Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
April-2022 Volume 23 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2022 Volume 23 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research progress on RNA‑binding proteins in breast cancer (Review)

  • Authors:
    • Wenzhu Zhang
    • Linlin Liu
    • Shengdi Zhao
    • Liang Chen
    • Yuxian Wei
    • Wenlin Chen
    • Fei Ge
  • View Affiliations / Copyright

    Affiliations: Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China, School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China, Department of Endocrine Breast Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China, Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 121
    |
    Published online on: February 14, 2022
       https://doi.org/10.3892/ol.2022.13241
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Breast cancer is the most common malignancy among women, and the abnormal regulation of gene expression serves an important role in its occurrence and development. However, the molecular mechanisms underlying gene expression are highly complex and heterogeneous, and RNA‑binding proteins (RBPs) are among the key regulatory factors. RBPs bind targets in an environment‑dependent or environment‑independent manner to influence mRNA stability and the translation of genes involved in the formation, progression, metastasis and treatment of breast cancer. Due to the growing interest in these regulators, the present review summarizes the most influential studies concerning RBPs associated with breast cancer to elucidate the role of RBPs in breast cancer and to assess how they interact with other key pathways to provide new molecular targets for the diagnosis and treatment of breast cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D and Wender RC: Cancer screening in the United States, 2019: A review of current American cancer society guidelines and current issues in cancer screening. CA Cancer J Clin. 69:184–210. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Skibinski A and Kuperwasser C: The origin of breast tumor heterogeneity. Oncogene. 34:5309–5316. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Wang L, Gallo KA and Conrad SE: Targeting mixed lineage kinases in ER-positive breast cancer cells leads to G2/M cell cycle arrest and apoptosis. Oncotarget. 4:1158–1171. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Sommer S and Fuqua SA: Estrogen receptor and breast cancer. Semin Cancer Biol. 11:339–352. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Slamon D, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Foulkes WD, Smith IE and Reis-Filho JS: Triple-negative breast cancer. N Engl J Med. 363:1938–1948. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Montagna E, Maisonneuve P, Rotmensz N, Cancello G, Iorfida M, Balduzzi A, Galimberti V, Veronesi P, Luini A, Pruneri G, et al: Heterogeneity of triple-negative breast cancer: Histologic subtyping to inform the outcome. Clin Breast Cancer. 13:31–39. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Zuo T, Wang L, Morrison C, Chang X, Zhang H, Li W, Liu Y, Wang Y, Liu X, Chan MWY, et al: FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell. 184:63782021. View Article : Google Scholar : PubMed/NCBI

9 

Yamamoto S, Wu Z, Russnes HG, Takagi S, Peluffo G, Vaske C, Zhao X, Moen Vollan HK, Maruyama R, Ekram MB, et al: JARID1B is a luminal lineage-driving oncogene in breast cancer. Cancer Cell. 25:762–777. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Li Z, Tognon CE, Godinho FJ, Yasaitis L, Hock H, Herschkowitz JI, Lannon CL, Cho E, Kim SJ, Bronson RT, et al: ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell. 12:542–558. 2007. View Article : Google Scholar : PubMed/NCBI

11 

Dreyfuss G, Kim VN and Kataoka N: Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 3:195–205. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Mitchell SF and Parker R: Principles and properties of eukaryotic mRNPs. Mol Cell. 54:547–558. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Wang ZJ, Li B, Luo YX, Lin Q, Liu SR, Zhang XQ, Zhou H, Yang JH and Qu LH: Comprehensive genomic characterization of RNA-binding proteins across human cancers. Cell Rep. 22:286–298. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Smith CW and Valcárcel J: Alternative pre-mRNA splicing: The logic of combinatorial control. Trends Biochem Sci. 25:381–388. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Marcotrigiano J, Gingras AC, Sonenberg N and Burley SK: Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell. 89:951–961. 1997. View Article : Google Scholar : PubMed/NCBI

16 

Saulière J, Murigneux V, Wang Z, Marquenet E, Barbosa I, Le Tonquèze O, Audic Y, Paillard L, Roest Crollius H and Le Hir H: CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat Struct Mol Biol. 19:1124–1131. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Gehring NH, Lamprinaki S, Kulozik AE and Hentze MW: Disassembly of exon junction complexes by PYM. Cell. 137:536–548. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Ali MAM: DEAD-box RNA helicases: The driving forces behind RNA metabolism at the crossroad of viral replication and antiviral innate immunity. Virus Res. 296:1983522021. View Article : Google Scholar : PubMed/NCBI

19 

Mizuno H, Kitada K, Nakai K and Sarai A: PrognoScan: A new database for meta-analysis of the prognostic value of genes. BMC Med Genomics. 2:182009. View Article : Google Scholar : PubMed/NCBI

20 

Palacios IM, Gatfield D, St Johnston D and Izaurralde E: An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature. 427:753–757. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Shibuya T, Tange TØ, Sonenberg N and Moore MJ: eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat Struct Mol Biol. 11:346–351. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Ito M, Tanaka T, Cary DR, Iwatani-Yoshihara M, Kamada Y, Kawamoto T, Aparicio S, Nakanishi A and Imaeda Y: Discovery of novel 1,4-diacylpiperazines as selective and cell-active eIF4A3 inhibitors. J Med Chem. 60:3335–3351. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Lin Y, Zhang J, Cai J, Liang R, Chen G, Qin G, Han X, Yuan C, Liu Z, Li Y, et al: Systematic analysis of gene expression alteration and co-expression network of eukaryotic initiation factor 4A-3 in cancer. J Cancer. 9:4568–4577. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Nusse R and Clevers H: Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Mitchell JP and Carmody RJ: NF-κB and the transcriptional control of inflammation. Int Rev Cell Mol Biol. 335:41–84. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Baldin V, Lukas J, Marcote MJ, Pagano M and Draetta G: Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 7:812–821. 1993. View Article : Google Scholar : PubMed/NCBI

27 

Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR and Cooper JA: Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol. 19:1871–1880. 1999. View Article : Google Scholar : PubMed/NCBI

28 

Fukunaga R and Hunter T: MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16:1921–1933. 1997. View Article : Google Scholar : PubMed/NCBI

29 

Wheater MJ, Johnson PW and Blaydes JP: The role of MNK proteins and eIF4E phosphorylation in breast cancer cell proliferation and survival. Cancer Biol Ther. 10:728–735. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Robichaud N, del Rincon SV, Huor B, Alain T, Petruccelli LA, Hearnden J, Goncalves C, Grotegut S, Spruck CH, Furic L, et al: Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3. Oncogene. 34:2032–2042. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Robichaud N, Hsu BE, Istomine R, Alvarez F, Blagih J, Ma EH, Morales SV, Dai DL, Li G, Souleimanova M, et al: Translational control in the tumor microenvironment promotes lung metastasis: Phosphorylation of eIF4E in neutrophils. Proc Natl Acad Sci USA. 115:E2202–E2209. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Chrestensen CA, Shuman JK, Eschenroeder A, Worthington M, Gram H and Sturgill TW: MNK1 and MNK2 regulation in HER2-overexpressing breast cancer lines. J Biol Chem. 282:4243–4252. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Evans MK, Brown MA, Geradts J, Bao X, Robinson TJ, Jolly MK, Vermeulen PB, Palmer GM, Gromeier M, Levine H, et al: XIAP regulation by MNK links MAPK and NFκB signaling to determine an aggressive breast cancer phenotype. Cancer Res. 78:1726–1738. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Ma WJ, Cheng S, Campbell C, Wright A and Furneaux H: Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem. 271:8144–8151. 1996. View Article : Google Scholar : PubMed/NCBI

35 

Kotta-Loizou I, Giaginis C and Theocharis S: Clinical significance of HuR expression in human malignancy. Med Oncol. 31:1612014. View Article : Google Scholar : PubMed/NCBI

36 

Ortega AD, Sala S, Espinosa E, González-Barón M and Cuezva JM: HuR and the bioenergetic signature of breast cancer: A low tumor expression of the RNA-binding protein predicts a higher risk of disease recurrence. Carcinogenesis. 29:2053–2061. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Xu F, Zhang X, Lei Y, Liu X, Liu Z, Tong T and Wang W: Loss of repression of HuR translation by miR-16 may be responsible for the elevation of HuR in human breast carcinoma. J Cell Biochem. 111:727–734. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Heinonen M, Hemmes A, Salmenkivi K, Abdelmohsen K, Vilén ST, Laakso M, Leidenius M, Salo T, Hautaniemi S, Gorospe M, et al: Role of RNA binding protein HuR in ductal carcinoma in situ of the breast. J Pathol. 224:529–539. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Stylianou S, Clarke RB and Brennan K: Aberrant activation of notch signaling in human breast cancer. Cancer Res. 66:1517–1525. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Chae MJ, Sung HY, Kim EH, Lee M, Kwak H, Chae CH, Kim S and Park WY: Chemical inhibitors destabilize HuR binding to the AU-rich element of TNF-alpha mRNA. Exp Mol Med. 41:824–831. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Izquierdo JM: Hu antigen R (HuR) functions as an alternative pre-mRNA splicing regulator of Fas apoptosis-promoting receptor on exon definition. J Biol Chem. 283:19077–19084. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Al-Ahmadi W, Al-Ghamdi M, Al-Souhibani N and Khabar KS: miR-29a inhibition normalizes HuR over-expression and aberrant AU-rich mRNA stability in invasive cancer. J Pathol. 230:28–38. 2013. View Article : Google Scholar : PubMed/NCBI

43 

López de Silanes I, Zhan M, Lal A, Yang X and Gorospe M: Identification of a target RNA motif for RNA-binding protein HuR. Proc Natl Acad Sci USA. 101:2987–2992. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Brennan CM and Steitz JA: HuR and mRNA stability. Cell Mol Life Sci. 58:266–277. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Myer VE, Fan XC and Steitz JA: Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay. EMBO J. 16:2130–2139. 1997. View Article : Google Scholar : PubMed/NCBI

46 

Fan XC and Steitz JA: Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 17:3448–3460. 1998. View Article : Google Scholar : PubMed/NCBI

47 

Peng SS, Chen CY, Xu N and Shyu AB: RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17:3461–3470. 1998. View Article : Google Scholar : PubMed/NCBI

48 

Hoch RV, Thompson DA, Baker RJ and Weigel RJ: GATA-3 is expressed in association with estrogen receptor in breast cancer. Int J Cancer. 84:122–128. 1999. View Article : Google Scholar : PubMed/NCBI

49 

Licata LA, Hostetter CL, Crismale J, Sheth A and Keen JC: The RNA-binding protein HuR regulates GATA3 mRNA stability in human breast cancer cell lines. Breast Cancer Res Treat. 122:55–63. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Li Y, Yu J, Du D, Fu S, Chen Y, Yu F and Gao P: Involvement of post-transcriptional regulation of FOXO1 by HuR in 5-FU-induced apoptosis in breast cancer cells. Oncol Lett. 6:156–160. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Yang F, Miao L, Mei Y and Wu M: Retinoic acid-induced HOXA5 expression is co-regulated by HuR and miR-130a. Cell Signal. 25:1476–1485. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Rhoads K, Arderiu G, Charboneau A, Hansen SL, Hoffman W and Boudreau N: A role for Hox A5 in regulating angiogenesis and vascular patterning. Lymphat Res Biol. 3:240–252. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Sommer S, Cui Y, Brewer G and Fuqua SA: The c-Yes 3′-UTR contains adenine/uridine-rich elements that bind AUF1 and HuR involved in mRNA decay in breast cancer cells. J Steroid Biochem Mol Biol. 97:219–229. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Leris AC, Roberts TR, Jiang WG, Newbold RF and Mokbel K: WNT5A expression in human breast cancer. Anticancer Res. 25:731–734. 2005.PubMed/NCBI

55 

Meng Z, Jackson NL, Choi H, King PH, Emanuel PD and Blume SW: Alterations in RNA-binding activities of IRES-regulatory proteins as a mechanism for physiological variability and pathological dysregulation of IGF-IR translational control in human breast tumor cells. J Cell Physiol. 217:172–183. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Scott GK, Marx C, Berger CE, Saunders LR, Verdin E, Schäfer S, Jung M and Benz CC: Destabilization of ERBB2 transcripts by targeting 3′ untranslated region messenger RNA associated HuR and histone deacetylase-6. Mol Cancer Res. 6:1250–1258. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Wang W, Furneaux H, Cheng H, Caldwell MC, Hutter D, Liu Y, Holbrook N and Gorospe M: HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol. 20:760–769. 2000. View Article : Google Scholar : PubMed/NCBI

58 

Yan W, Zhang Y, Zhang J, Cho SJ and Chen X: HuR is necessary for mammary epithelial cell proliferation and polarity at least in part via ΔNp63. PLoS One. 7:e453362012. View Article : Google Scholar : PubMed/NCBI

59 

Giles KM, Daly JM, Beveridge DJ, Thomson AM, Voon DC, Furneaux HM, Jazayeri JA and Leedman PJ: The 3′-untranslated region of p21WAF1 mRNA is a composite cis-acting sequence bound by RNA-binding proteins from breast cancer cells, including HuR and poly(C)-binding protein. J Biol Chem. 278:2937–2946. 2003. View Article : Google Scholar : PubMed/NCBI

60 

Chock K, Allison JM and Elshamy WM: BRCA1-IRIS overexpression abrogates UV-induced p38MAPK/p53 and promotes proliferation of damaged cells. Oncogene. 29:5274–5285. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Saunus JM, French JD, Edwards SL, Beveridge DJ, Hatchell EC, Wagner SA, Stein SR, Davidson A, Simpson KJ, Francis GD, et al: Posttranscriptional regulation of the breast cancer susceptibility gene BRCA1 by the RNA binding protein HuR. Cancer Res. 68:9469–9478. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Mazan-Mamczarz K, Hagner PR, Dai B, Wood WH, Zhang Y, Becker KG, Liu Z and Gartenhaus RB: Identification of transformation-related pathways in a breast epithelial cell model using a ribonomics approach. Cancer Res. 68:7730–7735. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Suswam ES, Nabors LB, Huang Y, Yang X and King PH: IL-1beta induces stabilization of IL-8 mRNA in malignant breast cancer cells via the 3′ untranslated region: Involvement of divergent RNA-binding factors HuR, KSRP and TIAR. Int J Cancer. 113:911–919. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Hsia TC, Tu CY, Chen YJ, Wei YL, Yu MC, Hsu SC, Tsai SL, Chen WS, Yeh MH, Yen CJ, et al: Lapatinib-mediated cyclooxygenase-2 expression via epidermal growth factor receptor/HuR interaction enhances the aggressiveness of triple-negative breast cancer cells. Mol Pharmacol. 83:857–869. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Woo HH, Zhou Y, Yi X, David CL, Zheng W, Gilmore-Hebert M, Kluger HM, Ulukus EC, Baker T, Stoffer JB and Chambers SK: Regulation of non-AU-rich element containing c-fms proto-oncogene expression by HuR in breast cancer. Oncogene. 28:1176–1186. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Calaluce R, Gubin MM, Davis JW, Magee JD, Chen J, Kuwano Y, Gorospe M and Atasoy U: The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer. BMC Cancer. 10:1262010. View Article : Google Scholar : PubMed/NCBI

67 

Gubin MM, Calaluce R, Davis JW, Magee JD, Strouse CS, Shaw DP, Ma L, Brown A, Hoffman T, Rold TL and Atasoy U: Overexpression of the RNA binding protein HuR impairs tumor growth in triple negative breast cancer associated with deficient angiogenesis. Cell Cycle. 9:3337–3346. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Yuan Z, Sanders A, Ye L, Wang Y and Jiang WG: Prognostic value of the human antigen R (HuR) in human breast cancer: High level predicts a favourable prognosis. Anticancer Res. 31:303–310. 2011.PubMed/NCBI

69 

Kotta-Loizou I, Vasilopoulos SN, Coutts RH and Theocharis S: Current evidence and future perspectives on HuR and breast cancer development, prognosis, and treatment. Neoplasia. 18:674–688. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Leandersson K, Riesbeck K and Andersson T: Wnt-5a mRNA translation is suppressed by the Elav-like protein HuR in human breast epithelial cells. Nucleic Acids Res. 34:3988–3999. 2006. View Article : Google Scholar : PubMed/NCBI

71 

Zhu H, Zhou HL, Hasman RA and Lou H: Hu proteins regulate polyadenylation by blocking sites containing U-rich sequences. J Biol Chem. 282:2203–2210. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, Ascano M Jr, Tuschl T, Ohler U and Keene JD: Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell. 43:327–339. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Akaike Y, Masuda K, Kuwano Y, Nishida K, Kajita K, Kurokawa K, Satake Y, Shoda K, Imoto I and Rokutan K: HuR regulates alternative splicing of the TRA2β gene in human colon cancer cells under oxidative stress. Mol Cell Biol. 34:2857–2873. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Fan XC and Steitz JA: HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA. 95:15293–15298. 1998. View Article : Google Scholar : PubMed/NCBI

75 

Keene JD: Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc Natl Acad Sci USA. 96:5–7. 1999. View Article : Google Scholar : PubMed/NCBI

76 

Abdelmohsen K, Srikantan S, Kuwano Y and Gorospe M: miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci USA. 105:20297–20302. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Cabilla JP, Nudler SI, Ronchetti SA, Quinteros FA, Lasaga M and Duvilanski BH: Nitric oxide-sensitive guanylyl cyclase is differentially regulated by nuclear and non-nuclear estrogen pathways in anterior pituitary gland. PLoS One. 6:e294022011. View Article : Google Scholar : PubMed/NCBI

78 

Akool ES, Kleinert H, Hamada FM, Abdelwahab MH, Förstermann U, Pfeilschifter J and Eberhardt W: Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol. 23:4901–4916. 2003. View Article : Google Scholar : PubMed/NCBI

79 

Meisner NC, Hintersteiner M, Mueller K, Bauer R, Seifert JM, Naegeli HU, Ottl J, Oberer L, Guenat C, Moss S, et al: Identification and mechanistic characterization of low-molecular-weight inhibitors for HuR. Nat Chem Biol. 3:508–515. 2007. View Article : Google Scholar : PubMed/NCBI

80 

D'Agostino VG, Adami V and Provenzani A: A novel high throughput biochemical assay to evaluate the HuR protein-RNA complex formation. PLoS One. 8:e724262013. View Article : Google Scholar : PubMed/NCBI

81 

Wu X, Lan L, Wilson DM, Marquez RT, Tsao WC, Gao P, Roy A, Turner BA, McDonald P, Tunge JA, et al: Identification and validation of novel small molecule disruptors of HuR-mRNA interaction. ACS Chem Biol. 10:1476–1484. 2015. View Article : Google Scholar : PubMed/NCBI

82 

D'Agostino VP, Lal P, Mantelli B, Tiedje C, Zucal C, Thongon N, Gaestel M, Latorre E, Marinelli L, Seneci P, et al: Dihydrotanshinone-I interferes with the RNA-binding activity of HuR affecting its post-transcriptional function. Sci Rep. 5:164782015. View Article : Google Scholar : PubMed/NCBI

83 

Li C, Rock KL, Woda BA, Jiang Z, Fraire AE and Dresser K: IMP3 is a novel biomarker for adenocarcinoma in situ of the uterine cervix: An immunohistochemical study in comparison with p16(INK4a) expression. Mod Pathol. 20:242–247. 2007. View Article : Google Scholar : PubMed/NCBI

84 

Jiang Z, Chu PG, Woda BA, Rock KL, Liu Q, Hsieh CC, Li C, Chen W, Duan HO, McDougal S and Wu CL: Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: A retrospective study. Lancet Oncol. 7:556–564. 2006. View Article : Google Scholar : PubMed/NCBI

85 

Bell JL, Wächter K, Mühleck B, Pazaitis N, Köhn M, Lederer M and Hüttelmaier S: Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): Post-transcriptional drivers of cancer progression? Cell Mol Life Sci. 70:2657–2675. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Fakhraldeen SA, Clark RJ, Roopra A, Chin EN, Huang W, Castorino J, Wisinski KB, Kim T, Spiegelman VS and Alexander CM: Two isoforms of the RNA binding protein, coding region determinant-binding protein (CRD-BP/IGF2BP1), are expressed in breast epithelium and support clonogenic growth of breast tumor cells. J Biol Chem. 290:13386–13400. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Gu W, Pan F and Singer RH: Blocking beta-catenin binding to the ZBP1 promoter represses ZBP1 expression, leading to increased proliferation and migration of metastatic breast-cancer cells. J Cell Sci. 122:1895–1905. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Gu W, Katz Z, Wu B, Park HY, Li D, Lin S, Wells AL and Singer RH: Regulation of local expression of cell adhesion and motility-related mRNAs in breast cancer cells by IMP1/ZBP1. J Cell Sci. 125:81–91. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Lapidus K, Wyckoff J, Mouneimne G, Lorenz M, Soon L, Condeelis JS and Singer RH: ZBP1 enhances cell polarity and reduces chemotaxis. J Cell Sci. 120:3173–3178. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Wang G, Huang Z, Liu X, Huang W, Chen S, Zhou Y, Li D, Singer RH and Gu W: IMP1 suppresses breast tumor growth and metastasis through the regulation of its target mRNAs. Oncotarget. 7:15690–15702. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Gu W, Wells AL, Pan F and Singer RH: Feedback regulation between zipcode binding protein 1 and beta-catenin mRNAs in breast cancer cells. Mol Cell Biol. 28:4963–4974. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Barghash A, Helms V and Kessler SM: Overexpression of IGF2 mRNA-binding protein 2 (IMP2/p62) as a feature of basal-like breast cancer correlates with short survival. Scand J Immunol. 82:142–143. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Liu W, Li Y, Wang B, Dai L, Qian W and Zhang JY: Autoimmune response to IGF2 mRNA-binding protein 2 (IMP2/p62) in breast cancer. Scand J Immunol. 81:502–507. 2015. View Article : Google Scholar : PubMed/NCBI

94 

McMullen ER, Gonzalez ME, Skala SL, Tran M, Thomas D, Djomehri SI, Burman B, Kidwell KM and Kleer CG: CCN6 regulates IGF2BP2 and HMGA2 signaling in metaplastic carcinomas of the breast. Breast Cancer Res Treat. 172:577–586. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Walter O, Prasad M, Lu S, Quinlan RM, Edmiston KL and Khan A: IMP3 is a novel biomarker for triple negative invasive mammary carcinoma associated with a more aggressive phenotype. Hum Pathol. 40:1528–1533. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, Taylor-Papadimitriou J and Burchell JM: Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res. 10:R522008. View Article : Google Scholar : PubMed/NCBI

97 

Samanta S, Sharma VM, Khan A and Mercurio AM: Regulation of IMP3 by EGFR signaling and repression by ERβ: Implications for triple-negative breast cancer. Oncogene. 31:4689–4697. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Samanta S, Sun H, Goel HL, Pursell B, Chang C, Khan A, Greiner DL, Cao S, Lim E, Shultz LD and Mercurio AM: IMP3 promotes stem-like properties in triple-negative breast cancer by regulating SLUG. Oncogene. 35:1111–1121. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Phillips S, Prat A, Sedic M, Proia T, Wronski A, Mazumdar S, Skibinski A, Shirley SH, Perou CM, Gill G, et al: Cell-state transitions regulated by SLUG are critical for tissue regeneration and tumor initiation. Stem Cell Rep. 2:633–647. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M, Gilmore H, Tung N, Naber SP, Schnitt S, et al: Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell. 8:149–163. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Samanta S, Guru S, Elaimy AL, Amante JJ, Ou J, Yu J, Zhu LJ and Mercurio AM: IMP3 stabilization of WNT5B mRNA facilitates TAZ activation in breast cancer. Cell Rep. 23:2559–2567. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, et al: The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 147:759–772. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Doyle L and Ross DD: Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene. 22:7340–7358. 2003. View Article : Google Scholar : PubMed/NCBI

104 

Hazlehurst LA, Foley NE, Gleason-Guzman MC, Hacker MP, Cress AE, Greenberger LW, De Jong MC and Dalton WS: Multiple mechanisms confer drug resistance to mitoxantrone in the human 8226 myeloma cell line. Cancer Res. 59:1021–1028. 1999.PubMed/NCBI

105 

Samanta S, Pursell B and Mercurio AM: IMP3 protein promotes chemoresistance in breast cancer cells by regulating breast cancer resistance protein (ABCG2) expression. J Biol Chem. 288:12569–12573. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Kim HY, Ha Thi HT and Hong S: IMP2 and IMP3 cooperate to promote the metastasis of triple-negative breast cancer through destabilization of progesterone receptor. Cancer Lett. 415:30–39. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Rehfeld F, Rohde AM, Nguyen DT and Wulczyn FC: Lin28 and let-7: Ancient milestones on the road from pluripotency to neurogenesis. Cell Tissue Res. 359:145–160. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Shyh-Chang N and Daley GQ: Lin28: Primal regulator of growth and metabolism in stem cells. Cell Stem Cell. 12:395–406. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Powers JT, Tsanov KM, Pearson DS, Roels F, Spina CS, Ebright R, Seligson M, de Soysa Y, Cahan P, Theißen J, et al: Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. Nature. 535:246–251. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Yao K, Qiu S, Tian L, Snider WD, Flannery JG, Schaffer DV and Chen B: Wnt regulates proliferation and neurogenic potential of Müller glial cells via a Lin28/let-7 miRNA-dependent pathway in adult mammalian retinas. Cell Rep. 17:165–178. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D and Gregory RI: Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell. 147:1066–1079. 2011. View Article : Google Scholar : PubMed/NCBI

112 

Gibadulinova A, Bullova P, Strnad H, Pohlodek K, Jurkovicova D, Takacova M, Pastorekova S and Eliska Svastoval: CAIX-mediated control of LIN28/let-7 axis contributes to metabolic adaptation of breast cancer cells to hypoxia. Int J Mol Sci. 21:42992020. View Article : Google Scholar : PubMed/NCBI

113 

Frost RJ and Olson EN: Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci USA. 108:21075–21080. 2011. View Article : Google Scholar : PubMed/NCBI

114 

Zhu H, Shyh-Chang N, Segrè A, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, et al: The Lin28/let-7 axis regulates glucose metabolism. Cell. 147:81–94. 2011. View Article : Google Scholar : PubMed/NCBI

115 

Mayr C, Hemann MT and Bartel DP: Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 315:1576–1579. 2007. View Article : Google Scholar : PubMed/NCBI

116 

Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP and Krueger LJ: MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67:9762–9770. 2007. View Article : Google Scholar : PubMed/NCBI

117 

Li N, Zhong X, Lin X, Guo J, Zou L, Tanyi JL, Shao Z, Liang S, Wang LP, Hwang WT, et al: Lin-28 homologue A (LIN28A) promotes cell cycle progression via regulation of cyclin-dependent kinase 2 (CDK2), cyclin D1 (CCND1), and cell division cycle 25 homolog A (CDC25A) expression in cancer. J Biol Chem. 287:17386–17397. 2012. View Article : Google Scholar : PubMed/NCBI

118 

Isanejad A, Alizadeh AM, Amani Shalamzari S, Khodayari H, Khodayari S, Khori V and Khojastehnjad N: MicroRNA-206, let-7a and microRNA-21 pathways involved in the anti-angiogenesis effects of the interval exercise training and hormone therapy in breast cancer. Life Sci. 151:30–40. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM, Minn AJ and Rosner MR: Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO J. 28:347–358. 2009. View Article : Google Scholar : PubMed/NCBI

120 

Liu Y, Li H, Feng J, Cui X, Huang W, Li Y, Su F, Liu Q, Zhu J, Lv X, et al: Lin28 induces epithelial-to-mesenchymal transition and stemness via downregulation of let-7a in breast cancer cells. PLoS One. 8:e830832013. View Article : Google Scholar : PubMed/NCBI

121 

Wang L, Wang YX, Zhang DZ, Fang XJ, Sun PS and Xue HC: Let-7a mimic attenuates CCL18 induced breast cancer cell metastasis through Lin 28 pathway. Biomed Pharmacother. 78:301–307. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Estrada-Bernal A, Chatterjee M, Haque SJ, Yang L, Morgan MA, Kotian S, Morrell D, Chakravarti A and Williams TM: MEK inhibitor GSK1120212-mediated radiosensitization of pancreatic cancer cells involves inhibition of DNA double-strand break repair pathways. Cell Cycle. 14:3713–3724. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Oh JS, Kim JJ, Byun JY and Kim IA: Lin28-let7 modulates radiosensitivity of human cancer cells with activation of K-Ras. Int J Radiat Oncol Biol Phys. 76:5–8. 2010. View Article : Google Scholar : PubMed/NCBI

124 

Collis SJ, Barber LJ, Clark AJ, Martin JS, Ward JD and Boulton SJ: HCLK2 is essential for the mammalian S-phase checkpoint and impacts on Chk1 stability. Nat Cell Biol. 9:391–401. 2007. View Article : Google Scholar : PubMed/NCBI

125 

Teng R, Hu Y, Zhou J, Seifer B, Chen Y, Shen J and Wang L: Overexpression of Lin28 decreases the chemosensitivity of gastric cancer cells to oxaliplatin, paclitaxel, doxorubicin, and fluorouracil in part via microRNA-107. PLoS One. 10:e01437162015. View Article : Google Scholar : PubMed/NCBI

126 

Tian N, Han Z, Li Z, Zhou M and Fan C: Lin28/let-7/Bcl-xL pathway: The underlying mechanism of drug resistance in Hep3B cells. Oncol Rep. 32:1050–1056. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Lv K, Liu L, Wang L, Yu J, Liu X, Cheng Y, Dong M, Teng R, Wu L, Fu P, et al: Lin28 mediates paclitaxel resistance by modulating p21, Rb and Let-7a miRNA in breast cancer cells. PLoS One. 7:e400082012. View Article : Google Scholar : PubMed/NCBI

128 

Okano H, Kawahara H, Toriya M, Nakao K, Shibata S and Imai T: Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res. 306:349–356. 2005. View Article : Google Scholar : PubMed/NCBI

129 

Wang XY, Penalva LQ, Yuan H, Linnoila RI, Lu J, Okano H and Glazer RI: Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor survival. Mol Cancer. 9:2212010. View Article : Google Scholar : PubMed/NCBI

130 

Shu HJ, Saito T, Watanabe H, Ito JI, Takeda H, Okano H and Kawata S: Expression of the Musashi1 gene encoding the RNA-binding protein in human hepatoma cell lines. Biochem Biophys Res Commun. 293:150–154. 2002. View Article : Google Scholar : PubMed/NCBI

131 

Toda M, Iizuka Y, Yu W, Imai T, Ikeda E, Yoshida K, Kawase T, Kawakami Y, Okano H and Uyemura K: Expression of the neural RNA-binding protein Musashi1 in human gliomas. Glia. 34:1–7. 2001. View Article : Google Scholar : PubMed/NCBI

132 

Battelli C, Nikopoulos GN, Mitchell JG and Verdi JM: The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21WAF-1. Mol Cell Neurosci. 31:85–96. 2006. View Article : Google Scholar : PubMed/NCBI

133 

Devgan V, Mammucari C, Millar SE, Brisken C and Dotto GP: p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev. 19:1485–1495. 2005. View Article : Google Scholar : PubMed/NCBI

134 

Wang XY, Yin Y, Yuan H, Sakamaki T, Okano H and Glazer RI: Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and Notch pathways. Mol Cell Biol. 28:3589–3599. 2008. View Article : Google Scholar : PubMed/NCBI

135 

Glazer RI, Vo DT and Penalva LO: Musashi1: An RBP with versatile functions in normal and cancer stem cells. Front Biosci (Landmark Ed). 17:54–64. 2012. View Article : Google Scholar : PubMed/NCBI

136 

Lindsay J, Jiao X, Sakamaki T, Casimiro MC, Shirley LA, Tran TH, Ju X, Liu M, Li Z, Wang C, et al: ErbB2 induces Notch1 activity and function in breast cancer cells. Clin Transl Sci. 1:107–115. 2008. View Article : Google Scholar : PubMed/NCBI

137 

Choi YM, Kim KB, Lee JH, Chun YK, An IS, An S and Bae S: DBC2/RhoBTB2 functions as a tumor suppressor protein via Musashi-2 ubiquitination in breast cancer. Oncogene. 36:2802–2812. 2017. View Article : Google Scholar : PubMed/NCBI

138 

Baron M: An overview of the Notch signalling pathway. Semin Cell Dev Biol. 14:113–119. 2003. View Article : Google Scholar : PubMed/NCBI

139 

McGill MA and McGlade CJ: Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem. 278:23196–23203. 2003. View Article : Google Scholar : PubMed/NCBI

140 

Wakamatsu Y, Maynard TM, Jones SU and Weston JA: NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron. 23:71–81. 1999. View Article : Google Scholar : PubMed/NCBI

141 

Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G and Egan SE: High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 65:8530–8537. 2005. View Article : Google Scholar : PubMed/NCBI

142 

Ayyanan A, Civenni G, Ciarloni L, Morel C, Mueller N, Lefort K, Mandinova A, Raffoul W, Fiche M, Dotto GP and Brisken C: Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci USA. 103:3799–3804. 2006. View Article : Google Scholar : PubMed/NCBI

143 

Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V, Zurrida S, Maisonneuve P, Viale G and Di Fiore PP: Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol. 167:215–221. 2004. View Article : Google Scholar : PubMed/NCBI

144 

Hamaguchi M, Meth JL, von Klitzing C, Wei W, Esposito D, Rodgers L, Walsh T, Welcsh P, King MC and Wigler MH: DBC2, a candidate for a tumor suppressor gene involved in breast cancer. Proc Natl Acad Sci USA. 99:13647–13652. 2002. View Article : Google Scholar : PubMed/NCBI

145 

Knowles MA, Aveyard JS, Taylor CF, Harnden P and Bass S: Mutation analysis of the 8p candidate tumour suppressor genes DBC2 (RHOBTB2) and LZTS1 in bladder cancer. Cancer Lett. 225:121–130. 2005. View Article : Google Scholar : PubMed/NCBI

146 

Freeman SN and Cress WD: RhoBTB2 (DBC2) comes of age as a multifunctional tumor suppressor. Cancer Biol Ther. 10:1123–1125. 2010. View Article : Google Scholar : PubMed/NCBI

147 

Wilkins A, Ping Q and Carpenter CL: RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes Dev. 18:856–861. 2004. View Article : Google Scholar : PubMed/NCBI

148 

Kang MH, Jeong KJ, Kim WY, Lee HJ, Gong G, Suh N, Győrffy B, Kim S, Jeong SY, Mills GB and Park YY: Musashi RNA-binding protein 2 regulates estrogen receptor 1 function in breast cancer. Oncogene. 36:1745–1752. 2017. View Article : Google Scholar : PubMed/NCBI

149 

Sakakibara S, Nakamura Y, Satoh H and Okano H: Rna-binding protein Musashi2: developmentally regulated expression in neural precursor cells and subpopulations of neurons in mammalian CNS. J Neurosci. 21:8091–8107. 2001. View Article : Google Scholar : PubMed/NCBI

150 

Troschel FM, Minte A, Ismail YM, Kamal A, Abdullah MS, Ahmed SH, Deffner M, Kemper B, Kiesel L, Eich HT, et al: Knockdown of Musashi RNA binding proteins decreases radioresistance but enhances cell motility and invasion in triple-negative breast cancer. Int J Mol Sci. 21:21692020. View Article : Google Scholar : PubMed/NCBI

151 

Jaggupilli A and Elkord E: Significance of CD44 and CD24 as cancer stem cell markers: An enduring ambiguity. Clin Dev Immunol. 2012:7080362012. View Article : Google Scholar : PubMed/NCBI

152 

Fang Y, Yuan Y, Zhang LL, Lu JW, Feng JF and Hu SN: Downregulated GBX2 gene suppresses proliferation, invasion and angiogenesis of breast cancer cells through inhibiting the Wnt/β-catenin signaling pathway. Cancer Biomark. 23:405–418. 2018. View Article : Google Scholar : PubMed/NCBI

153 

Peuhu E, Virtakoivu R, Mai A, Wärri A and Ivaska J: Epithelial vimentin plays a functional role in mammary gland development. Development. 144:4103–4113. 2017. View Article : Google Scholar : PubMed/NCBI

154 

Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, Gupta S, Liang H, Lin HK, Hung MC and Ma L: LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med. 18:1511–1517. 2012. View Article : Google Scholar : PubMed/NCBI

155 

Yan W, Zhang J, Zhang Y, Jung YS and Chen X: p73 expression is regulated by RNPC1, a target of the p53 family, via mRNA stability. Mol Cell Biol. 32:2336–2348. 2012. View Article : Google Scholar : PubMed/NCBI

156 

Xue JQ, Xia TS, Liang XQ, Zhou W, Cheng L, Shi L, Wang Y and Ding Q: RNA-binding protein RNPC1: Acting as a tumor suppressor in breast cancer. BMC Cancer. 14:3222014. View Article : Google Scholar : PubMed/NCBI

157 

Feldstein O, Ben-Hamo R, Bashari D, Efroni S and Ginsberg D: RBM38 is a direct transcriptional target of E2F1 that limits E2F1-induced proliferation. Mol Cancer Res. 10:1169–1177. 2012. View Article : Google Scholar : PubMed/NCBI

158 

Zheng L, Zhang Z, Zhang S, Guo Q, Zhang F, Gao L, Ni H, Guo X, Xiang C and Xi T: RNA binding protein RNPC1 inhibits breast cancer cell metastasis via activating STARD13-correlated ceRNA network. Mol Pharm. 15:2123–2132. 2018. View Article : Google Scholar : PubMed/NCBI

159 

Shu L, Yan W and Chen X: RNPC1, an RNA-binding protein and a target of the p53 family, is required for maintaining the stability of the basal and stress-induced p21 transcript. Genes Dev. 20:2961–2972. 2006. View Article : Google Scholar : PubMed/NCBI

160 

Li XX, Shi L, Zhou XJ, Wu J, Xia TS, Zhou WB, Sun X, Zhu L, Wei JF and Ding Q: The role of c-Myc-RBM38 loop in the growth suppression in breast cancer. J Exp Clin Canc Res. 36:492017. View Article : Google Scholar : PubMed/NCBI

161 

Dang CV: MYC on the path to cancer. Cell. 149:22–35. 2012. View Article : Google Scholar : PubMed/NCBI

162 

Shi L, Xia TS, Wei XL, Zhou W, Xue J, Cheng L, Lou P, Li C, Wang Y, Wei JF and Ding Q: Estrogen receptor (ER) was regulated by RNPC1 stabilizing mRNA in ER positive breast cancer. Oncotarget. 6:12264–12278. 2015. View Article : Google Scholar : PubMed/NCBI

163 

Lou P, Li C, Shi L, Xia TS, Zhou W, Wu J, Zhou X, Li X, Wang Y, Wei JF and Ding Q: RNPC1 enhances progesterone receptor functions by regulating its mRNA stability in breast cancer. Oncotarget. 8:16387–16400. 2017. View Article : Google Scholar : PubMed/NCBI

164 

Di Cristofano A and Pandolfi PP: The multiple roles of PTEN in tumor suppression. Cell. 100:387–390. 2000. View Article : Google Scholar : PubMed/NCBI

165 

Maehama T and Dixon JE: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 273:13375–13378. 1998. View Article : Google Scholar : PubMed/NCBI

166 

Yamada KM and Araki M: Tumor suppressor PTEN: Modulator of cell signaling, growth, migration and apoptosis. J Cell Sci. 114:2375–2382. 2001. View Article : Google Scholar : PubMed/NCBI

167 

Chow LM and Baker SJ: PTEN function in normal and neoplastic growth. Cancer Lett. 241:184–196. 2006. View Article : Google Scholar : PubMed/NCBI

168 

Zhou XJ, Wu J, Shi L, Li XX, Zhu L, Sun X, Qian JY, Wang Y, Wei JF and Ding Q: PTEN expression is upregulated by a RNA-binding protein RBM38 via enhancing its mRNA stability in breast cancer. J Exp Clin Cancer Res. 36:1492017. View Article : Google Scholar : PubMed/NCBI

169 

Aparicio LA, Abella V, Valladares M and Figueroa A: Posttranscriptional regulation by RNA-binding proteins during epithelial-to-mesenchymal transition. Cell Mol Life Sci. 70:4463–4477. 2013. View Article : Google Scholar : PubMed/NCBI

170 

Wu J, Zhou XJ, Sun X, Xia TS, Li XX, Shi L, Zhu L, Zhou WB, Wei JF and Ding Q: RBM38 is involved in TGF-β-induced epithelial-to-mesenchymal transition by stabilising zonula occludens-1 mRNA in breast cancer. Br J Cancer. 117:675–684. 2017. View Article : Google Scholar : PubMed/NCBI

171 

Cho SJ, Jung YS, Zhang J and Chen X: The RNA-binding protein RNPC1 stabilizes the mRNA encoding the RNA-binding protein HuR and cooperates with HuR to suppress cell proliferation. J Biol Chem. 287:14535–14544. 2012. View Article : Google Scholar : PubMed/NCBI

172 

Lin Q, Taylor SJ and Shalloway D: Specificity and determinants of Sam68 RNA binding. Implications for the biological function of K homology domains. J Biol Chem. 272:27274–27280. 1997. View Article : Google Scholar : PubMed/NCBI

173 

Chen T, Damaj BB, Herrera C, Lasko P and Richard S: Self-association of the single-KH-domain family members Sam68, GRP33, GLD-1, and Qk1: Role of the KH domain. Mol Cell Biol. 17:5707–5718. 1997. View Article : Google Scholar : PubMed/NCBI

174 

Paronetto MP, Cappellari M, Busà R, Pedrotti S, Vitali R, Comstock C, Hyslop T, Knudsen KE and Sette C: Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68. Cancer Res. 70:229–239. 2010. View Article : Google Scholar : PubMed/NCBI

175 

Chawla G, Lin CH, Han A, Shiue L, Ares M Jr and Black DL: Sam68 regulates a set of alternatively spliced exons during neurogenesis. Mol Cell Biol. 29:201–213. 2009. View Article : Google Scholar : PubMed/NCBI

176 

Derry JJ, Richard S, Valderrama Carvajal H, Ye X, Vasioukhin V, Cochrane AW, Chen T and Tyner AL: Sik (BRK) phosphorylates Sam68 in the nucleus and negatively regulates its RNA binding ability. Mol Cell Biol. 20:6114–6126. 2000. View Article : Google Scholar : PubMed/NCBI

177 

Aubele M, Walch AK, Ludyga N, Braselmann H, Atkinson MJ, Luber B, Auer G, Tapio S, Cooke T and Bartlett JM: Prognostic value of protein tyrosine kinase 6 (PTK6) for long-term survival of breast cancer patients. Br J Cancer. 99:1089–1095. 2008. View Article : Google Scholar : PubMed/NCBI

178 

Espejo A, Côté J, Bednarek A, Richard S and Bedford M: A protein-domain microarray identifies novel protein-protein interactions. Biochem J. 367:697–702. 2002. View Article : Google Scholar : PubMed/NCBI

179 

Weng Z, Thomas SM, Rickles RJ, Taylor JA, Brauer AW, Seidel-Dugan C, Michael WM, Dreyfuss G and Brugge JS: Identification of Src, Fyn, and Lyn SH3-binding proteins: Implications for a function of SH3 domains. Mol Cell Biol. 14:4509–4521. 1994. View Article : Google Scholar : PubMed/NCBI

180 

Richard S, Yu D, Blumer KJ, Hausladen D, Olszowy MW, Connelly PA and Shaw AS: Association of p62, a multifunctional SH2- and SH3-domain-binding protein, with src family tyrosine kinases, Grb2, and phospholipase C gamma-1. Mol Cell Biol. 15:186–197. 1995. View Article : Google Scholar : PubMed/NCBI

181 

Taylor SJ, Anafi M, Pawson T and Shalloway D: Functional interaction between c-Src and its mitotic target, Sam 68. J Biol Chem. 270:10120–10124. 1995. View Article : Google Scholar : PubMed/NCBI

182 

Taylor SJ and Shalloway D: An RNA-binding protein associated with Src through its SH2 and SH3 domains in mitosis. Nature. 368:867–871. 1994. View Article : Google Scholar : PubMed/NCBI

183 

Fumagalli S, Totty NF, Hsuan JJ and Courtneidge SA: A target for Src in mitosis. Nature. 368:871–874. 1994. View Article : Google Scholar : PubMed/NCBI

184 

Paronetto MP, Venables JP, Elliott DJ, Geremia R, Rossi P and Sette C: Tr-kit promotes the formation of a multimolecular complex composed by Fyn, PLCgamma1 and Sam68. Oncogene. 22:8707–8715. 2003. View Article : Google Scholar : PubMed/NCBI

185 

Paronetto MP, Achsel T, Massiello A, Chalfant CE and Sette C: The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol. 176:929–939. 2007. View Article : Google Scholar : PubMed/NCBI

186 

Côté J, Boisvert FM, Boulanger MC, Bedford MT and Richard S: Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol Biol Cell. 14:274–287. 2003. View Article : Google Scholar : PubMed/NCBI

187 

Bedford MT, Frankel A, Yaffe MB, Clarke S, Leder P and Richard S: Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains. J Biol Chem. 275:16030–16036. 2000. View Article : Google Scholar : PubMed/NCBI

188 

Babic I, Jakymiw A and Fujita DJ: The RNA binding protein Sam68 is acetylated in tumor cell lines, and its acetylation correlates with enhanced RNA binding activity. Oncogene. 23:3781–3789. 2004. View Article : Google Scholar : PubMed/NCBI

189 

Babic I, Cherry E and Fujita DJ: SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Oncogene. 25:4955–4964. 2006. View Article : Google Scholar : PubMed/NCBI

190 

Barker KT, Jackson LE and Crompton MR: BRK tyrosine kinase expression in a high proportion of human breast carcinomas. Oncogene. 15:799–805. 1997. View Article : Google Scholar : PubMed/NCBI

191 

Ostrander JH, Daniel AR and Lange CA: Brk/PTK6 signaling in normal and cancer cell models. Curr Opin Pharmacol. 10:662–669. 2010. View Article : Google Scholar : PubMed/NCBI

192 

Lukong KE, Larocque D, Tyner AL and Richard S: Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J Biol Chem. 280:38639–38647. 2005. View Article : Google Scholar : PubMed/NCBI

193 

Lukong KE and Richard S: Sam68, the KH domain-containing superSTAR. Biochim Biophys Acta. 1653:73–86. 2003.PubMed/NCBI

194 

Song L, Wang L, Li Y, Xiong H, Wu J, Li J and Li M: Sam68 up-regulation correlates with, and its down-regulation inhibits, proliferation and tumourigenicity of breast cancer cells. J Pathol. 222:227–237. 2010. View Article : Google Scholar : PubMed/NCBI

195 

Huot ME, Brown CM, Lamarche-Vane N and Richard S: An adaptor role for cytoplasmic Sam68 in modulating Src activity during cell polarization. Mol Cell Biol. 29:1933–1943. 2009. View Article : Google Scholar : PubMed/NCBI

196 

Wang Y, Zhang W, Wang X, Wang D, Xie J, Tang C, Xi Q, Zhong J and Deng Y: Expression of Sam68 correlates with cell proliferation and survival in epithelial ovarian cancer. Reprod Sci. 24:97–108. 2017. View Article : Google Scholar : PubMed/NCBI

197 

Xiao J, Wang Q, Yang Q, Wang H, Qiang F, He S, Cai J, Yang L and Wang Y: Clinical significance and effect of Sam68 expression in gastric cancer. Oncol Lett. 15:4745–4752. 2018.PubMed/NCBI

198 

Fu K, Sun X, Xia X, Hobbs RP, Guo Y, Coulombe PA and Wan F: Sam68 is required for the growth and survival of nonmelanoma skin cancer. Cancer Med. 8:6106–6113. 2019. View Article : Google Scholar : PubMed/NCBI

199 

Huot MÉ, Vogel G, Zabarauskas A, Ngo CT, Coulombe-Huntington J, Majewski J and Richard S: The Sam68 STAR RNA-binding protein regulates mTOR alternative splicing during adipogenesis. Mol Cell. 46:187–199. 2012. View Article : Google Scholar : PubMed/NCBI

200 

Paez J and Sellers WR: PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res. 115:145–167. 2003. View Article : Google Scholar : PubMed/NCBI

201 

Richard S, Vogel G, Huot ME Guo T, Muller WJ and Lukong KE: Sam68 haploinsufficiency delays onset of mammary tumorigenesis and metastasis. Oncogene. 27:548–556. 2008. View Article : Google Scholar : PubMed/NCBI

202 

Richard S, Torabi N, Franco GV, Tremblay GA, Chen T, Vogel G, Morel M, Cléroux P, Forget-Richard A, Komarova S, et al: Ablation of the Sam68 RNA binding protein protects mice from age-related bone loss. PLoS Genet. 1:e742005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang W, Liu L, Zhao S, Chen L, Wei Y, Chen W and Ge F: Research progress on RNA‑binding proteins in breast cancer (Review). Oncol Lett 23: 121, 2022.
APA
Zhang, W., Liu, L., Zhao, S., Chen, L., Wei, Y., Chen, W., & Ge, F. (2022). Research progress on RNA‑binding proteins in breast cancer (Review). Oncology Letters, 23, 121. https://doi.org/10.3892/ol.2022.13241
MLA
Zhang, W., Liu, L., Zhao, S., Chen, L., Wei, Y., Chen, W., Ge, F."Research progress on RNA‑binding proteins in breast cancer (Review)". Oncology Letters 23.4 (2022): 121.
Chicago
Zhang, W., Liu, L., Zhao, S., Chen, L., Wei, Y., Chen, W., Ge, F."Research progress on RNA‑binding proteins in breast cancer (Review)". Oncology Letters 23, no. 4 (2022): 121. https://doi.org/10.3892/ol.2022.13241
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang W, Liu L, Zhao S, Chen L, Wei Y, Chen W and Ge F: Research progress on RNA‑binding proteins in breast cancer (Review). Oncol Lett 23: 121, 2022.
APA
Zhang, W., Liu, L., Zhao, S., Chen, L., Wei, Y., Chen, W., & Ge, F. (2022). Research progress on RNA‑binding proteins in breast cancer (Review). Oncology Letters, 23, 121. https://doi.org/10.3892/ol.2022.13241
MLA
Zhang, W., Liu, L., Zhao, S., Chen, L., Wei, Y., Chen, W., Ge, F."Research progress on RNA‑binding proteins in breast cancer (Review)". Oncology Letters 23.4 (2022): 121.
Chicago
Zhang, W., Liu, L., Zhao, S., Chen, L., Wei, Y., Chen, W., Ge, F."Research progress on RNA‑binding proteins in breast cancer (Review)". Oncology Letters 23, no. 4 (2022): 121. https://doi.org/10.3892/ol.2022.13241
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team