|
1
|
Lukas RV, Wainwright DA, Ladomersky E,
Sachdev S, Sonabend AM and Stupp R: Newly diagnosed glioblastoma: A
review on clinical management. Oncology (Williston Park).
33:91–100. 2019.PubMed/NCBI
|
|
2
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gimple RC, Bhargava S, Dixit D and Rich
JN: Glioblastoma stem cells: Lessons from the tumor hierarchy in a
lethal cancer. Genes Dev. 33:591–609. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lathia JD, Mack SC, Mulkearns-Hubert EE,
Valentim CL and Rich JN: Cancer stem cells in glioblastoma. Genes
Dev. 29:1203–1217. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jackson CM, Choi J and Lim M: Mechanisms
of immunotherapy resistance: Lessons from glioblastoma. Nat
Immunol. 20:1100–1109. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
McGranahan T, Therkelsen KE, Ahmad S and
Nagpal S: Current state of immunotherapy for treatment of
glioblastoma. Curr Treat Options Oncol. 20:242019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chongsathidkiet P, Jackson C, Koyama S,
Loebel F, Cui X, Farber SH, Woroniecka K, Elsamadicy AA, Dechant
CA, Kemeny HR, et al: Sequestration of T cells in bone marrow in
the setting of glioblastoma and other intracranial tumors. Nat Med.
24:1459–1468. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Waziri A: Glioblastoma-derived mechanisms
of systemic immunosuppression. Neurosurg Clin N Am. 21:31–42. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pitter KL, Tamagno I, Alikhanyan K,
Hosni-Ahmed A, Pattwell SS, Donnola S, Dai C, Ozawa T, Chang M,
Chan TA, et al: Corticosteroids compromise survival in
glioblastoma. Brain. 139((Pt 5)): 1458–1471. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Omuro A and DeAngelis LM: Glioblastoma and
other malignant gliomas: A clinical review. JAMA. 310:1842–1850.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tan AC, Ashley DM, López GY, Malinzak M,
Friedman HS and Khasraw M: Management of glioblastoma: State of the
art and future directions. CA Cancer J Clin. 70:299–312. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Weller M, Le Rhun E, Preusser M, Tonn JC
and Roth P: How we treat glioblastoma. ESMO Open. 4 (Suppl
2):e0005202019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Nam JY and de Groot JF: Treatment of
glioblastoma. J Oncol Pract. 13:629–638. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Scartoni D, Amelio D, Palumbo P,
Giacomelli I and Amichetti M: Proton therapy re-irradiation
preserves health-related quality of life in large recurrent
glioblastoma. J Cancer Res Clin Oncol. 146:1615–1622. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Miyatake SI, Wanibuchi M, Hu N and Ono K:
Boron neutron capture therapy for malignant brain tumors. J
Neurooncol. 149:1–11. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lesueur P, Lequesne J, Grellard JM, Dugué
A, Coquan E, Brachet PE, Geffrelot J, Kao W, Emery E, Berro DH, et
al: Phase I/IIa study of concomitant radiotherapy with olaparib and
temozolomide in unresectable or partially resectable glioblastoma:
OLA-TMZ-RTE-01 trial protocol. BMC Cancer. 19:1982019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Bostian AC, Maddukuri L, Reed MR, Savenka
T, Hartman JH, Davis L, Pouncey DL, Miller GP and Eoff RL:
Kynurenine signaling increases DNA polymerase kappa expression and
promotes genomic instability in glioblastoma cells. Chem Res
Toxicol. 29:101–108. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Khotimchenko R, Bryukhovetskiy I,
Khotimchenko M and Khotimchenko Y: Bioactive compounds with
antiglioma activity from marine species. Biomedicines. 9:8862021.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Anthony P, McArdle S and McHugh M: Tumor
treating fields: Adjuvant treatment for high-grade gliomas. Semin
Oncol Nurs. 34:454–464. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Di Nunno V, Franceschi E, Tosoni A, Di
Battista M, Gatto L, Lamperini C, Minichillo S, Mura A, Bartolini S
and Brandes AA: Treatment of recurrent glioblastoma:
State-of-the-art and future perspectives. Expert Rev Anticancer
Ther. 20:785–795. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kazmi F, Soon YY, Leong YH, Koh WY and
Vellayappan B: Re-irradiation for recurrent glioblastoma (GBM): A
systematic review and meta-analysis. J Neurooncol. 142:79–90. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gigliotti MJ, Hasan S, Karlovits SM,
Ranjan T and Wegner RE: Re-Irradiation with stereotactic
radiosurgery/radiotherapy for recurrent high-grade gliomas:
Improved survival in the modern Era. Stereotact Funct Neurosurg.
96:289–295. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Weller M and Le Rhun E: How did lomustine
become standard of care in recurrent glioblastoma? Cancer Treat
Rev. 87:1020292020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Schmidt F, Fischer J, Herrlinger U, Dietz
K, Dichgans J and Weller M: PCV chemotherapy for recurrent
glioblastoma. Neurology. 66:587–589. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Louis DN, Perry A, Reifenberger G, von
Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD,
Kleihues P and Ellison DW: The 2016 World Health organization
classification of tumors of the central nervous system: A summary.
Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Soomro SH, Ting LR, Qing YY and Ren M:
Molecular biology of glioblastoma: Classification and mutational
locations. J Pak Med Assoc. 67:1410–1414. 2017.PubMed/NCBI
|
|
27
|
Verhaak RG, Hoadley KA, Purdom E, Wang V,
Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al:
Integrated genomic analysis identifies clinically relevant subtypes
of glioblastoma characterized by abnormalities in PDGFRA, IDH1,
EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Jakovlevs A, Vanags A, Gardovskis J and
Strumfa I: Molecular classification of diffuse gliomas. Pol J
Pathol. 70:246–258. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bhawe KM and Aghi MK: Microarray analysis
in glioblastomas. Methods Mol Biol. 1375:195–206. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Qazi MA, Vora P, Venugopal C, Sidhu SS,
Moffat J, Swanton C and Singh SK: Intratumoral heterogeneity:
Pathways to treatment resistance and relapse in human glioblastoma.
Ann Oncol. 28:1448–1456. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Waitkus MS, Diplas BH and Yan H:
Biological role and therapeutic potential of IDH mutations in
cancer. Cancer Cell. 34:186–195. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Diplas BH, He X, Brosnan-Cashman JA, Liu
H, Chen LH, Wang Z, Moure CJ, Killela PJ, Loriaux DB, Lipp ES, et
al: The genomic landscape of TERT promoter wildtype-IDH wildtype
glioblastoma. Nat Commun. 9:20872018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Najafi M, Mortezaee K and Majidpoor J:
Cancer stem cell (CSC) resistance drivers. Life Sci.
234:1167812019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bonnet D and Dick JE: Human acute myeloid
leukemia is organized as a hierarchy that originates from a
primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Heng WS, Gosens R and Kruyt FAE: Lung
cancer stem cells: Origin, features, maintenance mechanisms and
therapeutic targeting. Biochem Pharmacol. 160:121–133. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Butti R, Gunasekaran VP, Kumar TVS,
Banerjee P and Kundu GC: Breast cancer stem cells: Biology and
therapeutic implications. Int J Biochem Cell Biol. 107:38–52. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ottevanger PB: Ovarian cancer stem cells
more questions than answers. Semin Cancer Biol. 44:67–71. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Munro MJ, Wickremesekera SK, Peng L, Tan
ST and Itinteang T: Cancer stem cells in colorectal cancer: A
review. J Clin Pathol. 71:110–116. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sharifzad F, Ghavami S, Verdi J, Mardpour
S, Mollapour Sisakht M, Azizi Z, Taghikhani A, Łos MJ, Fakharian E,
Ebrahimi M and Hamidieh AA: Glioblastoma cancer stem cell biology:
Potential theranostic targets. Drug Resist Updat. 42:35–45. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Singh SK, Clarke ID, Terasaki M, Bonn VE,
Hawkins C, Squire J and Dirks PB: Identification of a cancer stem
cell in human brain tumors. Cancer Res. 63:5821–5828.
2003.PubMed/NCBI
|
|
41
|
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q,
Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem
cells promote radioresistance by preferential activation of the DNA
damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Beier D, Schulz JB and Beier CP:
Chemoresistance of glioblastoma cancer stem cells-much more complex
than expected. Mol Cancer. 10:1282011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Altmann C, Keller S and Schmidt MHH: The
Role of SVZ stem cells in glioblastoma. Cancers (Basel).
11:4482019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Álvarez-Satta M, Moreno-Cugnon L and
Matheu A: Primary cilium and brain aging: Role in neural stem
cells, neurodegenerative diseases and glioblastoma. Ageing Res Rev.
52:53–63. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Álvarez-Satta M and Matheu A: Primary
cilium and glioblastoma. Ther Adv Med Oncol.
10:17588359188011692018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Qu K and Ortoleva P: Understanding stem
cell differentiation through self-organization theory. J Theor
Biol. 250:606–620. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Beccari L, Moris N, Girgin M, Turner DA,
Baillie-Johnson P, Cossy AC, Lutolf MP, Duboule D and Arias AM:
Multi-axial self-organization properties of mouse embryonic stem
cells into gastruloids. Nature. 562:272–276. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Persano L, Rampazzo E, Basso G and Viola
G: Glioblastoma cancer stem cells: Role of the microenvironment and
therapeutic targeting. Biochem Pharmacol. 85:612–622. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Osswald M, Jung E, Sahm F, Solecki G,
Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M,
et al: Brain tumour cells interconnect to a functional and
resistant network. Nature. 528:93–98. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Taniguchi S, Elhance A, Van Duzer A, Kumar
S, Leitenberger JJ and Oshimori N: Tumor-initiating cells establish
an IL-33-TGF-beta niche signaling loop to promote cancer
progression. Science. 369:eaay18132020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Massagué J: TGFbeta in Cancer. Cell.
134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Derynck R, Turley SJ and Akhurst RJ: TGFβ
biology in cancer progression and immunotherapy. Nat Rev Clin
Oncol. 18:9–34. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shevchenko V, Arnotskaya N, Pak O, Sharma
A, Sharma HS, Khotimchenko Y, Bryukhovetskiy A and Bryukhovetskiy
I: Molecular determinants of the interaction between glioblastoma
CD133+ cancer stem cells and the extracellular matrix.
Int Rev Neurobiol. 151:155–169. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bryukhovetskiy I and Shevchenko V:
Molecular mechanisms of the effect of TGF-β1 on U87 human
glioblastoma cells. Oncol Lett. 12:1581–1590. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Fecci PE and Sampson JH: The current state
of immunotherapy for gliomas: An eye toward the future. J
Neurosurg. 131:657–666. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Choi BD, Maus MV, June CH and Sampson JH:
Immunotherapy for glioblastoma: Adoptive T-cell Strategies. Clin
Cancer Res. 25:2042–2048. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Takenaka MC, Gabriely G, Rothhammer V,
Mascanfroni ID, Wheeler MA, Chao CC, Gutiérrez-Vázquez C, Kenison
J, Tjon EC, Barroso A, et al: Control of tumor-associated
macrophages and T cells in glioblastoma via AHR and CD39. Nat
Neurosci. 22:729–740. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Dehhaghi M, Kazemi Shariat Panahi H, Heng
B and Guillemin GJ: The gut microbiota, kynurenine pathway, and
immune system interaction in the development of brain cancer. Front
Cell Dev Biol. 8:5628122020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Authier A, Farrand KJ, Broadley KW,
Ancelet LR, Hunn MK, Stone S, McConnell MJ and Hermans IF: Enhanced
immunosuppression by therapy-exposed glioblastoma multiforme tumor
cells. Int J Cancer. 136:2566–2578. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yovino S, Kleinberg L, Grossman SA,
Narayanan M and Ford E: The etiology of treatment-related
lymphopenia in patients with malignant gliomas: Modeling radiation
dose to circulating lymphocytes explains clinical observations and
suggests methods of modifying the impact of radiation on immune
cells. Cancer Invest. 31:140–144. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Grossman SA, Ye X, Lesser G, Sloan A,
Carraway H, Desideri S and Piantadosi S; NABTT CNS Consortium, :
Immunosuppression in patients with high-grade gliomas treated with
radiation and temozolomide. Clin Cancer Res. 17:5473–5480. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kim WJ, Dho YS, Ock CY, Kim JW, Choi SH,
Lee ST, Kim IH, Kim TM and Park CK: Clinical observation of
lymphopenia in patients with newly diagnosed glioblastoma. J
Neurooncol. 143:321–328. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sampson JH, Aldape KD, Archer GE, Coan A,
Desjardins A, Friedman AH, Friedman HS, Gilbert MR, Herndon JE,
McLendon RE, et al: Greater chemotherapy-induced lymphopenia
enhances tumor-specific immune responses that eliminate
EGFRvIII-expressing tumor cells in patients with glioblastoma.
Neuro Oncol. 13:324–333. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Byun HK, Kim N, Yoon HI, Kang SG, Kim SH,
Cho J, Baek JG, Chang JH and Suh CO: Clinical predictors of
radiation-induced lymphopenia in patients receiving chemoradiation
for glioblastoma: Clinical usefulness of intensity-modulated
radiotherapy in the immuno-oncology era. Radiat Oncol. 14:512019.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Gwin WR III, Disis ML and Ruiz-Garcia E:
Immuno-oncology in the era of personalized medicine. Adv Exp Med
Biol. 1168:117–129. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Alkhalili K, Zenonos G and
Fernandez-Miranda JC: Do corticosteroids compromise survival in
glioblastoma? Neurosurgery. 79:N15–N16. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Klement RJ and Champ CE: Corticosteroids
compromise survival in glioblastoma in part through their elevation
of blood glucose levels. Brain. 140:e162017.PubMed/NCBI
|
|
68
|
Sampson JH, Gunn MD, Fecci PE and Ashley
DM: Brain immunology and immunotherapy in brain tumours. Nat Rev
Cancer. 20:12–25. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Medawar PB: Immunity to homologous grafted
skin; The fate of skin homografts transplanted to the brain, to
subcutaneous tissue, and to the anterior chamber of the eye. Br J
Exp Pathol. 29:58–69. 1948.PubMed/NCBI
|
|
70
|
Zhou Q, Wang Y and Ma W: The progress of
immunotherapy for glioblastoma. Hum Vaccin Immunother.
11:2654–2658. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
da Fonseca AC, Amaral R, Garcia C, Geraldo
LH, Matias D and Lima FR: Microglia in Cancer: For good or for bad?
Adv Exp Med Biol. 949:245–261. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bryukhovetskiy I, Manzhulo I, Mischenko P,
Milkina E, Dyuizen I, Bryukhovetskiy A and Khotimchenko Y: Cancer
stem cells and microglia in the processes of glioblastoma
multiforme invasive growth. Oncol Lett. 12:1721–1728. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Herz J, Louveau A, Da Mesquita S and
Kipnis J: Morphological and functional analysis of CNS-associated
lymphatics. Methods Mol Biol. 1846:141–151. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Louveau A and Nau JY: Nervous and
lymphatic system communicate with each other. ‘Zyka virus’ unravels
its mystery. Rev Med Suisse. 11:1462–1463. 2015.(In French).
PubMed/NCBI
|
|
75
|
Lim M, Xia Y, Bettegowda C and Weller M:
Current state of immunotherapy for glioblastoma. Nat Rev Clin
Oncol. 15:422–442. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sarah C: Immunotherapy: CAR T cells in
glioblastoma. Nat Rev Drug Discov. 16:6022017. View Article : Google Scholar
|
|
77
|
Li L, Zhu X, Qian Y, Yuan X, Ding Y, Hu D,
He X and Wu Y: Chimeric antigen receptor T-cell therapy in
glioblastoma: Current and future. Front Immunol. 11:5942712020.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ahmed N, Brawley V, Hegde M, Bielamowicz
K, Kalra M, Landi D, Robertson C, Gray TL, Diouf O, Wakefield A, et
al: HER2-specific chimeric antigen receptor-modified virus-specific
T cells for progressive glioblastoma: A phase 1 dose-escalation
trial. JAMA Oncol. 3:1094–1101. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Lettini G, Lepore S, Crispo F, Sisinni L,
Esposito F and Landriscina M: Heat shock proteins in cancer stem
cell maintenance: A potential therapeutic target? Histol
Histopathol. 35:25–37. 2020.PubMed/NCBI
|
|
80
|
Iglesia RP, Fernandes CFL, Coelho BP,
Prado MB, Melo Escobar MI, Almeida GHDR and Lopes MH: Heat Shock
Proteins in Glioblastoma Biology: Where Do We Stand? Int J Mol Sci.
20:57942019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ammendola M, Currò G, Memeo R, Curto LS,
Luposella M, Zuccalà V, Pessaux P, Navarra G, Gadaleta CD and
Ranieri G: Targeting stem cells with hyperthermia: Translational
relevance in cancer patients. Oncol. 98:755–762. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zanetti M: A second chance for telomerase
reverse transcriptase in anticancer immunotherapy. Nat Rev Clin
Oncol. 14:115–128. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Oji Y, Hashimoto N, Tsuboi A, Murakami Y,
Iwai M, Kagawa N, Chiba Y, Izumoto S, Elisseeva O, Ichinohasama R,
et al: Association of WT1 IgG antibody against WT1 peptide with
prolonged survival in glioblastoma multiforme patients vaccinated
with WT1 peptide. Int J Cancer. 139:1391–1401. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kijima N, Hosen N, Kagawa N, Hashimoto N,
Kinoshita M, Oji Y, Sugiyama H and Yoshimine T: Wilms' tumor 1 is
involved in tumorigenicity of glioblastoma by regulating cell
proliferation and apoptosis. Anticancer Res. 34:61–67.
2014.PubMed/NCBI
|
|
85
|
Saikali S, Avril T, Collet B, Hamlat A,
Bansard JY, Drenou B, Guegan Y and Quillien V: Expression of nine
tumour antigens in a series of human glioblastoma multiforme::
Interest of EGFRvIII, IL-13Ralpha2, gp100 and TRP-2 for
immunotherapy. J Neurooncol. 81:139–148. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu G, Khong HT, Wheeler CJ, Yu JS, Black
KL and Ying H: Molecular and functional analysis of
tyrosinase-related protein (TRP)-2 as a cytotoxic T lymphocyte
target in patients with malignant glioma. J Immunother. 26:301–312.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Affinito A, Quintavalle C, Esposito CL,
Roscigno G, Giordano C, Nuzzo S, Ricci-Vitiani L, Scognamiglio I,
Minic Z, Pallini R, et al: Targeting ephrin receptor tyrosine
kinase A2 with a selective aptamer for glioblastoma stem cells. Mol
Ther Nucleic Acids. 20:176–185. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Qazi MA, Vora P, Venugopal C, Adams J,
Singh M, Hu A, Gorelik M, Subapanditha MK, Savage N, Yang J, et al:
Cotargeting ephrin receptor tyrosine kinases A2 and A3 in cancer
stem cells reduces growth of recurrent glioblastoma. Cancer Res.
78:5023–5037. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Tchoghandjian A, Baeza N, Colin C, Cayre
M, Metellus P, Beclin C, Ouafik L and Figarella-Branger D: A2B5
cells from human glioblastoma have cancer stem cell properties.
Brain Pathol. 20:211–221. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Baeza-Kallee N, Bergès R, Soubéran A,
Colin C, Denicolaï E, Appay R, Tchoghandjian A and
Figarella-Branger D: Glycolipids recognized by A2B5 antibody
promote proliferation, migration, and clonogenicity in glioblastoma
cells. Cancers (Basel). 11:12672019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
De la Rocha AM, Sampron N, Alonso MM and
Matheu A: Role of SOX family of transcription factors in central
nervous system tumors. Am J Cancer Res. 4:312–324. 2014.PubMed/NCBI
|
|
92
|
Weathers SP, Penas-Prado M, Pei BL, Ling
X, Kassab C, Banerjee P, Bdiwi M, Shaim H, Alsuliman A, Shanley M,
et al: Glioblastoma-mediated immune dysfunction limits CMV-specific
T cells and therapeutic responses: Results from a phase I/II trial.
Clin Cancer Res. 26:3565–3577. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
De Haan P, Van Diemen FR and Toscano MG:
Viral gene delivery vectors: The next generation medicines for
immune-related diseases. Hum Vaccin Immunother. 17:14–21. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wang JL, Scheitler KM, Wenger NM and Elder
JB: Viral therapies for glioblastoma and high-grade gliomas in
adults: A systematic review. Neurosurg Focus. 50:E22021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Desjardins A, Gromeier M, Herndon JE II,
Beaubier N, Bolognesi DP, Friedman AH, Friedman HS, McSherry F,
Muscat AM, Nair S, et al: Recurrent Glioblastoma treated with
Recombinant Poliovirus. N Engl J Med. 379:150–161. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Bhaduri A, Di Lullo E, Jung D, Müller S,
Crouch EE, Espinosa CS, Ozawa T, Alvarado B, Spatazza J, Cadwell
CR, et al: Outer Radial Glia-like cancer stem cells contribute to
heterogeneity of glioblastoma. Cell Stem Cell. 26:48–63.e6. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Patel AP, Tirosh I, Trombetta JJ, Shalek
AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT,
Martuza RL, et al: Single-cell RNA-seq highlights intratumoral
heterogeneity in primary glioblastoma. Science. 344:1396–1401.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xu HS, Qin XL, Zong HL, He XG and Cao L:
Cancer stem cell markers in glioblastoma-an update. Eur Rev Med
Pharmacol Sci. 21:3207–3211. 2017.PubMed/NCBI
|
|
99
|
Ludwig K and Kornblum HI: Molecular
markers in glioma. J Neurooncol. 134:505–512. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Pointer KB, Clark PA, Zorniak M, Alrfaei
BM and Kuo JS: Glioblastoma cancer stem cells: Biomarker and
therapeutic advances. Neurochem Int. 71:1–7. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Ahmed SI, Javed G, Laghari AA, Bareeqa SB,
Farrukh S, Zahid S, Samar SS and Aziz K: CD133 expression in
glioblastoma multiforme: A literature review. Cureus.
10:e34392018.PubMed/NCBI
|
|
102
|
Beier CP and Beier D: CD133 negative
cancer stem cells in glioblastoma. Front Biosci (Elite Ed).
3:701–710. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
103
|
Colwell N, Larion M, Giles AJ, Seldomridge
AN, Sizdahkhani S, Gilbert MR and Park DM: Hypoxia in the
glioblastoma microenvironment: Shaping the phenotype of cancer
stem-like cells. Neuro Oncol. 19:887–896. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Bryukhovetskiy A, Shevchenko V, Kovalev S,
Chekhonin V, Baklaushev V, Bryukhovetskiy I and Zhukova M: To the
novel paradigm of proteome-based cell therapy of tumors: Through
comparative proteome mapping of tumor stem cells and
tissue-specific stem cells of humans. Cell Transplant. 23 (Suppl
1):S151–S170. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bryukhovetskiy I, Shevchenko V, Arnotskaya
N, Kushnir T, Pak O, Victor Z, Zaitsev S, Khotimchenko Y,
Bryukhovetskiy A, Sharma A and Sharma HS: Transforming growth
factor-β mimics the key proteome properties of CD133-differentiated
and CD133+ cancer stem cells in glioblastoma. Int Rev
Neurobiol. 151:219–242. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Holladay FP, Heitz-Turner T, Bayer WL and
Wood GW: Autologous tumor cell vaccination combined with adoptive
cellular immunotherapy in patients with grade III/IV astrocytoma. J
Neurooncol. 27:179–189. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wood GW, Holladay FP, Turner T, Wang YY
and Chiga M: A pilot study of autologous cancer cell vaccination
and cellular immunotherapy using anti-CD3 stimulated lymphocytes in
patients with recurrent grade III/IV astrocytoma. J Neurooncol.
48:113–120. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Mitchell DA, Sayour EJ, Reap E,
Schmittling R, DeLeon G, Norberg P, Desjardins A, Friedman AH,
Friedman HS, Archer G and Sampson JH: Severe adverse immunologic
reaction in a patient with glioblastoma receiving autologous
dendritic cell vaccines combined with GM-CSF and dose-intensified
temozolomide. Cancer Immunol Res. 3:320–325. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Brown CE, Alizadeh D, Starr R, Weng L,
Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J,
Simpson J, et al: Regression of glioblastoma after chimeric antigen
receptor T-cell therapy. N Engl J Med. 375:2561–2569. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Babar Khan M, Chakraborty S and Boockvar
JA: Use of chimeric antigen receptor T cells as a potential
therapeutic for glioblastoma. Neurosurgery. 80:N33–N34. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Land CA, Musich PR, Haydar D, Krenciute G
and Xie Q: Chimeric antigen receptor T-cell therapy in
glioblastoma: Charging the T cells to fight. J Transl Med.
18:4282020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Shen SH, Woroniecka K, Barbour AB, Fecci
PE, Sanchez-Perez L and Sampson JH: CAR T cells and checkpoint
inhibition for the treatment of glioblastoma. Expert Opin Biol
Ther. 20:579–591. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Salinas RD, Durgin JS and O'Rourke DM:
Potential of glioblastoma-targeted chimeric antigen receptor (CAR)
T-cell therapy. CNS Drugs. 34:127–145. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Bielamowicz K, Fousek K, Byrd TT, Samaha
H, Mukherjee M, Aware N, Wu MF, Orange JS, Sumazin P, Man TK, et
al: Trivalent CAR T cells overcome interpatient antigenic
variability in glioblastoma. Neuro Oncol. 20:506–518. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Neagu MR and Reardon DA: Rindopepimut
vaccine and bevacizumab combination therapy: Improving survival
rates in relapsed glioblastoma patients? Immunotherapy. 7:603–606.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Weller M, Butowski N, Tran DD, Recht LD,
Lim M, Hirte H, Ashby L, Mechtler L, Goldlust SA, Iwamoto F, et al:
Rindopepimut with temozolomide for patients with newly diagnosed,
EGFRvIII-expressing glioblastoma (ACT IV): A randomised,
double-blind, international phase 3 trial. Lancet Oncol.
18:1373–1385. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Elsamadicy AA, Chongsathidkiet P, Desai R,
Woroniecka K, Farber SH, Fecci PE and Sampson JH: Prospect of
rindopepimut in the treatment of glioblastoma. Expert Opin Biol
Ther. 17:507–513. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Gerstner ER: ACT IV: The final act for
rindopepimut? Lancet Oncol. 18:1294–1296. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Parney IF, Chang LJ, Farr-Jones MA, Hao C,
Smylie M and Petruk KC: Technical hurdles in a pilot clinical trial
of combined B7-2 and GM-CSF immunogene therapy for glioblastomas
and melanomas. J Neurooncol. 78:71–80. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zaitsev S, Sharma HS, Sharma A, Manzhulo
I, Polevshchikov A, Kudriavtsev I, Khotimchenko Y, Pak O,
Bryukhovetskiy A and Bryukhovetskiy I: Pro-inflammatory
modification of cancer cells microsurroundings increases the
survival rates for rats with low differentiated malignant glioma of
brain. Int Rev Neurobiol. 151:253–279. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC,
Due-Tønnesen P, Suso EM, Sæbøe-Larssen S, Sandberg C, Brinchmann
JE, Helseth E, et al: Therapeutic vaccination against autologous
cancer stem cells with mRNA-transfected dendritic cells in patients
with glioblastoma. Cancer Immunol Immunother. 62:1499–509. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Thomas AA, Fisher JL, Ernstoff MS and
Fadul CE: Vaccine-based immunotherapy for glioblastoma. CNS Oncol.
2:331–349. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Cuoco JA, Benko MJ, Busch CM, Rogers CM,
Prickett JT and Marvin EA: Vaccine-Based immunotherapeutics for the
treatment of glioblastoma: Advances, challenges, and future
perspectives. World Neurosurg. 120:302–315. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Lee YS and Radford KJ: The role of
dendritic cells in cancer. Int Rev Cell Mol Biol. 348:123–178.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Reardon DA and Mitchell DA: The
development of dendritic cell vaccine-based immunotherapies for
glioblastoma. Semin Immunopathol. 39:225–239. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Chang CN, Huang YC, Yang DM, Kikuta K, Wei
KJ, Kubota T and Yang WK: A phase I/II clinical trial investigating
the adverse and therapeutic effects of a postoperative autologous
dendritic cell tumor vaccine in patients with malignant glioma. J
Clin Neurosci. 18:1048–1054. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Bogdahn U, Hau P, Stockhammer G,
Venkataramana NK, Mahapatra AK, Suri A, Balasubramaniam A, Nair S,
Oliushine V, Parfenov V, et al: Targeted therapy for high-grade
glioma with the TGF-β2 inhibitor trabedersen: Results of a
randomized and controlled phase IIb study. Neuro Oncol. 13:132–142.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Wick A, Desjardins A, Suarez C, Forsyth P,
Gueorguieva I, Burkholder T, Cleverly AL, Estrem ST, Wang S, Lahn
MM, et al: Phase 1b/2a study of galunisertib, a small molecule
inhibitor of transforming growth factor-beta receptor I, in
combination with standard temozolomide-based radiochemotherapy in
patients with newly diagnosed malignant glioma. Invest New Drugs.
38:1570–1579. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Birch JL, Coull BJ, Spender LC, Watt C,
Willison A, Syed N, Chalmers AJ, Hossain-Ibrahim MK and Inman GJ:
Multifaceted transforming growth factor-beta (TGFbeta) signalling
in glioblastoma. Cell Signal. 72:1096382020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Cannarile MA, Weisser M, Jacob W, Jegg AM,
Ries CH and Rüttinger D: Colony-stimulating factor 1 receptor
(CSF1R) inhibitors in cancer therapy. J Immunother Cancer.
5:532017. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Akkari L, Bowman RL, Tessier J, Klemm F,
Handgraaf SM, de Groot M, Quail DF, Tillard L, Gadiot J, Huse JT,
et al: Dynamic changes in glioma macrophage populations after
radiotherapy reveal CSF-1R inhibition as a strategy to overcome
resistance. Sci Transl Med. 12:eaaw78432020. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Wherry EJ: T cell exhaustion. Nat Immunol.
12:492–499. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Ando M, Ito M, Srirat T, Kondo T and
Yoshimura A: Memory T cell, exhaustion, and tumor immunity. Immunol
Med. 43:1–9. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Mohme M, Schliffke S, Maire CL, Rünger A,
Glau L, Mende KC, Matschke J, Gehbauer C, Akyüz N, Zapf S, et al:
Immunophenotyping of newly diagnosed and recurrent glioblastoma
defines distinct immune exhaustion profiles in peripheral and
tumor-infiltrating lymphocytes. Clin Cancer Res. 24:4187–4200.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Litak J, Mazurek M, Grochowski C,
Kamieniak P and Roliński J: PD-L1/PD-1 axis in glioblastoma
multiforme. Int J Mol Sci. 20:53472019. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Bloch O, Crane CA, Kaur R, Safaee M,
Rutkowski MJ and Parsa AT: Gliomas promote immunosuppression
through induction of B7-H1 expression in tumor-associated
macrophages. Clin Cancer Res. 19:3165–3175. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Schalper KA, Rodriguez-Ruiz ME, Diez-Valle
R, López-Janeiro A, Porciuncula A, Idoate MA, Inogés S, de Andrea
C, López-Diaz de Cerio A, Tejada S, et al: Neoadjuvant nivolumab
modifies the tumor immune microenvironment in resectable
glioblastoma. Nat Med. 25:470–476. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Wang X, Guo G, Guan H, Yu Y, Lu J and Yu
J: Challenges and potential of PD-1/PD-L1 checkpoint blockade
immunotherapy for glioblastoma. J Exp Clin Cancer Res. 38:872019.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Prionisti I, Bühler LH, Walker PR and
Jolivet RB: Harnessing Microglia and macrophages for the treatment
of glioblastoma. Front Pharmacol. 10:5062019. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Di Tacchio M, Macas J, Weissenberger J,
Sommer K, Bähr O, Steinbach JP, Senft C, Seifert V, Glas M,
Herrlinger U, et al: Tumor vessel normalization, immunostimulatory
reprogramming, and improved survival in glioblastoma with combined
inhibition of PD-1, Angiopoietin-2, and VEGF. Cancer Immunol Res.
7:1910–1927. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Kim MM, Umemura Y and Leung D: Bevacizumab
and glioblastoma: Past, present, and future directions. Cancer J.
24:180–186. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Reardon DA, Brandes AA, Omuro A,
Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr
O, et al: Effect of nivolumab vs. bevacizumab in patients with
recurrent glioblastoma: The CheckMate 143 Phase 3 randomized
clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Chen C, Zuo W, Yang P and Zhang Y:
Anti-PD-1, anti-VEGF, and temozolomide therapy in a patient with
recurrent glioblastoma: A case report. J Int Med Res.
48:3000605209513952020.PubMed/NCBI
|
|
144
|
Kong Z, Wang Y and Ma W: Vaccination in
the immunotherapy of glioblastoma. Hum Vaccin Immunother.
14:255–268. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
De Felice F, Pranno N, Marampon F, Musio
D, Salducci M, Polimeni A and Tombolini V: Immune check-point in
glioblastoma multiforme. Crit Rev Oncol Hematol. 138:60–69. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Di Giacomo AM, Valente M, Covre A,
Danielli R and Maio M: Immunotherapy targeting immune
check-point(s) in brain metastases. Cytokine Growth Factor Rev.
36:33–38. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
De Felice F, Musio D, Cassese R, Gravina
GL and Tombolini V: New approaches in glioblastoma multiforme: The
potential role of immune-check point inhibitors. Curr Cancer Drug
Targets. 17:282–289. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Yang M, Oh IY, Mahanty A, Jin WL and Yoo
JS: Immunotherapy for glioblastoma: Current state, challenges, and
future perspectives. Cancers (Basel). 12:23342020. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Blumenthal DT, Gorlia T, Gilbert MR, Kim
MM, Burt Nabors L, Mason WP, Hegi ME, Zhang P, Golfinopoulos V,
Perry JR, et al: Is more better? The impact of extended adjuvant
temozolomide in newly diagnosed glioblastoma: A secondary analysis
of EORTC and NRG Oncology/RTOG. Neuro Oncol. 19:1119–1126. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Bryukhovetskiy I, Bryukhovetskiy A,
Khotimchenko Y and Mischenko P: Novel cellular and post-genomic
technologies in the treatment of glioblastoma multiforme (Review).
Oncol Rep. 35:639–648. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Chen Z and Hambardzumyan D: Immune
microenvironment in glioblastoma subtypes. Front Immunol.
9:10042018. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Bryukhovetskiy IS, Dyuizen IV, Shevchenko
VE, Bryukhovetskiy AS, Mischenko PV, Milkina EV and Khotimchenko
YS: Hematopoietic stem cells as a tool for the treatment of
glioblastoma multiforme. Mol Med Rep. 14:4511–4520. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Bryukhovetskiy IS, Mischenko PV, Tolok EV,
Zaitcev SV, Khotimchenko YS and Bryukhovetskiy AS: Directional
migration of adult hematopoeitic progenitors to C6 glioma in
vitro. Oncol Lett. 9:1839–1844. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Milkina E, Ponomarenko A, Korneyko M,
Lyakhova I, Zayats Y, Zaitsev S, Mischenko P, Eliseikina M,
Khotimchenko Y, Shevchenko V, et al: Interaction of hematopoietic
CD34+ CD45+ stem cells and cancer cells
stimulated by TGF-β1 in a model of glioblastoma in vitro.
Oncol Rep. 40:2595–2607. 2018.PubMed/NCBI
|
|
155
|
Calvi LM and Link DC: The hematopoietic
stem cell niche in homeostasis and disease. Blood. 126:2443–2451.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Bryukhovetskiy AS, Grivtsova LY and Sharma
HS: Is the ALS a motor neuron disease or a hematopoietic stem cell
disease? Prog Brain Res. 258:381–396. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
de Laval B, Maurizio J, Kandalla PK,
Brisou G, Simonnet L, Huber C, Gimenez G, Matcovitch-Natan O,
Reinhardt S, David E, et al: C/EBPβ-dependent epigenetic memory
induces trained immunity in hematopoietic stem cells. Cell Stem
Cell. 26:657–674.e8. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Yanada M, Takami A, Mizuno S, Mori J, Chou
T, Usuki K, Uchiyama H, Amano I, Fujii S, Miyamoto T, et al:
Autologous hematopoietic cell transplantation for acute myeloid
leukemia in adults: 25 years of experience in Japan. Int J Hematol.
111:93–102. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Arora S, Majhail NS and Liu H:
Hematopoietic progenitor cell mobilization for autologous stem cell
transplantation in multiple myeloma in contemporary Era. Clin
Lymphoma Myeloma Leuk. 19:200–205. 2019. View Article : Google Scholar : PubMed/NCBI
|