|
1
|
Smith S, Witkowski A and Joshi AK:
Structural and functional organization of the animal fatty acid
synthase. Prog Lipid Res. 42:289–317. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Swinnen JV, Van Veldhoven PP, Timmermans
L, De Schrijver E, Brusselmans K, Vanderhoydonc F, Van de Sande T,
Heemers H, Heyns W and Verhoeven G: Fatty acid synthase drives the
synthesis of phospholipids partitioning into detergent-resistant
membrane microdomains. Biochem Biophys Res Commun. 302:898–903.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Menendez JA and Lupu R: Fatty acid
synthase and the lipogenic phenotype in cancer pathogenesis. Nat
Rev Cancer. 7:763–777. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hanover JA, Yu S, Lubas WB, Shin SH,
Ragano-Caracciola M, Kochran J and Love D: Mitochondrial and
nucleocytoplasmic isoforms of O-linked GlcNAc transferase encoded
by a single mammalian gene. Arch Biochem Biophys. 409:287–297.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fardini Y, Dehennaut V, Lefebvre T and
Issad T: O-GlcNAcylation: A New cancer hallmark? Front Endocrinol
(Lausanne). 4:992013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Baldini SF, Wavelet C, Hainault I, Guinez
C and Lefebvre T: The nutrient-dependent O-GlcNAc modification
controls the expression of liver fatty acid synthase. J Mol Biol.
428:3295–3304. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Raab S, Gadault A, Very N, Decourcelle A,
Baldini S, Schulz C, Mortuaire M, Lemaire Q, Hardivillé S,
Dehennaut V, et al: Dual regulation of fatty acid synthase (FASN)
expression by O-GlcNAc transferase (OGT) and mTOR pathway in
proliferating liver cancer cells. Cell Mol Life Sci. 78:5397–5413.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bar-Peled L and Sabatini DM: Regulation of
mTORC1 by amino acids. Trends Cell Biol. 24:400–406. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Sodi VL, Khaku S, Krutilina R, Schwab LP,
Vocadlo DJ, Seagroves TN and Reginato M: mTOR/MYC axis regulates
O-GlcNAc transferase expression and O-GlcNAcylation in breast
cancer. Mol Cancer Res. 13:923–933. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Very N, Steenackers A, Dubuquoy C, Vermuse
J, Dubuquoy L, Lefebvre T and El Yazidi-Belkoura I: Cross
regulation between mTOR signaling and O-GlcNAcylation. J Bioenerg
Biomembr. 50:213–222. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Magaway C, Kim E and Jacinto E: Targeting
mTOR and metabolism in cancer. Lessons and innovations. Cells.
8:15842019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hua H, Kong Q, Zhang H, Wang J, Luo T and
Jiang Y: Targeting mTOR for cancer therapy. J Hematol Oncol.
12:712019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Baldini SF and Lefebvre T: O-GlcNAcylation
and the metabolic shift in high-proliferating cells: All the
evidence suggests that sugars dictate the flux of lipid biogenesis
in tumor processes. Front Oncol. 6:62016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Huang C and Freter C: Lipid metabolism,
apoptosis and cancer therapy. Int J Mol Sci. 16:924–949. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Menendez J and Lupu R: Fatty acid synthase
(FASN) as a therapeutic target in breast cancer. Expert Opin Ther
Targets. 21:1001–1016. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Steenackers A, Olivier-Van Stichelen S,
Baldini SF, Dehennaut V, Toillon RA, Le Bourhis X, El
Yazidi-Belkoura I and Lefebvre T: Silencing the nucleocytoplasmic
O-GlcNAc transferase reduces proliferation, adhesion, and migration
of cancer and fetal human colon cell lines. Front Endocrinol
(Lausanne). 7:462016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Caldwell SA, Jackson SR, Shahriari KS,
Lynch TP, Sethi G, Walker S, Vosseller K and Reginato MJ: Nutrient
sensor O-GlcNAc transferase regulates breast cancer tumorigenesis
through targeting of the oncogenic transcription factor FoxM1.
Oncogene. 29:2831–2842. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Olivier-Van Stichelen S, Dehennaut V, Buzy
A, Zachayus JL, Guinez C, Mir AM, El Yazidi-Belkoura I, Copin MC,
Boureme D, Loyaux D, et al: O-GlcNAcylation stabilizes β-catenin
through direct competition with phosphorylation at threonine 41.
FASEB. 28:3325–3338. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhu Q, Zhou L, Yang Z, Lai M, Xie H, Wu L,
Xing C, Zhang F and Zheng S: O-GlcNAcylation plays a role in tumor
recurrence of hepatocellular carcinoma following liver
transplantation. Med Oncol. 29:985–993. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Meng Z, Li T, Ma X, Wang X, Van Ness C,
Gan Y, Zhou H, Tang J, Lou G, Wang Y, et al: Berbamine inhibits the
growth of liver cancer cells and cancer-initiating cells by
targeting Ca2+/calmodulin-dependent protein kinase II.
Mol Cancer Ther. 12:2067–2077. 2013. View Article : Google Scholar : PubMed/NCBI
|