W, Meng H, Guo L, Wei T and Zhang J: N-acetylglucosaminyltransferase V modulates radiosensitivity and migration of small cell lung cancer through epithelial-mesenchymal transition. FEBS J. 282:4295–4306. 2015. View Article : Google Scholar : PubMed/NCBI

143 

Zhuo E, He J, Wei T, Zhu W, Meng H, Li Y, Guo L and Zhang J: Down-regulation of GnT-V enhances nasopharyngeal carcinoma cell CNE-2 radiosensitivity in vitro and in vivo. Biochem Biophys Res Commun. 424:554–562. 2012. View Article : Google Scholar : PubMed/NCBI

144 

Park JJ and Lee M: Increasing the α 2, 6 sialylation of glycoproteins may contribute to metastatic spread and therapeutic resistance in colorectal cancer. Gut Liver. 7:629–641. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Shen L, Dong XX, Wu JB, Qiu L, Duan QW and Luo ZG: Radiosensitisation of human glioma cells by inhibition of β1,6-GlcNAc branched N-glycans. Tumour Biol. 37:4909–4918. 2016. View Article : Google Scholar : PubMed/NCBI

146 

Zhang C, Deng X, Qiu L, Peng F, Geng S, Shen L and Luo Z: Knockdown of C1GalT1 inhibits radioresistance of human esophageal cancer cells through modifying β1-integrin glycosylation. J Cancer. 9:2666–2677. 2018. View Article : Google Scholar : PubMed/NCBI

147 

Moncharmont C, Levy A, Guy JB, Falk AT, Guilbert M, Trone JC, Alphonse G, Gilormini M, Ardail D, Toillon RA, et al: Radiation-enhanced cell migration/invasion process: A review. Crit Rev Oncol Hematol. 92:133–142. 2014. View Article : Google Scholar : PubMed/NCBI

148 

Paquette B, Therriault H, Desmarais G, Wagner R, Royer R and Bujold R: Radiation-enhancement of MDA-MB-231 breast cancer cell invasion prevented by a cyclooxygenase-2 inhibitor. Br J Cancer. 105:534–541. 2011. View Article : Google Scholar : PubMed/NCBI

149 

Qian LW, Mizumoto K, Urashima T, Nagai E, Maehara N, Sato N, Nakajima M and Tanaka M: Radiation-induced increase in invasive potential of human pancreatic cancer cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. Clin Cancer Res. 8:1223–1227. 2002.PubMed/NCBI

150 

Wu J, Li Y, Dang YZ, Gao HX, Jiang JL and Chen ZN: HAb18G/CD147 promotes radioresistance in hepatocellular carcinoma cells: A potential role for integrin β1 signaling. Mol Cancer Ther. 14:553–563. 2015. View Article : Google Scholar : PubMed/NCBI

151 

Aftab BT, Dobromilskaya I, Liu JO and Rudin CM: Itraconazole inhibits angiogenesis and tumor growth in non-small cell lung cancer. Cancer Res. 71:6764–6772. 2011. View Article : Google Scholar : PubMed/NCBI

152 

Kim J, Tang JY, Gong R, Kim J, Lee JJ, Clemons KV, Chong CR, Chang KS, Fereshteh M, Gardner D, et al: Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell. 17:388–399. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xia T, Xiang T and Xie H: Update on the role of C1GALT1 in cancer (Review). Oncol Lett 23: 97, 2022.
APA
Xia, T., Xiang, T., & Xie, H. (2022). Update on the role of C1GALT1 in cancer (Review). Oncology Letters, 23, 97. https://doi.org/10.3892/ol.2022.13217
MLA
Xia, T., Xiang, T., Xie, H."Update on the role of C1GALT1 in cancer (Review)". Oncology Letters 23.3 (2022): 97.
Chicago
Xia, T., Xiang, T., Xie, H."Update on the role of C1GALT1 in cancer (Review)". Oncology Letters 23, no. 3 (2022): 97. https://doi.org/10.3892/ol.2022.13217
Copy and paste a formatted citation
x
Spandidos Publications style
Xia T, Xiang T and Xie H: Update on the role of C1GALT1 in cancer (Review). Oncol Lett 23: 97, 2022.
APA
Xia, T., Xiang, T., & Xie, H. (2022). Update on the role of C1GALT1 in cancer (Review). Oncology Letters, 23, 97. https://doi.org/10.3892/ol.2022.13217
MLA
Xia, T., Xiang, T., Xie, H."Update on the role of C1GALT1 in cancer (Review)". Oncology Letters 23.3 (2022): 97.
Chicago
Xia, T., Xiang, T., Xie, H."Update on the role of C1GALT1 in cancer (Review)". Oncology Letters 23, no. 3 (2022): 97. https://doi.org/10.3892/ol.2022.13217
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team