You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D and Wender RC: Cancer screening in the United States, 2019: A review of current American cancer society guidelines and current issues in cancer screening. CA Cancer J Clin. 69:184–210. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Skibinski A and Kuperwasser C: The origin of breast tumor heterogeneity. Oncogene. 34:5309–5316. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Gallo KA and Conrad SE: Targeting mixed lineage kinases in ER-positive breast cancer cells leads to G2/M cell cycle arrest and apoptosis. Oncotarget. 4:1158–1171. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sommer S and Fuqua SA: Estrogen receptor and breast cancer. Semin Cancer Biol. 11:339–352. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Slamon D, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Foulkes WD, Smith IE and Reis-Filho JS: Triple-negative breast cancer. N Engl J Med. 363:1938–1948. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Montagna E, Maisonneuve P, Rotmensz N, Cancello G, Iorfida M, Balduzzi A, Galimberti V, Veronesi P, Luini A, Pruneri G, et al: Heterogeneity of triple-negative breast cancer: Histologic subtyping to inform the outcome. Clin Breast Cancer. 13:31–39. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zuo T, Wang L, Morrison C, Chang X, Zhang H, Li W, Liu Y, Wang Y, Liu X, Chan MWY, et al: FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell. 184:63782021. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamoto S, Wu Z, Russnes HG, Takagi S, Peluffo G, Vaske C, Zhao X, Moen Vollan HK, Maruyama R, Ekram MB, et al: JARID1B is a luminal lineage-driving oncogene in breast cancer. Cancer Cell. 25:762–777. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Tognon CE, Godinho FJ, Yasaitis L, Hock H, Herschkowitz JI, Lannon CL, Cho E, Kim SJ, Bronson RT, et al: ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell. 12:542–558. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Dreyfuss G, Kim VN and Kataoka N: Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 3:195–205. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Mitchell SF and Parker R: Principles and properties of eukaryotic mRNPs. Mol Cell. 54:547–558. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang ZJ, Li B, Luo YX, Lin Q, Liu SR, Zhang XQ, Zhou H, Yang JH and Qu LH: Comprehensive genomic characterization of RNA-binding proteins across human cancers. Cell Rep. 22:286–298. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Smith CW and Valcárcel J: Alternative pre-mRNA splicing: The logic of combinatorial control. Trends Biochem Sci. 25:381–388. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Marcotrigiano J, Gingras AC, Sonenberg N and Burley SK: Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell. 89:951–961. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Saulière J, Murigneux V, Wang Z, Marquenet E, Barbosa I, Le Tonquèze O, Audic Y, Paillard L, Roest Crollius H and Le Hir H: CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat Struct Mol Biol. 19:1124–1131. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Gehring NH, Lamprinaki S, Kulozik AE and Hentze MW: Disassembly of exon junction complexes by PYM. Cell. 137:536–548. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ali MAM: DEAD-box RNA helicases: The driving forces behind RNA metabolism at the crossroad of viral replication and antiviral innate immunity. Virus Res. 296:1983522021. View Article : Google Scholar : PubMed/NCBI | |
|
Mizuno H, Kitada K, Nakai K and Sarai A: PrognoScan: A new database for meta-analysis of the prognostic value of genes. BMC Med Genomics. 2:182009. View Article : Google Scholar : PubMed/NCBI | |
|
Palacios IM, Gatfield D, St Johnston D and Izaurralde E: An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature. 427:753–757. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Shibuya T, Tange TØ, Sonenberg N and Moore MJ: eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat Struct Mol Biol. 11:346–351. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Ito M, Tanaka T, Cary DR, Iwatani-Yoshihara M, Kamada Y, Kawamoto T, Aparicio S, Nakanishi A and Imaeda Y: Discovery of novel 1,4-diacylpiperazines as selective and cell-active eIF4A3 inhibitors. J Med Chem. 60:3335–3351. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Y, Zhang J, Cai J, Liang R, Chen G, Qin G, Han X, Yuan C, Liu Z, Li Y, et al: Systematic analysis of gene expression alteration and co-expression network of eukaryotic initiation factor 4A-3 in cancer. J Cancer. 9:4568–4577. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nusse R and Clevers H: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mitchell JP and Carmody RJ: NF-κB and the transcriptional control of inflammation. Int Rev Cell Mol Biol. 335:41–84. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Baldin V, Lukas J, Marcote MJ, Pagano M and Draetta G: Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 7:812–821. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR and Cooper JA: Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol. 19:1871–1880. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Fukunaga R and Hunter T: MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16:1921–1933. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Wheater MJ, Johnson PW and Blaydes JP: The role of MNK proteins and eIF4E phosphorylation in breast cancer cell proliferation and survival. Cancer Biol Ther. 10:728–735. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Robichaud N, del Rincon SV, Huor B, Alain T, Petruccelli LA, Hearnden J, Goncalves C, Grotegut S, Spruck CH, Furic L, et al: Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3. Oncogene. 34:2032–2042. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Robichaud N, Hsu BE, Istomine R, Alvarez F, Blagih J, Ma EH, Morales SV, Dai DL, Li G, Souleimanova M, et al: Translational control in the tumor microenvironment promotes lung metastasis: Phosphorylation of eIF4E in neutrophils. Proc Natl Acad Sci USA. 115:E2202–E2209. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chrestensen CA, Shuman JK, Eschenroeder A, Worthington M, Gram H and Sturgill TW: MNK1 and MNK2 regulation in HER2-overexpressing breast cancer lines. J Biol Chem. 282:4243–4252. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Evans MK, Brown MA, Geradts J, Bao X, Robinson TJ, Jolly MK, Vermeulen PB, Palmer GM, Gromeier M, Levine H, et al: XIAP regulation by MNK links MAPK and NFκB signaling to determine an aggressive breast cancer phenotype. Cancer Res. 78:1726–1738. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ma WJ, Cheng S, Campbell C, Wright A and Furneaux H: Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem. 271:8144–8151. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Kotta-Loizou I, Giaginis C and Theocharis S: Clinical significance of HuR expression in human malignancy. Med Oncol. 31:1612014. View Article : Google Scholar : PubMed/NCBI | |
|
Ortega AD, Sala S, Espinosa E, González-Barón M and Cuezva JM: HuR and the bioenergetic signature of breast cancer: A low tumor expression of the RNA-binding protein predicts a higher risk of disease recurrence. Carcinogenesis. 29:2053–2061. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Xu F, Zhang X, Lei Y, Liu X, Liu Z, Tong T and Wang W: Loss of repression of HuR translation by miR-16 may be responsible for the elevation of HuR in human breast carcinoma. J Cell Biochem. 111:727–734. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Heinonen M, Hemmes A, Salmenkivi K, Abdelmohsen K, Vilén ST, Laakso M, Leidenius M, Salo T, Hautaniemi S, Gorospe M, et al: Role of RNA binding protein HuR in ductal carcinoma in situ of the breast. J Pathol. 224:529–539. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Stylianou S, Clarke RB and Brennan K: Aberrant activation of notch signaling in human breast cancer. Cancer Res. 66:1517–1525. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Chae MJ, Sung HY, Kim EH, Lee M, Kwak H, Chae CH, Kim S and Park WY: Chemical inhibitors destabilize HuR binding to the AU-rich element of TNF-alpha mRNA. Exp Mol Med. 41:824–831. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Izquierdo JM: Hu antigen R (HuR) functions as an alternative pre-mRNA splicing regulator of Fas apoptosis-promoting receptor on exon definition. J Biol Chem. 283:19077–19084. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Ahmadi W, Al-Ghamdi M, Al-Souhibani N and Khabar KS: miR-29a inhibition normalizes HuR over-expression and aberrant AU-rich mRNA stability in invasive cancer. J Pathol. 230:28–38. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
López de Silanes I, Zhan M, Lal A, Yang X and Gorospe M: Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci USA. 101:2987–2992. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Brennan CM and Steitz JA: HuR and mRNA stability. Cell Mol Life Sci. 58:266–277. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Myer VE, Fan XC and Steitz JA: Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay. EMBO J. 16:2130–2139. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Fan XC and Steitz JA: Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 17:3448–3460. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Peng SS, Chen CY, Xu N and Shyu AB: RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17:3461–3470. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Hoch RV, Thompson DA, Baker RJ and Weigel RJ: GATA-3 is expressed in association with estrogen receptor in breast cancer. Int J Cancer. 84:122–128. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Licata LA, Hostetter CL, Crismale J, Sheth A and Keen JC: The RNA-binding protein HuR regulates GATA3 mRNA stability in human breast cancer cell lines. Breast Cancer Res Treat. 122:55–63. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Yu J, Du D, Fu S, Chen Y, Yu F and Gao P: Involvement of post-transcriptional regulation of FOXO1 by HuR in 5-FU-induced apoptosis in breast cancer cells. Oncol Lett. 6:156–160. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, Miao L, Mei Y and Wu M: Retinoic acid-induced HOXA5 expression is co-regulated by HuR and miR-130a. Cell Signal. 25:1476–1485. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rhoads K, Arderiu G, Charboneau A, Hansen SL, Hoffman W and Boudreau N: A role for Hox A5 in regulating angiogenesis and vascular patterning. Lymphat Res Biol. 3:240–252. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Sommer S, Cui Y, Brewer G and Fuqua SA: The c-Yes 3′-UTR contains adenine/uridine-rich elements that bind AUF1 and HuR involved in mRNA decay in breast cancer cells. J Steroid Biochem Mol Biol. 97:219–229. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Leris AC, Roberts TR, Jiang WG, Newbold RF and Mokbel K: WNT5A expression in human breast cancer. Anticancer Res. 25:731–734. 2005.PubMed/NCBI | |
|
Meng Z, Jackson NL, Choi H, King PH, Emanuel PD and Blume SW: Alterations in RNA-binding activities of IRES-regulatory proteins as a mechanism for physiological variability and pathological dysregulation of IGF-IR translational control in human breast tumor cells. J Cell Physiol. 217:172–183. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Scott GK, Marx C, Berger CE, Saunders LR, Verdin E, Schäfer S, Jung M and Benz CC: Destabilization of ERBB2 transcripts by targeting 3′ untranslated region messenger RNA associated HuR and histone deacetylase-6. Mol Cancer Res. 6:1250–1258. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Furneaux H, Cheng H, Caldwell MC, Hutter D, Liu Y, Holbrook N and Gorospe M: HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol. 20:760–769. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Yan W, Zhang Y, Zhang J, Cho SJ and Chen X: HuR is necessary for mammary epithelial cell proliferation and polarity at least in part via ΔNp63. PLoS One. 7:e453362012. View Article : Google Scholar : PubMed/NCBI | |
|
Giles KM, Daly JM, Beveridge DJ, Thomson AM, Voon DC, Furneaux HM, Jazayeri JA and Leedman PJ: The 3′-untranslated region of p21WAF1 mRNA is a composite cis-acting sequence bound by RNA-binding proteins from breast cancer cells, including HuR and poly(C)-binding protein. J Biol Chem. 278:2937–2946. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Chock K, Allison JM and Elshamy WM: BRCA1-IRIS overexpression abrogates UV-induced p38MAPK/p53 and promotes proliferation of damaged cells. Oncogene. 29:5274–5285. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Saunus JM, French JD, Edwards SL, Beveridge DJ, Hatchell EC, Wagner SA, Stein SR, Davidson A, Simpson KJ, Francis GD, et al: Posttranscriptional regulation of the breast cancer susceptibility gene BRCA1 by the RNA binding protein HuR. Cancer Res. 68:9469–9478. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Mazan-Mamczarz K, Hagner PR, Dai B, Wood WH, Zhang Y, Becker KG, Liu Z and Gartenhaus RB: Identification of transformation-related pathways in a breast epithelial cell model using a ribonomics approach. Cancer Res. 68:7730–7735. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Suswam ES, Nabors LB, Huang Y, Yang X and King PH: IL-1beta induces stabilization of IL-8 mRNA in malignant breast cancer cells via the 3′ untranslated region: Involvement of divergent RNA-binding factors HuR, KSRP and TIAR. Int J Cancer. 113:911–919. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hsia TC, Tu CY, Chen YJ, Wei YL, Yu MC, Hsu SC, Tsai SL, Chen WS, Yeh MH, Yen CJ, et al: Lapatinib-mediated cyclooxygenase-2 expression via epidermal growth factor receptor/HuR interaction enhances the aggressiveness of triple-negative breast cancer cells. Mol Pharmacol. 83:857–869. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Woo HH, Zhou Y, Yi X, David CL, Zheng W, Gilmore-Hebert M, Kluger HM, Ulukus EC, Baker T, Stoffer JB and Chambers SK: Regulation of non-AU-rich element containing c-fms proto-oncogene expression by HuR in breast cancer. Oncogene. 28:1176–1186. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Calaluce R, Gubin MM, Davis JW, Magee JD, Chen J, Kuwano Y, Gorospe M and Atasoy U: The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer. BMC Cancer. 10:1262010. View Article : Google Scholar : PubMed/NCBI | |
|
Gubin MM, Calaluce R, Davis JW, Magee JD, Strouse CS, Shaw DP, Ma L, Brown A, Hoffman T, Rold TL and Atasoy U: Overexpression of the RNA binding protein HuR impairs tumor growth in triple negative breast cancer associated with deficient angiogenesis. Cell Cycle. 9:3337–3346. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Z, Sanders A, Ye L, Wang Y and Jiang WG: Prognostic value of the human antigen R (HuR) in human breast cancer: High level predicts a favourable prognosis. Anticancer Res. 31:303–310. 2011.PubMed/NCBI | |
|
Kotta-Loizou I, Vasilopoulos SN, Coutts RH and Theocharis S: Current evidence and future perspectives on HuR and breast cancer development, prognosis, and treatment. Neoplasia. 18:674–688. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Leandersson K, Riesbeck K and Andersson T: Wnt-5a mRNA translation is suppressed by the Elav-like protein HuR in human breast epithelial cells. Nucleic Acids Res. 34:3988–3999. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu H, Zhou HL, Hasman RA and Lou H: Hu proteins regulate polyadenylation by blocking sites containing U-rich sequences. J Biol Chem. 282:2203–2210. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, Ascano M Jr, Tuschl T, Ohler U and Keene JD: Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell. 43:327–339. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Akaike Y, Masuda K, Kuwano Y, Nishida K, Kajita K, Kurokawa K, Satake Y, Shoda K, Imoto I and Rokutan K: HuR regulates alternative splicing of the TRA2β gene in human colon cancer cells under oxidative stress. Mol Cell Biol. 34:2857–2873. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fan XC and Steitz JA: HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA. 95:15293–15298. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Keene JD: Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc Natl Acad Sci USA. 96:5–7. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Abdelmohsen K, Srikantan S, Kuwano Y and Gorospe M: miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci USA. 105:20297–20302. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Cabilla JP, Nudler SI, Ronchetti SA, Quinteros FA, Lasaga M and Duvilanski BH: Nitric oxide-sensitive guanylyl cyclase is differentially regulated by nuclear and non-nuclear estrogen pathways in anterior pituitary gland. PLoS One. 6:e294022011. View Article : Google Scholar : PubMed/NCBI | |
|
Akool ES, Kleinert H, Hamada FM, Abdelwahab MH, Förstermann U, Pfeilschifter J and Eberhardt W: Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol. 23:4901–4916. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Meisner NC, Hintersteiner M, Mueller K, Bauer R, Seifert JM, Naegeli HU, Ottl J, Oberer L, Guenat C, Moss S, et al: Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR. Nat Chem Biol. 3:508–515. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
D'Agostino VG, Adami V and Provenzani A: A novel high throughput biochemical assay to evaluate the HuR protein-RNA complex formation. PLoS One. 8:e724262013. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Lan L, Wilson DM, Marquez RT, Tsao WC, Gao P, Roy A, Turner BA, McDonald P, Tunge JA, et al: Identification and validation of novel small molecule disruptors of HuR-mRNA interaction. ACS Chem Biol. 10:1476–1484. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
D'Agostino VP, Lal P, Mantelli B, Tiedje C, Zucal C, Thongon N, Gaestel M, Latorre E, Marinelli L, Seneci P, et al: Dihydrotanshinone-I interferes with the RNA-binding activity of HuR affecting its post-transcriptional function. Sci Rep. 5:164782015. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Rock KL, Woda BA, Jiang Z, Fraire AE and Dresser K: IMP3 is a novel biomarker for adenocarcinoma in situ of the uterine cervix: An immunohistochemical study in comparison with p16(INK4a) expression. Mod Pathol. 20:242–247. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Z, Chu PG, Woda BA, Rock KL, Liu Q, Hsieh CC, Li C, Chen W, Duan HO, McDougal S and Wu CL: Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: A retrospective study. Lancet Oncol. 7:556–564. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Bell JL, Wächter K, Mühleck B, Pazaitis N, Köhn M, Lederer M and Hüttelmaier S: Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): Post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 70:2657–2675. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Fakhraldeen SA, Clark RJ, Roopra A, Chin EN, Huang W, Castorino J, Wisinski KB, Kim T, Spiegelman VS and Alexander CM: Two isoforms of the RNA binding protein, coding region determinant-binding protein (CRD-BP/IGF2BP1), are expressed in breast epithelium and support clonogenic growth of breast tumor cells. J Biol Chem. 290:13386–13400. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gu W, Pan F and Singer RH: Blocking beta-catenin binding to the ZBP1 promoter represses ZBP1 expression, leading to increased proliferation and migration of metastatic breast-cancer cells. J Cell Sci. 122:1895–1905. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Gu W, Katz Z, Wu B, Park HY, Li D, Lin S, Wells AL and Singer RH: Regulation of local expression of cell adhesion and motility-related mRNAs in breast cancer cells by IMP1/ZBP1. J Cell Sci. 125:81–91. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lapidus K, Wyckoff J, Mouneimne G, Lorenz M, Soon L, Condeelis JS and Singer RH: ZBP1 enhances cell polarity and reduces chemotaxis. J Cell Sci. 120:3173–3178. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G, Huang Z, Liu X, Huang W, Chen S, Zhou Y, Li D, Singer RH and Gu W: IMP1 suppresses breast tumor growth and metastasis through the regulation of its target mRNAs. Oncotarget. 7:15690–15702. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gu W, Wells AL, Pan F and Singer RH: Feedback regulation between zipcode binding protein 1 and beta-catenin mRNAs in breast cancer cells. Mol Cell Biol. 28:4963–4974. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Barghash A, Helms V and Kessler SM: Overexpression of IGF2 mRNA-binding protein 2 (IMP2/p62) as a feature of basal-like breast cancer correlates with short survival. Scand J Immunol. 82:142–143. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Li Y, Wang B, Dai L, Qian W and Zhang JY: Autoimmune response to IGF2 mRNA-binding protein 2 (IMP2/p62) in breast cancer. Scand J Immunol. 81:502–507. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
McMullen ER, Gonzalez ME, Skala SL, Tran M, Thomas D, Djomehri SI, Burman B, Kidwell KM and Kleer CG: CCN6 regulates IGF2BP2 and HMGA2 signaling in metaplastic carcinomas of the breast. Breast Cancer Res Treat. 172:577–586. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Walter O, Prasad M, Lu S, Quinlan RM, Edmiston KL and Khan A: IMP3 is a novel biomarker for triple negative invasive mammary carcinoma associated with a more aggressive phenotype. Hum Pathol. 40:1528–1533. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, Taylor-Papadimitriou J and Burchell JM: Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 10:R522008. View Article : Google Scholar : PubMed/NCBI | |
|
Samanta S, Sharma VM, Khan A and Mercurio AM: Regulation of IMP3 by EGFR signaling and repression by ERβ: Implications for triple-negative breast cancer. Oncogene. 31:4689–4697. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Samanta S, Sun H, Goel HL, Pursell B, Chang C, Khan A, Greiner DL, Cao S, Lim E, Shultz LD and Mercurio AM: IMP3 promotes stem-like properties in triple-negative breast cancer by regulating SLUG. Oncogene. 35:1111–1121. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Phillips S, Prat A, Sedic M, Proia T, Wronski A, Mazumdar S, Skibinski A, Shirley SH, Perou CM, Gill G, et al: Cell-state transitions regulated by SLUG are critical for tissue regeneration and tumor initiation. Stem Cell Rep. 2:633–647. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M, Gilmore H, Tung N, Naber SP, Schnitt S, et al: Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell. 8:149–163. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Samanta S, Guru S, Elaimy AL, Amante JJ, Ou J, Yu J, Zhu LJ and Mercurio AM: IMP3 stabilization of WNT5B mRNA facilitates TAZ activation in breast cancer. Cell Rep. 23:2559–2567. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, et al: The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 147:759–772. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Doyle L and Ross DD: Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 22:7340–7358. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Hazlehurst LA, Foley NE, Gleason-Guzman MC, Hacker MP, Cress AE, Greenberger LW, De Jong MC and Dalton WS: Multiple mechanisms confer drug resistance to mitoxantrone in the human 8226 myeloma cell line. Cancer Res. 59:1021–1028. 1999.PubMed/NCBI | |
|
Samanta S, Pursell B and Mercurio AM: IMP3 protein promotes chemoresistance in breast cancer cells by regulating breast cancer resistance protein (ABCG2) expression. J Biol Chem. 288:12569–12573. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kim HY, Ha Thi HT and Hong S: IMP2 and IMP3 cooperate to promote the metastasis of triple-negative breast cancer through destabilization of progesterone receptor. Cancer Lett. 415:30–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rehfeld F, Rohde AM, Nguyen DT and Wulczyn FC: Lin28 and let-7: Ancient milestones on the road from pluripotency to neurogenesis. Cell Tissue Res. 359:145–160. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shyh-Chang N and Daley GQ: Lin28: Primal regulator of growth and metabolism in stem cells. Cell Stem Cell. 12:395–406. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Powers JT, Tsanov KM, Pearson DS, Roels F, Spina CS, Ebright R, Seligson M, de Soysa Y, Cahan P, Theißen J, et al: Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature. 535:246–251. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yao K, Qiu S, Tian L, Snider WD, Flannery JG, Schaffer DV and Chen B: Wnt regulates proliferation and neurogenic potential of Müller glial cells via a Lin28/let-7 miRNA-dependent pathway in adult mammalian retinas. Cell Rep. 17:165–178. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D and Gregory RI: Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell. 147:1066–1079. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Gibadulinova A, Bullova P, Strnad H, Pohlodek K, Jurkovicova D, Takacova M, Pastorekova S and Eliska Svastoval: CAIX-mediated control of LIN28/let-7 axis contributes to metabolic adaptation of breast cancer cells to hypoxia. Int J Mol Sci. 21:42992020. View Article : Google Scholar : PubMed/NCBI | |
|
Frost RJ and Olson EN: Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci USA. 108:21075–21080. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu H, Shyh-Chang N, Segrè A, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, et al: The Lin28/let-7 axis regulates glucose metabolism. Cell. 147:81–94. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mayr C, Hemann MT and Bartel DP: Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 315:1576–1579. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP and Krueger LJ: MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67:9762–9770. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Li N, Zhong X, Lin X, Guo J, Zou L, Tanyi JL, Shao Z, Liang S, Wang LP, Hwang WT, et al: Lin-28 homologue A (LIN28A) promotes cell cycle progression via regulation of cyclin-dependent kinase 2 (CDK2), cyclin D1 (CCND1), and cell division cycle 25 homolog A (CDC25A) expression in cancer. J Biol Chem. 287:17386–17397. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Isanejad A, Alizadeh AM, Amani Shalamzari S, Khodayari H, Khodayari S, Khori V and Khojastehnjad N: MicroRNA-206, let-7a and microRNA-21 pathways involved in the anti-angiogenesis effects of the interval exercise training and hormone therapy in breast cancer. Life Sci. 151:30–40. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ and Rosner MR: Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 28:347–358. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Li H, Feng J, Cui X, Huang W, Li Y, Su F, Liu Q, Zhu J, Lv X, et al: Lin28 induces epithelial-to-mesenchymal transition and stemness via downregulation of let-7a in breast cancer cells. PLoS One. 8:e830832013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Wang YX, Zhang DZ, Fang XJ, Sun PS and Xue HC: Let-7a mimic attenuates CCL18 induced breast cancer cell metastasis through Lin 28 pathway. Biomed Pharmacother. 78:301–307. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Estrada-Bernal A, Chatterjee M, Haque SJ, Yang L, Morgan MA, Kotian S, Morrell D, Chakravarti A and Williams TM: MEK inhibitor GSK1120212-mediated radiosensitization of pancreatic cancer cells involves inhibition of DNA double-strand break repair pathways. Cell Cycle. 14:3713–3724. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Oh JS, Kim JJ, Byun JY and Kim IA: Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-Ras. Int J Radiat Oncol Biol Phys. 76:5–8. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Collis SJ, Barber LJ, Clark AJ, Martin JS, Ward JD and Boulton SJ: HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability. Nat Cell Biol. 9:391–401. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Teng R, Hu Y, Zhou J, Seifer B, Chen Y, Shen J and Wang L: Overexpression of Lin28 decreases the chemosensitivity of gastric cancer cells to oxaliplatin, paclitaxel, doxorubicin, and fluorouracil in part via microRNA-107. PLoS One. 10:e01437162015. View Article : Google Scholar : PubMed/NCBI | |
|
Tian N, Han Z, Li Z, Zhou M and Fan C: Lin28/let-7/Bcl-xL pathway: The underlying mechanism of drug resistance in Hep3B cells. Oncol Rep. 32:1050–1056. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lv K, Liu L, Wang L, Yu J, Liu X, Cheng Y, Dong M, Teng R, Wu L, Fu P, et al: Lin28 mediates paclitaxel resistance by modulating p21, Rb and Let-7a miRNA in breast cancer cells. PLoS One. 7:e400082012. View Article : Google Scholar : PubMed/NCBI | |
|
Okano H, Kawahara H, Toriya M, Nakao K, Shibata S and Imai T: Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res. 306:349–356. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wang XY, Penalva LQ, Yuan H, Linnoila RI, Lu J, Okano H and Glazer RI: Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor survival. Mol Cancer. 9:2212010. View Article : Google Scholar : PubMed/NCBI | |
|
Shu HJ, Saito T, Watanabe H, Ito JI, Takeda H, Okano H and Kawata S: Expression of the Musashi1 gene encoding the RNA-binding protein in human hepatoma cell lines. Biochem Biophys Res Commun. 293:150–154. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Toda M, Iizuka Y, Yu W, Imai T, Ikeda E, Yoshida K, Kawase T, Kawakami Y, Okano H and Uyemura K: Expression of the neural RNA-binding protein Musashi1 in human gliomas. Glia. 34:1–7. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Battelli C, Nikopoulos GN, Mitchell JG and Verdi JM: The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21WAF-1. Mol Cell Neurosci. 31:85–96. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Devgan V, Mammucari C, Millar SE, Brisken C and Dotto GP: p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev. 19:1485–1495. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wang XY, Yin Y, Yuan H, Sakamaki T, Okano H and Glazer RI: Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and Notch pathways. Mol Cell Biol. 28:3589–3599. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Glazer RI, Vo DT and Penalva LO: Musashi1: An RBP with versatile functions in normal and cancer stem cells. Front Biosci (Landmark Ed). 17:54–64. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lindsay J, Jiao X, Sakamaki T, Casimiro MC, Shirley LA, Tran TH, Ju X, Liu M, Li Z, Wang C, et al: ErbB2 induces Notch1 activity and function in breast cancer cells. Clin Transl Sci. 1:107–115. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Choi YM, Kim KB, Lee JH, Chun YK, An IS, An S and Bae S: DBC2/RhoBTB2 functions as a tumor suppressor protein via Musashi-2 ubiquitination in breast cancer. Oncogene. 36:2802–2812. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Baron M: An overview of the Notch signalling pathway. Semin Cell Dev Biol. 14:113–119. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
McGill MA and McGlade CJ: Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem. 278:23196–23203. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Wakamatsu Y, Maynard TM, Jones SU and Weston JA: NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron. 23:71–81. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G and Egan SE: High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 65:8530–8537. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Ayyanan A, Civenni G, Ciarloni L, Morel C, Mueller N, Lefort K, Mandinova A, Raffoul W, Fiche M, Dotto GP and Brisken C: Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci USA. 103:3799–3804. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V, Zurrida S, Maisonneuve P, Viale G and Di Fiore PP: Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol. 167:215–221. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Hamaguchi M, Meth JL, von Klitzing C, Wei W, Esposito D, Rodgers L, Walsh T, Welcsh P, King MC and Wigler MH: DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc Natl Acad Sci USA. 99:13647–13652. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Knowles MA, Aveyard JS, Taylor CF, Harnden P and Bass S: Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer. Cancer Lett. 225:121–130. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Freeman SN and Cress WD: RhoBTB2 (DBC2) comes of age as a multifunctional tumor suppressor. Cancer Biol Ther. 10:1123–1125. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wilkins A, Ping Q and Carpenter CL: RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev. 18:856–861. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kang MH, Jeong KJ, Kim WY, Lee HJ, Gong G, Suh N, Győrffy B, Kim S, Jeong SY, Mills GB and Park YY: Musashi RNA-binding protein 2 regulates estrogen receptor 1 function in breast cancer. Oncogene. 36:1745–1752. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sakakibara S, Nakamura Y, Satoh H and Okano H: Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci. 21:8091–8107. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Troschel FM, Minte A, Ismail YM, Kamal A, Abdullah MS, Ahmed SH, Deffner M, Kemper B, Kiesel L, Eich HT, et al: Knockdown of Musashi RNA binding proteins decreases radioresistance but enhances cell motility and invasion in triple-negative breast cancer. Int J Mol Sci. 21:21692020. View Article : Google Scholar : PubMed/NCBI | |
|
Jaggupilli A and Elkord E: Significance of CD44 and CD24 as cancer stem cell markers: An enduring ambiguity. Clin Dev Immunol. 2012:7080362012. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Y, Yuan Y, Zhang LL, Lu JW, Feng JF and Hu SN: Downregulated GBX2 gene suppresses proliferation, invasion and angiogenesis of breast cancer cells through inhibiting the Wnt/β-catenin signaling pathway. Cancer Biomark. 23:405–418. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Peuhu E, Virtakoivu R, Mai A, Wärri A and Ivaska J: Epithelial vimentin plays a functional role in mammary gland development. Development. 144:4103–4113. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, Gupta S, Liang H, Lin HK, Hung MC and Ma L: LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med. 18:1511–1517. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yan W, Zhang J, Zhang Y, Jung YS and Chen X: p73 expression is regulated by RNPC1, a target of the p53 family, via mRNA stability. Mol Cell Biol. 32:2336–2348. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Xue JQ, Xia TS, Liang XQ, Zhou W, Cheng L, Shi L, Wang Y and Ding Q: RNA-binding protein RNPC1: Acting as a tumor suppressor in breast cancer. BMC Cancer. 14:3222014. View Article : Google Scholar : PubMed/NCBI | |
|
Feldstein O, Ben-Hamo R, Bashari D, Efroni S and Ginsberg D: RBM38 is a direct transcriptional target of E2F1 that limits E2F1-induced proliferation. Mol Cancer Res. 10:1169–1177. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng L, Zhang Z, Zhang S, Guo Q, Zhang F, Gao L, Ni H, Guo X, Xiang C and Xi T: RNA binding protein RNPC1 inhibits breast cancer cell metastasis via activating STARD13-correlated ceRNA network. Mol Pharm. 15:2123–2132. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shu L, Yan W and Chen X: RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript. Genes Dev. 20:2961–2972. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Li XX, Shi L, Zhou XJ, Wu J, Xia TS, Zhou WB, Sun X, Zhu L, Wei JF and Ding Q: The role of c-Myc-RBM38 loop in the growth suppression in breast cancer. J Exp Clin Canc Res. 36:492017. View Article : Google Scholar : PubMed/NCBI | |
|
Dang CV: MYC on the path to cancer. Cell. 149:22–35. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Shi L, Xia TS, Wei XL, Zhou W, Xue J, Cheng L, Lou P, Li C, Wang Y, Wei JF and Ding Q: Estrogen receptor (ER) was regulated by RNPC1 stabilizing mRNA in ER positive breast cancer. Oncotarget. 6:12264–12278. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lou P, Li C, Shi L, Xia TS, Zhou W, Wu J, Zhou X, Li X, Wang Y, Wei JF and Ding Q: RNPC1 enhances progesterone receptor functions by regulating its mRNA stability in breast cancer. Oncotarget. 8:16387–16400. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Di Cristofano A and Pandolfi PP: The multiple roles of PTEN in tumor suppression. Cell. 100:387–390. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Maehama T and Dixon JE: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 273:13375–13378. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Yamada KM and Araki M: Tumor suppressor PTEN: Modulator of cell signaling, growth, migration and apoptosis. J Cell Sci. 114:2375–2382. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Chow LM and Baker SJ: PTEN function in normal and neoplastic growth. Cancer Lett. 241:184–196. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou XJ, Wu J, Shi L, Li XX, Zhu L, Sun X, Qian JY, Wang Y, Wei JF and Ding Q: PTEN expression is upregulated by a RNA-binding protein RBM38 via enhancing its mRNA stability in breast cancer. J Exp Clin Cancer Res. 36:1492017. View Article : Google Scholar : PubMed/NCBI | |
|
Aparicio LA, Abella V, Valladares M and Figueroa A: Posttranscriptional regulation by RNA-binding proteins during epithelial-to-mesenchymal transition. Cell Mol Life Sci. 70:4463–4477. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Zhou XJ, Sun X, Xia TS, Li XX, Shi L, Zhu L, Zhou WB, Wei JF and Ding Q: RBM38 is involved in TGF-β-induced epithelial-to-mesenchymal transition by stabilising zonula occludens-1 mRNA in breast cancer. Br J Cancer. 117:675–684. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cho SJ, Jung YS, Zhang J and Chen X: The RNA-binding protein RNPC1 stabilizes the mRNA encoding the RNA-binding protein HuR and cooperates with HuR to suppress cell proliferation. J Biol Chem. 287:14535–14544. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Q, Taylor SJ and Shalloway D: Specificity and determinants of Sam68 RNA binding. Implications for the biological function of K homology domains. J Biol Chem. 272:27274–27280. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Chen T, Damaj BB, Herrera C, Lasko P and Richard S: Self-association of the single-KH-domain family members Sam68, GRP33, GLD-1, and Qk1: Role of the KH domain. Mol Cell Biol. 17:5707–5718. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Paronetto MP, Cappellari M, Busà R, Pedrotti S, Vitali R, Comstock C, Hyslop T, Knudsen KE and Sette C: Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68. Cancer Res. 70:229–239. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chawla G, Lin CH, Han A, Shiue L, Ares M Jr and Black DL: Sam68 regulates a set of alternatively spliced exons during neurogenesis. Mol Cell Biol. 29:201–213. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Derry JJ, Richard S, Valderrama Carvajal H, Ye X, Vasioukhin V, Cochrane AW, Chen T and Tyner AL: Sik (BRK) phosphorylates Sam68 in the nucleus and negatively regulates its RNA binding ability. Mol Cell Biol. 20:6114–6126. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Aubele M, Walch AK, Ludyga N, Braselmann H, Atkinson MJ, Luber B, Auer G, Tapio S, Cooke T and Bartlett JM: Prognostic value of protein tyrosine kinase 6 (PTK6) for long-term survival of breast cancer patients. Br J Cancer. 99:1089–1095. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Espejo A, Côté J, Bednarek A, Richard S and Bedford M: A protein-domain microarray identifies novel protein-protein interactions. Biochem J. 367:697–702. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Weng Z, Thomas SM, Rickles RJ, Taylor JA, Brauer AW, Seidel-Dugan C, Michael WM, Dreyfuss G and Brugge JS: Identification of Src, Fyn, and Lyn SH3-binding proteins: Implications for a function of SH3 domains. Mol Cell Biol. 14:4509–4521. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Richard S, Yu D, Blumer KJ, Hausladen D, Olszowy MW, Connelly PA and Shaw AS: Association of p62, a multifunctional SH2- and SH3-domain-binding protein, with src family tyrosine kinases, Grb2, and phospholipase C gamma-1. Mol Cell Biol. 15:186–197. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Taylor SJ, Anafi M, Pawson T and Shalloway D: Functional interaction between c-Src and its mitotic target, Sam 68. J Biol Chem. 270:10120–10124. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Taylor SJ and Shalloway D: An RNA-binding protein associated with Src through its SH2 and SH3 domains in mitosis. Nature. 368:867–871. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Fumagalli S, Totty NF, Hsuan JJ and Courtneidge SA: A target for Src in mitosis. Nature. 368:871–874. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Paronetto MP, Venables JP, Elliott DJ, Geremia R, Rossi P and Sette C: Tr-kit promotes the formation of a multimolecular complex composed by Fyn, PLCgamma1 and Sam68. Oncogene. 22:8707–8715. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Paronetto MP, Achsel T, Massiello A, Chalfant CE and Sette C: The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol. 176:929–939. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Côté J, Boisvert FM, Boulanger MC, Bedford MT and Richard S: Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol Biol Cell. 14:274–287. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Bedford MT, Frankel A, Yaffe MB, Clarke S, Leder P and Richard S: Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J Biol Chem. 275:16030–16036. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Babic I, Jakymiw A and Fujita DJ: The RNA binding protein Sam68 is acetylated in tumor cell lines, and its acetylation correlates with enhanced RNA binding activity. Oncogene. 23:3781–3789. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Babic I, Cherry E and Fujita DJ: SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Oncogene. 25:4955–4964. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Barker KT, Jackson LE and Crompton MR: BRK tyrosine kinase expression in a high proportion of human breast carcinomas. Oncogene. 15:799–805. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Ostrander JH, Daniel AR and Lange CA: Brk/PTK6 signaling in normal and cancer cell models. Curr Opin Pharmacol. 10:662–669. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lukong KE, Larocque D, Tyner AL and Richard S: Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J Biol Chem. 280:38639–38647. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Lukong KE and Richard S: Sam68, the KH domain-containing superSTAR. Biochim Biophys Acta. 1653:73–86. 2003.PubMed/NCBI | |
|
Song L, Wang L, Li Y, Xiong H, Wu J, Li J and Li M: Sam68 up-regulation correlates with, and its down-regulation inhibits, proliferation and tumourigenicity of breast cancer cells. J Pathol. 222:227–237. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Huot ME, Brown CM, Lamarche-Vane N and Richard S: An adaptor role for cytoplasmic Sam68 in modulating Src activity during cell polarization. Mol Cell Biol. 29:1933–1943. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang W, Wang X, Wang D, Xie J, Tang C, Xi Q, Zhong J and Deng Y: Expression of Sam68 correlates with cell proliferation and survival in epithelial ovarian cancer. Reprod Sci. 24:97–108. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao J, Wang Q, Yang Q, Wang H, Qiang F, He S, Cai J, Yang L and Wang Y: Clinical significance and effect of Sam68 expression in gastric cancer. Oncol Lett. 15:4745–4752. 2018.PubMed/NCBI | |
|
Fu K, Sun X, Xia X, Hobbs RP, Guo Y, Coulombe PA and Wan F: Sam68 is required for the growth and survival of nonmelanoma skin cancer. Cancer Med. 8:6106–6113. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Huot MÉ, Vogel G, Zabarauskas A, Ngo CT, Coulombe-Huntington J, Majewski J and Richard S: The Sam68 STAR RNA-binding protein regulates mTOR alternative splicing during adipogenesis. Mol Cell. 46:187–199. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Paez J and Sellers WR: PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res. 115:145–167. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Richard S, Vogel G, Huot ME Guo T, Muller WJ and Lukong KE: Sam68 haploinsufficiency delays onset of mammary tumorigenesis and metastasis. Oncogene. 27:548–556. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Richard S, Torabi N, Franco GV, Tremblay GA, Chen T, Vogel G, Morel M, Cléroux P, Forget-Richard A, Komarova S, et al: Ablation of the Sam68 RNA binding protein protects mice from age-related bone loss. PLoS Genet. 1:e742005. View Article : Google Scholar : PubMed/NCBI |