Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
April-2022 Volume 23 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2022 Volume 23 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cell‑based immunotherapy of glioblastoma multiforme (Review)

  • Authors:
    • Igor Bryukhovetskiy
  • View Affiliations / Copyright

    Affiliations: Medical Center, School of Medicine, Far Eastern Federal University, Vladivostok 690091, Russia
    Copyright: © Bryukhovetskiy et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 133
    |
    Published online on: February 23, 2022
       https://doi.org/10.3892/ol.2022.13253
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioblastoma multiforme (GBM) is the most aggressive and lethal primary glial brain tumor. It has an unfavorable prognosis and relatively ineffective treatment protocols, with the median survival of patients being ~15 months. Tumor resistance to treatment is associated with its cancer stem cells (CSCs). At present, there is no medication or technologies that have the ability to completely eradicate CSCs, and immunotherapy (IT) is only able to prolong the patient's life. The present review aimed to investigate systemic solutions for issues associated with immunosuppression, such as ineffective IT and the creation of optimal conditions for CSCs to fulfill their lethal potential. The present review also investigated the main methods involved in local immunosuppression treatment, and highlighted the associated disadvantages. In addition, novel treatment options and targets for the elimination and regulation of CSCs with adaptive and active IT are discussed. Antagonists of TGF‑β inhibitors, immune checkpoints and other targeted medication are also summarized. The role of normal hematopoietic stem cells (HSCs) in the mechanisms underlying systemic immune suppression development in cases of GBM is analyzed, and the potential reprogramming of HSCs during their interaction with cancer cells is discussed. Moreover, the present review emphasizes the importance of the aforementioned interactions in the development of immune tolerance and the inactivation of the immune system in neoplastic processes. The possibility of solving the problem of systemic immunosuppression during transplantation of donor HSCs is discussed.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Lukas RV, Wainwright DA, Ladomersky E, Sachdev S, Sonabend AM and Stupp R: Newly diagnosed glioblastoma: A review on clinical management. Oncology (Williston Park). 33:91–100. 2019.PubMed/NCBI

2 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Gimple RC, Bhargava S, Dixit D and Rich JN: Glioblastoma stem cells: Lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 33:591–609. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL and Rich JN: Cancer stem cells in glioblastoma. Genes Dev. 29:1203–1217. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Jackson CM, Choi J and Lim M: Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat Immunol. 20:1100–1109. 2019. View Article : Google Scholar : PubMed/NCBI

6 

McGranahan T, Therkelsen KE, Ahmad S and Nagpal S: Current state of immunotherapy for treatment of glioblastoma. Curr Treat Options Oncol. 20:242019. View Article : Google Scholar : PubMed/NCBI

7 

Chongsathidkiet P, Jackson C, Koyama S, Loebel F, Cui X, Farber SH, Woroniecka K, Elsamadicy AA, Dechant CA, Kemeny HR, et al: Sequestration of T cells in bone marrow in the setting of glioblastoma and other intracranial tumors. Nat Med. 24:1459–1468. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Waziri A: Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N Am. 21:31–42. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S, Dai C, Ozawa T, Chang M, Chan TA, et al: Corticosteroids compromise survival in glioblastoma. Brain. 139((Pt 5)): 1458–1471. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Omuro A and DeAngelis LM: Glioblastoma and other malignant gliomas: A clinical review. JAMA. 310:1842–1850. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS and Khasraw M: Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 70:299–312. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Weller M, Le Rhun E, Preusser M, Tonn JC and Roth P: How we treat glioblastoma. ESMO Open. 4 (Suppl 2):e0005202019. View Article : Google Scholar : PubMed/NCBI

13 

Nam JY and de Groot JF: Treatment of glioblastoma. J Oncol Pract. 13:629–638. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Scartoni D, Amelio D, Palumbo P, Giacomelli I and Amichetti M: Proton therapy re-irradiation preserves health-related quality of life in large recurrent glioblastoma. J Cancer Res Clin Oncol. 146:1615–1622. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Miyatake SI, Wanibuchi M, Hu N and Ono K: Boron neutron capture therapy for malignant brain tumors. J Neurooncol. 149:1–11. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Lesueur P, Lequesne J, Grellard JM, Dugué A, Coquan E, Brachet PE, Geffrelot J, Kao W, Emery E, Berro DH, et al: Phase I/IIa study of concomitant radiotherapy with olaparib and temozolomide in unresectable or partially resectable glioblastoma: OLA-TMZ-RTE-01 trial protocol. BMC Cancer. 19:1982019. View Article : Google Scholar : PubMed/NCBI

17 

Bostian AC, Maddukuri L, Reed MR, Savenka T, Hartman JH, Davis L, Pouncey DL, Miller GP and Eoff RL: Kynurenine signaling increases DNA polymerase kappa expression and promotes genomic instability in glioblastoma cells. Chem Res Toxicol. 29:101–108. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Khotimchenko R, Bryukhovetskiy I, Khotimchenko M and Khotimchenko Y: Bioactive compounds with antiglioma activity from marine species. Biomedicines. 9:8862021. View Article : Google Scholar : PubMed/NCBI

19 

Anthony P, McArdle S and McHugh M: Tumor treating fields: Adjuvant treatment for high-grade gliomas. Semin Oncol Nurs. 34:454–464. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Di Nunno V, Franceschi E, Tosoni A, Di Battista M, Gatto L, Lamperini C, Minichillo S, Mura A, Bartolini S and Brandes AA: Treatment of recurrent glioblastoma: State-of-the-art and future perspectives. Expert Rev Anticancer Ther. 20:785–795. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Kazmi F, Soon YY, Leong YH, Koh WY and Vellayappan B: Re-irradiation for recurrent glioblastoma (GBM): A systematic review and meta-analysis. J Neurooncol. 142:79–90. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Gigliotti MJ, Hasan S, Karlovits SM, Ranjan T and Wegner RE: Re-Irradiation with stereotactic radiosurgery/radiotherapy for recurrent high-grade gliomas: Improved survival in the modern Era. Stereotact Funct Neurosurg. 96:289–295. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Weller M and Le Rhun E: How did lomustine become standard of care in recurrent glioblastoma? Cancer Treat Rev. 87:1020292020. View Article : Google Scholar : PubMed/NCBI

24 

Schmidt F, Fischer J, Herrlinger U, Dietz K, Dichgans J and Weller M: PCV chemotherapy for recurrent glioblastoma. Neurology. 66:587–589. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW: The 2016 World Health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Soomro SH, Ting LR, Qing YY and Ren M: Molecular biology of glioblastoma: Classification and mutational locations. J Pak Med Assoc. 67:1410–1414. 2017.PubMed/NCBI

27 

Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Jakovlevs A, Vanags A, Gardovskis J and Strumfa I: Molecular classification of diffuse gliomas. Pol J Pathol. 70:246–258. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Bhawe KM and Aghi MK: Microarray analysis in glioblastomas. Methods Mol Biol. 1375:195–206. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Qazi MA, Vora P, Venugopal C, Sidhu SS, Moffat J, Swanton C and Singh SK: Intratumoral heterogeneity: Pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol. 28:1448–1456. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Waitkus MS, Diplas BH and Yan H: Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell. 34:186–195. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Diplas BH, He X, Brosnan-Cashman JA, Liu H, Chen LH, Wang Z, Moure CJ, Killela PJ, Loriaux DB, Lipp ES, et al: The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nat Commun. 9:20872018. View Article : Google Scholar : PubMed/NCBI

33 

Najafi M, Mortezaee K and Majidpoor J: Cancer stem cell (CSC) resistance drivers. Life Sci. 234:1167812019. View Article : Google Scholar : PubMed/NCBI

34 

Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI

35 

Heng WS, Gosens R and Kruyt FAE: Lung cancer stem cells: Origin, features, maintenance mechanisms and therapeutic targeting. Biochem Pharmacol. 160:121–133. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Butti R, Gunasekaran VP, Kumar TVS, Banerjee P and Kundu GC: Breast cancer stem cells: Biology and therapeutic implications. Int J Biochem Cell Biol. 107:38–52. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Ottevanger PB: Ovarian cancer stem cells more questions than answers. Semin Cancer Biol. 44:67–71. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Munro MJ, Wickremesekera SK, Peng L, Tan ST and Itinteang T: Cancer stem cells in colorectal cancer: A review. J Clin Pathol. 71:110–116. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Sharifzad F, Ghavami S, Verdi J, Mardpour S, Mollapour Sisakht M, Azizi Z, Taghikhani A, Łos MJ, Fakharian E, Ebrahimi M and Hamidieh AA: Glioblastoma cancer stem cell biology: Potential theranostic targets. Drug Resist Updat. 42:35–45. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J and Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63:5821–5828. 2003.PubMed/NCBI

41 

Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Beier D, Schulz JB and Beier CP: Chemoresistance of glioblastoma cancer stem cells-much more complex than expected. Mol Cancer. 10:1282011. View Article : Google Scholar : PubMed/NCBI

43 

Altmann C, Keller S and Schmidt MHH: The Role of SVZ stem cells in glioblastoma. Cancers (Basel). 11:4482019. View Article : Google Scholar : PubMed/NCBI

44 

Álvarez-Satta M, Moreno-Cugnon L and Matheu A: Primary cilium and brain aging: Role in neural stem cells, neurodegenerative diseases and glioblastoma. Ageing Res Rev. 52:53–63. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Álvarez-Satta M and Matheu A: Primary cilium and glioblastoma. Ther Adv Med Oncol. 10:17588359188011692018. View Article : Google Scholar : PubMed/NCBI

46 

Qu K and Ortoleva P: Understanding stem cell differentiation through self-organization theory. J Theor Biol. 250:606–620. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Beccari L, Moris N, Girgin M, Turner DA, Baillie-Johnson P, Cossy AC, Lutolf MP, Duboule D and Arias AM: Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature. 562:272–276. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Persano L, Rampazzo E, Basso G and Viola G: Glioblastoma cancer stem cells: Role of the microenvironment and therapeutic targeting. Biochem Pharmacol. 85:612–622. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, et al: Brain tumour cells interconnect to a functional and resistant network. Nature. 528:93–98. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Taniguchi S, Elhance A, Van Duzer A, Kumar S, Leitenberger JJ and Oshimori N: Tumor-initiating cells establish an IL-33-TGF-beta niche signaling loop to promote cancer progression. Science. 369:eaay18132020. View Article : Google Scholar : PubMed/NCBI

51 

Massagué J: TGFbeta in Cancer. Cell. 134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Derynck R, Turley SJ and Akhurst RJ: TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol. 18:9–34. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Shevchenko V, Arnotskaya N, Pak O, Sharma A, Sharma HS, Khotimchenko Y, Bryukhovetskiy A and Bryukhovetskiy I: Molecular determinants of the interaction between glioblastoma CD133+ cancer stem cells and the extracellular matrix. Int Rev Neurobiol. 151:155–169. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Bryukhovetskiy I and Shevchenko V: Molecular mechanisms of the effect of TGF-β1 on U87 human glioblastoma cells. Oncol Lett. 12:1581–1590. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Fecci PE and Sampson JH: The current state of immunotherapy for gliomas: An eye toward the future. J Neurosurg. 131:657–666. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Choi BD, Maus MV, June CH and Sampson JH: Immunotherapy for glioblastoma: Adoptive T-cell Strategies. Clin Cancer Res. 25:2042–2048. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Takenaka MC, Gabriely G, Rothhammer V, Mascanfroni ID, Wheeler MA, Chao CC, Gutiérrez-Vázquez C, Kenison J, Tjon EC, Barroso A, et al: Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nat Neurosci. 22:729–740. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Dehhaghi M, Kazemi Shariat Panahi H, Heng B and Guillemin GJ: The gut microbiota, kynurenine pathway, and immune system interaction in the development of brain cancer. Front Cell Dev Biol. 8:5628122020. View Article : Google Scholar : PubMed/NCBI

59 

Authier A, Farrand KJ, Broadley KW, Ancelet LR, Hunn MK, Stone S, McConnell MJ and Hermans IF: Enhanced immunosuppression by therapy-exposed glioblastoma multiforme tumor cells. Int J Cancer. 136:2566–2578. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Yovino S, Kleinberg L, Grossman SA, Narayanan M and Ford E: The etiology of treatment-related lymphopenia in patients with malignant gliomas: Modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest. 31:140–144. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Grossman SA, Ye X, Lesser G, Sloan A, Carraway H, Desideri S and Piantadosi S; NABTT CNS Consortium, : Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res. 17:5473–5480. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Kim WJ, Dho YS, Ock CY, Kim JW, Choi SH, Lee ST, Kim IH, Kim TM and Park CK: Clinical observation of lymphopenia in patients with newly diagnosed glioblastoma. J Neurooncol. 143:321–328. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A, Friedman AH, Friedman HS, Gilbert MR, Herndon JE, McLendon RE, et al: Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol. 13:324–333. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Byun HK, Kim N, Yoon HI, Kang SG, Kim SH, Cho J, Baek JG, Chang JH and Suh CO: Clinical predictors of radiation-induced lymphopenia in patients receiving chemoradiation for glioblastoma: Clinical usefulness of intensity-modulated radiotherapy in the immuno-oncology era. Radiat Oncol. 14:512019. View Article : Google Scholar : PubMed/NCBI

65 

Gwin WR III, Disis ML and Ruiz-Garcia E: Immuno-oncology in the era of personalized medicine. Adv Exp Med Biol. 1168:117–129. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Alkhalili K, Zenonos G and Fernandez-Miranda JC: Do corticosteroids compromise survival in glioblastoma? Neurosurgery. 79:N15–N16. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Klement RJ and Champ CE: Corticosteroids compromise survival in glioblastoma in part through their elevation of blood glucose levels. Brain. 140:e162017.PubMed/NCBI

68 

Sampson JH, Gunn MD, Fecci PE and Ashley DM: Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer. 20:12–25. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Medawar PB: Immunity to homologous grafted skin; The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol. 29:58–69. 1948.PubMed/NCBI

70 

Zhou Q, Wang Y and Ma W: The progress of immunotherapy for glioblastoma. Hum Vaccin Immunother. 11:2654–2658. 2015. View Article : Google Scholar : PubMed/NCBI

71 

da Fonseca AC, Amaral R, Garcia C, Geraldo LH, Matias D and Lima FR: Microglia in Cancer: For good or for bad? Adv Exp Med Biol. 949:245–261. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A and Khotimchenko Y: Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 12:1721–1728. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Herz J, Louveau A, Da Mesquita S and Kipnis J: Morphological and functional analysis of CNS-associated lymphatics. Methods Mol Biol. 1846:141–151. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Louveau A and Nau JY: Nervous and lymphatic system communicate with each other. ‘Zyka virus’ unravels its mystery. Rev Med Suisse. 11:1462–1463. 2015.(In French). PubMed/NCBI

75 

Lim M, Xia Y, Bettegowda C and Weller M: Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 15:422–442. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Sarah C: Immunotherapy: CAR T cells in glioblastoma. Nat Rev Drug Discov. 16:6022017. View Article : Google Scholar

77 

Li L, Zhu X, Qian Y, Yuan X, Ding Y, Hu D, He X and Wu Y: Chimeric antigen receptor T-cell therapy in glioblastoma: Current and future. Front Immunol. 11:5942712020. View Article : Google Scholar : PubMed/NCBI

78 

Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, Robertson C, Gray TL, Diouf O, Wakefield A, et al: HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: A phase 1 dose-escalation trial. JAMA Oncol. 3:1094–1101. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Lettini G, Lepore S, Crispo F, Sisinni L, Esposito F and Landriscina M: Heat shock proteins in cancer stem cell maintenance: A potential therapeutic target? Histol Histopathol. 35:25–37. 2020.PubMed/NCBI

80 

Iglesia RP, Fernandes CFL, Coelho BP, Prado MB, Melo Escobar MI, Almeida GHDR and Lopes MH: Heat Shock Proteins in Glioblastoma Biology: Where Do We Stand? Int J Mol Sci. 20:57942019. View Article : Google Scholar : PubMed/NCBI

81 

Ammendola M, Currò G, Memeo R, Curto LS, Luposella M, Zuccalà V, Pessaux P, Navarra G, Gadaleta CD and Ranieri G: Targeting stem cells with hyperthermia: Translational relevance in cancer patients. Oncol. 98:755–762. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Zanetti M: A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 14:115–128. 2017. View Article : Google Scholar : PubMed/NCBI

83 

Oji Y, Hashimoto N, Tsuboi A, Murakami Y, Iwai M, Kagawa N, Chiba Y, Izumoto S, Elisseeva O, Ichinohasama R, et al: Association of WT1 IgG antibody against WT1 peptide with prolonged survival in glioblastoma multiforme patients vaccinated with WT1 peptide. Int J Cancer. 139:1391–1401. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Kijima N, Hosen N, Kagawa N, Hashimoto N, Kinoshita M, Oji Y, Sugiyama H and Yoshimine T: Wilms' tumor 1 is involved in tumorigenicity of glioblastoma by regulating cell proliferation and apoptosis. Anticancer Res. 34:61–67. 2014.PubMed/NCBI

85 

Saikali S, Avril T, Collet B, Hamlat A, Bansard JY, Drenou B, Guegan Y and Quillien V: Expression of nine tumour antigens in a series of human glioblastoma multiforme:: Interest of EGFRvIII, IL-13Ralpha2, gp100 and TRP-2 for immunotherapy. J Neurooncol. 81:139–148. 2007. View Article : Google Scholar : PubMed/NCBI

86 

Liu G, Khong HT, Wheeler CJ, Yu JS, Black KL and Ying H: Molecular and functional analysis of tyrosinase-related protein (TRP)-2 as a cytotoxic T lymphocyte target in patients with malignant glioma. J Immunother. 26:301–312. 2003. View Article : Google Scholar : PubMed/NCBI

87 

Affinito A, Quintavalle C, Esposito CL, Roscigno G, Giordano C, Nuzzo S, Ricci-Vitiani L, Scognamiglio I, Minic Z, Pallini R, et al: Targeting ephrin receptor tyrosine kinase A2 with a selective aptamer for glioblastoma stem cells. Mol Ther Nucleic Acids. 20:176–185. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Qazi MA, Vora P, Venugopal C, Adams J, Singh M, Hu A, Gorelik M, Subapanditha MK, Savage N, Yang J, et al: Cotargeting ephrin receptor tyrosine kinases A2 and A3 in cancer stem cells reduces growth of recurrent glioblastoma. Cancer Res. 78:5023–5037. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Tchoghandjian A, Baeza N, Colin C, Cayre M, Metellus P, Beclin C, Ouafik L and Figarella-Branger D: A2B5 cells from human glioblastoma have cancer stem cell properties. Brain Pathol. 20:211–221. 2010. View Article : Google Scholar : PubMed/NCBI

90 

Baeza-Kallee N, Bergès R, Soubéran A, Colin C, Denicolaï E, Appay R, Tchoghandjian A and Figarella-Branger D: Glycolipids recognized by A2B5 antibody promote proliferation, migration, and clonogenicity in glioblastoma cells. Cancers (Basel). 11:12672019. View Article : Google Scholar : PubMed/NCBI

91 

De la Rocha AM, Sampron N, Alonso MM and Matheu A: Role of SOX family of transcription factors in central nervous system tumors. Am J Cancer Res. 4:312–324. 2014.PubMed/NCBI

92 

Weathers SP, Penas-Prado M, Pei BL, Ling X, Kassab C, Banerjee P, Bdiwi M, Shaim H, Alsuliman A, Shanley M, et al: Glioblastoma-mediated immune dysfunction limits CMV-specific T cells and therapeutic responses: Results from a phase I/II trial. Clin Cancer Res. 26:3565–3577. 2020. View Article : Google Scholar : PubMed/NCBI

93 

De Haan P, Van Diemen FR and Toscano MG: Viral gene delivery vectors: The next generation medicines for immune-related diseases. Hum Vaccin Immunother. 17:14–21. 2021. View Article : Google Scholar : PubMed/NCBI

94 

Wang JL, Scheitler KM, Wenger NM and Elder JB: Viral therapies for glioblastoma and high-grade gliomas in adults: A systematic review. Neurosurg Focus. 50:E22021. View Article : Google Scholar : PubMed/NCBI

95 

Desjardins A, Gromeier M, Herndon JE II, Beaubier N, Bolognesi DP, Friedman AH, Friedman HS, McSherry F, Muscat AM, Nair S, et al: Recurrent Glioblastoma treated with Recombinant Poliovirus. N Engl J Med. 379:150–161. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Bhaduri A, Di Lullo E, Jung D, Müller S, Crouch EE, Espinosa CS, Ozawa T, Alvarado B, Spatazza J, Cadwell CR, et al: Outer Radial Glia-like cancer stem cells contribute to heterogeneity of glioblastoma. Cell Stem Cell. 26:48–63.e6. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, et al: Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 344:1396–1401. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Xu HS, Qin XL, Zong HL, He XG and Cao L: Cancer stem cell markers in glioblastoma-an update. Eur Rev Med Pharmacol Sci. 21:3207–3211. 2017.PubMed/NCBI

99 

Ludwig K and Kornblum HI: Molecular markers in glioma. J Neurooncol. 134:505–512. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Pointer KB, Clark PA, Zorniak M, Alrfaei BM and Kuo JS: Glioblastoma cancer stem cells: Biomarker and therapeutic advances. Neurochem Int. 71:1–7. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Ahmed SI, Javed G, Laghari AA, Bareeqa SB, Farrukh S, Zahid S, Samar SS and Aziz K: CD133 expression in glioblastoma multiforme: A literature review. Cureus. 10:e34392018.PubMed/NCBI

102 

Beier CP and Beier D: CD133 negative cancer stem cells in glioblastoma. Front Biosci (Elite Ed). 3:701–710. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Colwell N, Larion M, Giles AJ, Seldomridge AN, Sizdahkhani S, Gilbert MR and Park DM: Hypoxia in the glioblastoma microenvironment: Shaping the phenotype of cancer stem-like cells. Neuro Oncol. 19:887–896. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Bryukhovetskiy A, Shevchenko V, Kovalev S, Chekhonin V, Baklaushev V, Bryukhovetskiy I and Zhukova M: To the novel paradigm of proteome-based cell therapy of tumors: Through comparative proteome mapping of tumor stem cells and tissue-specific stem cells of humans. Cell Transplant. 23 (Suppl 1):S151–S170. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Bryukhovetskiy I, Shevchenko V, Arnotskaya N, Kushnir T, Pak O, Victor Z, Zaitsev S, Khotimchenko Y, Bryukhovetskiy A, Sharma A and Sharma HS: Transforming growth factor-β mimics the key proteome properties of CD133-differentiated and CD133+ cancer stem cells in glioblastoma. Int Rev Neurobiol. 151:219–242. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Holladay FP, Heitz-Turner T, Bayer WL and Wood GW: Autologous tumor cell vaccination combined with adoptive cellular immunotherapy in patients with grade III/IV astrocytoma. J Neurooncol. 27:179–189. 1996. View Article : Google Scholar : PubMed/NCBI

107 

Wood GW, Holladay FP, Turner T, Wang YY and Chiga M: A pilot study of autologous cancer cell vaccination and cellular immunotherapy using anti-CD3 stimulated lymphocytes in patients with recurrent grade III/IV astrocytoma. J Neurooncol. 48:113–120. 2000. View Article : Google Scholar : PubMed/NCBI

108 

Mitchell DA, Sayour EJ, Reap E, Schmittling R, DeLeon G, Norberg P, Desjardins A, Friedman AH, Friedman HS, Archer G and Sampson JH: Severe adverse immunologic reaction in a patient with glioblastoma receiving autologous dendritic cell vaccines combined with GM-CSF and dose-intensified temozolomide. Cancer Immunol Res. 3:320–325. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, et al: Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 375:2561–2569. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Babar Khan M, Chakraborty S and Boockvar JA: Use of chimeric antigen receptor T cells as a potential therapeutic for glioblastoma. Neurosurgery. 80:N33–N34. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Land CA, Musich PR, Haydar D, Krenciute G and Xie Q: Chimeric antigen receptor T-cell therapy in glioblastoma: Charging the T cells to fight. J Transl Med. 18:4282020. View Article : Google Scholar : PubMed/NCBI

112 

Shen SH, Woroniecka K, Barbour AB, Fecci PE, Sanchez-Perez L and Sampson JH: CAR T cells and checkpoint inhibition for the treatment of glioblastoma. Expert Opin Biol Ther. 20:579–591. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Salinas RD, Durgin JS and O'Rourke DM: Potential of glioblastoma-targeted chimeric antigen receptor (CAR) T-cell therapy. CNS Drugs. 34:127–145. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Bielamowicz K, Fousek K, Byrd TT, Samaha H, Mukherjee M, Aware N, Wu MF, Orange JS, Sumazin P, Man TK, et al: Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol. 20:506–518. 2018. View Article : Google Scholar : PubMed/NCBI

115 

Neagu MR and Reardon DA: Rindopepimut vaccine and bevacizumab combination therapy: Improving survival rates in relapsed glioblastoma patients? Immunotherapy. 7:603–606. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, Ashby L, Mechtler L, Goldlust SA, Iwamoto F, et al: Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 18:1373–1385. 2017. View Article : Google Scholar : PubMed/NCBI

117 

Elsamadicy AA, Chongsathidkiet P, Desai R, Woroniecka K, Farber SH, Fecci PE and Sampson JH: Prospect of rindopepimut in the treatment of glioblastoma. Expert Opin Biol Ther. 17:507–513. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Gerstner ER: ACT IV: The final act for rindopepimut? Lancet Oncol. 18:1294–1296. 2017. View Article : Google Scholar : PubMed/NCBI

119 

Parney IF, Chang LJ, Farr-Jones MA, Hao C, Smylie M and Petruk KC: Technical hurdles in a pilot clinical trial of combined B7-2 and GM-CSF immunogene therapy for glioblastomas and melanomas. J Neurooncol. 78:71–80. 2006. View Article : Google Scholar : PubMed/NCBI

120 

Zaitsev S, Sharma HS, Sharma A, Manzhulo I, Polevshchikov A, Kudriavtsev I, Khotimchenko Y, Pak O, Bryukhovetskiy A and Bryukhovetskiy I: Pro-inflammatory modification of cancer cells microsurroundings increases the survival rates for rats with low differentiated malignant glioma of brain. Int Rev Neurobiol. 151:253–279. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tønnesen P, Suso EM, Sæbøe-Larssen S, Sandberg C, Brinchmann JE, Helseth E, et al: Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother. 62:1499–509. 2013. View Article : Google Scholar : PubMed/NCBI

122 

Thomas AA, Fisher JL, Ernstoff MS and Fadul CE: Vaccine-based immunotherapy for glioblastoma. CNS Oncol. 2:331–349. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Cuoco JA, Benko MJ, Busch CM, Rogers CM, Prickett JT and Marvin EA: Vaccine-Based immunotherapeutics for the treatment of glioblastoma: Advances, challenges, and future perspectives. World Neurosurg. 120:302–315. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Lee YS and Radford KJ: The role of dendritic cells in cancer. Int Rev Cell Mol Biol. 348:123–178. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Reardon DA and Mitchell DA: The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin Immunopathol. 39:225–239. 2017. View Article : Google Scholar : PubMed/NCBI

126 

Chang CN, Huang YC, Yang DM, Kikuta K, Wei KJ, Kubota T and Yang WK: A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma. J Clin Neurosci. 18:1048–1054. 2011. View Article : Google Scholar : PubMed/NCBI

127 

Bogdahn U, Hau P, Stockhammer G, Venkataramana NK, Mahapatra AK, Suri A, Balasubramaniam A, Nair S, Oliushine V, Parfenov V, et al: Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: Results of a randomized and controlled phase IIb study. Neuro Oncol. 13:132–142. 2011. View Article : Google Scholar : PubMed/NCBI

128 

Wick A, Desjardins A, Suarez C, Forsyth P, Gueorguieva I, Burkholder T, Cleverly AL, Estrem ST, Wang S, Lahn MM, et al: Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-beta receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma. Invest New Drugs. 38:1570–1579. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Birch JL, Coull BJ, Spender LC, Watt C, Willison A, Syed N, Chalmers AJ, Hossain-Ibrahim MK and Inman GJ: Multifaceted transforming growth factor-beta (TGFbeta) signalling in glioblastoma. Cell Signal. 72:1096382020. View Article : Google Scholar : PubMed/NCBI

130 

Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Rüttinger D: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar : PubMed/NCBI

131 

Akkari L, Bowman RL, Tessier J, Klemm F, Handgraaf SM, de Groot M, Quail DF, Tillard L, Gadiot J, Huse JT, et al: Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci Transl Med. 12:eaaw78432020. View Article : Google Scholar : PubMed/NCBI

132 

Wherry EJ: T cell exhaustion. Nat Immunol. 12:492–499. 2011. View Article : Google Scholar : PubMed/NCBI

133 

Ando M, Ito M, Srirat T, Kondo T and Yoshimura A: Memory T cell, exhaustion, and tumor immunity. Immunol Med. 43:1–9. 2020. View Article : Google Scholar : PubMed/NCBI

134 

Mohme M, Schliffke S, Maire CL, Rünger A, Glau L, Mende KC, Matschke J, Gehbauer C, Akyüz N, Zapf S, et al: Immunophenotyping of newly diagnosed and recurrent glioblastoma defines distinct immune exhaustion profiles in peripheral and tumor-infiltrating lymphocytes. Clin Cancer Res. 24:4187–4200. 2018. View Article : Google Scholar : PubMed/NCBI

135 

Litak J, Mazurek M, Grochowski C, Kamieniak P and Roliński J: PD-L1/PD-1 axis in glioblastoma multiforme. Int J Mol Sci. 20:53472019. View Article : Google Scholar : PubMed/NCBI

136 

Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ and Parsa AT: Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res. 19:3165–3175. 2013. View Article : Google Scholar : PubMed/NCBI

137 

Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, López-Janeiro A, Porciuncula A, Idoate MA, Inogés S, de Andrea C, López-Diaz de Cerio A, Tejada S, et al: Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 25:470–476. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Wang X, Guo G, Guan H, Yu Y, Lu J and Yu J: Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res. 38:872019. View Article : Google Scholar : PubMed/NCBI

139 

Prionisti I, Bühler LH, Walker PR and Jolivet RB: Harnessing Microglia and macrophages for the treatment of glioblastoma. Front Pharmacol. 10:5062019. View Article : Google Scholar : PubMed/NCBI

140 

Di Tacchio M, Macas J, Weissenberger J, Sommer K, Bähr O, Steinbach JP, Senft C, Seifert V, Glas M, Herrlinger U, et al: Tumor vessel normalization, immunostimulatory reprogramming, and improved survival in glioblastoma with combined inhibition of PD-1, Angiopoietin-2, and VEGF. Cancer Immunol Res. 7:1910–1927. 2019. View Article : Google Scholar : PubMed/NCBI

141 

Kim MM, Umemura Y and Leung D: Bevacizumab and glioblastoma: Past, present, and future directions. Cancer J. 24:180–186. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, et al: Effect of nivolumab vs. bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 Phase 3 randomized clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar : PubMed/NCBI

143 

Chen C, Zuo W, Yang P and Zhang Y: Anti-PD-1, anti-VEGF, and temozolomide therapy in a patient with recurrent glioblastoma: A case report. J Int Med Res. 48:3000605209513952020.PubMed/NCBI

144 

Kong Z, Wang Y and Ma W: Vaccination in the immunotherapy of glioblastoma. Hum Vaccin Immunother. 14:255–268. 2018. View Article : Google Scholar : PubMed/NCBI

145 

De Felice F, Pranno N, Marampon F, Musio D, Salducci M, Polimeni A and Tombolini V: Immune check-point in glioblastoma multiforme. Crit Rev Oncol Hematol. 138:60–69. 2019. View Article : Google Scholar : PubMed/NCBI

146 

Di Giacomo AM, Valente M, Covre A, Danielli R and Maio M: Immunotherapy targeting immune check-point(s) in brain metastases. Cytokine Growth Factor Rev. 36:33–38. 2017. View Article : Google Scholar : PubMed/NCBI

147 

De Felice F, Musio D, Cassese R, Gravina GL and Tombolini V: New approaches in glioblastoma multiforme: The potential role of immune-check point inhibitors. Curr Cancer Drug Targets. 17:282–289. 2017. View Article : Google Scholar : PubMed/NCBI

148 

Yang M, Oh IY, Mahanty A, Jin WL and Yoo JS: Immunotherapy for glioblastoma: Current state, challenges, and future perspectives. Cancers (Basel). 12:23342020. View Article : Google Scholar : PubMed/NCBI

149 

Blumenthal DT, Gorlia T, Gilbert MR, Kim MM, Burt Nabors L, Mason WP, Hegi ME, Zhang P, Golfinopoulos V, Perry JR, et al: Is more better? The impact of extended adjuvant temozolomide in newly diagnosed glioblastoma: A secondary analysis of EORTC and NRG Oncology/RTOG. Neuro Oncol. 19:1119–1126. 2017. View Article : Google Scholar : PubMed/NCBI

150 

Bryukhovetskiy I, Bryukhovetskiy A, Khotimchenko Y and Mischenko P: Novel cellular and post-genomic technologies in the treatment of glioblastoma multiforme (Review). Oncol Rep. 35:639–648. 2016. View Article : Google Scholar : PubMed/NCBI

151 

Chen Z and Hambardzumyan D: Immune microenvironment in glioblastoma subtypes. Front Immunol. 9:10042018. View Article : Google Scholar : PubMed/NCBI

152 

Bryukhovetskiy IS, Dyuizen IV, Shevchenko VE, Bryukhovetskiy AS, Mischenko PV, Milkina EV and Khotimchenko YS: Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 14:4511–4520. 2016. View Article : Google Scholar : PubMed/NCBI

153 

Bryukhovetskiy IS, Mischenko PV, Tolok EV, Zaitcev SV, Khotimchenko YS and Bryukhovetskiy AS: Directional migration of adult hematopoeitic progenitors to C6 glioma in vitro. Oncol Lett. 9:1839–1844. 2015. View Article : Google Scholar : PubMed/NCBI

154 

Milkina E, Ponomarenko A, Korneyko M, Lyakhova I, Zayats Y, Zaitsev S, Mischenko P, Eliseikina M, Khotimchenko Y, Shevchenko V, et al: Interaction of hematopoietic CD34+ CD45+ stem cells and cancer cells stimulated by TGF-β1 in a model of glioblastoma in vitro. Oncol Rep. 40:2595–2607. 2018.PubMed/NCBI

155 

Calvi LM and Link DC: The hematopoietic stem cell niche in homeostasis and disease. Blood. 126:2443–2451. 2015. View Article : Google Scholar : PubMed/NCBI

156 

Bryukhovetskiy AS, Grivtsova LY and Sharma HS: Is the ALS a motor neuron disease or a hematopoietic stem cell disease? Prog Brain Res. 258:381–396. 2020. View Article : Google Scholar : PubMed/NCBI

157 

de Laval B, Maurizio J, Kandalla PK, Brisou G, Simonnet L, Huber C, Gimenez G, Matcovitch-Natan O, Reinhardt S, David E, et al: C/EBPβ-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell. 26:657–674.e8. 2020. View Article : Google Scholar : PubMed/NCBI

158 

Yanada M, Takami A, Mizuno S, Mori J, Chou T, Usuki K, Uchiyama H, Amano I, Fujii S, Miyamoto T, et al: Autologous hematopoietic cell transplantation for acute myeloid leukemia in adults: 25 years of experience in Japan. Int J Hematol. 111:93–102. 2020. View Article : Google Scholar : PubMed/NCBI

159 

Arora S, Majhail NS and Liu H: Hematopoietic progenitor cell mobilization for autologous stem cell transplantation in multiple myeloma in contemporary Era. Clin Lymphoma Myeloma Leuk. 19:200–205. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Bryukhovetskiy I: Cell‑based immunotherapy of glioblastoma multiforme (Review). Oncol Lett 23: 133, 2022.
APA
Bryukhovetskiy, I. (2022). Cell‑based immunotherapy of glioblastoma multiforme (Review). Oncology Letters, 23, 133. https://doi.org/10.3892/ol.2022.13253
MLA
Bryukhovetskiy, I."Cell‑based immunotherapy of glioblastoma multiforme (Review)". Oncology Letters 23.4 (2022): 133.
Chicago
Bryukhovetskiy, I."Cell‑based immunotherapy of glioblastoma multiforme (Review)". Oncology Letters 23, no. 4 (2022): 133. https://doi.org/10.3892/ol.2022.13253
Copy and paste a formatted citation
x
Spandidos Publications style
Bryukhovetskiy I: Cell‑based immunotherapy of glioblastoma multiforme (Review). Oncol Lett 23: 133, 2022.
APA
Bryukhovetskiy, I. (2022). Cell‑based immunotherapy of glioblastoma multiforme (Review). Oncology Letters, 23, 133. https://doi.org/10.3892/ol.2022.13253
MLA
Bryukhovetskiy, I."Cell‑based immunotherapy of glioblastoma multiforme (Review)". Oncology Letters 23.4 (2022): 133.
Chicago
Bryukhovetskiy, I."Cell‑based immunotherapy of glioblastoma multiforme (Review)". Oncology Letters 23, no. 4 (2022): 133. https://doi.org/10.3892/ol.2022.13253
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team