|
1
|
Dang L, Yen K and Attar EC: IDH mutations
in cancer and progress toward development of targeted therapeutics.
Ann Oncol. 27:599–608. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Montalban-Bravo G and DiNardo CD: The role
of IDH mutations in acute myeloid leukemia. Future Oncol.
14:979–993. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sharma H: Development of novel
therapeutics targeting isocitrate dehydrogenase mutations in
cancer. Curr Top Med Chem. 18:505–524. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Willander K, Falk IJ, Chaireti R, Paul E,
Hermansson M, Gréen H, Lotfi K and Söderkvist P: Mutations in the
isocitrate dehydrogenase 2 gene and IDH1 SNP 105C > T have a
prognostic value in acute myeloid leukemia. Biomark Res. 2:182014.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Xu X, Zhao J, Xu Z, Peng B, Huang Q,
Arnold E and Ding J: Structures of human cytosolic NADP-dependent
isocitrate dehydrogenase reveal a novel self-regulatory mechanism
of activity. J Biol Chem. 279:33946–33957. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Medeiros BC, Fathi AT, DiNardo CD, Pollyea
DA, Chan SM and Swords R: Isocitrate dehydrogenase mutations in
myeloid malignancies. Leukemia. 31:272–281. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Clark O, Yen K and Mellinghoff IK:
Molecular pathways: Isocitrate dehydrogenase mutations in cancer.
Clin Cancer Res. 22:1837–1842. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Liao J, Li Q, Hu Z, Yu W, Zhang K, Ma F,
Han Q, Zhang H, Guo J, Hu L, et al: Mitochondrial miR-1285
regulates copper-induced mitochondrial dysfunction and mitophagy by
impairing IDH2 in pig jejunal epithelial cells. J Hazard Mater.
422:1268992022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lv JW, Song YP, Zhang ZC, Fan YJ, Xu FX,
Gao L, Zhang XY, Zhang C, Wang H and Xu DZ: Gestational arsenic
exposure induces anxiety-like behaviors in adult offspring by
reducing DNA hydroxymethylation in the developing brain. Ecotoxicol
Environ Saf. 227:1129012021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bergaggio E, Riganti C, Garaffo G, Vitale
N, Mereu E, Bandini C, Pellegrino E, Pullano V, Omedè P, Todoerti
K, et al: IDH2 inhibition enhances proteasome inhibitor
responsiveness in hematological malignancies. Blood. 133:156–167.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Park JB, Nagar H, Choi S, Jung SB, Kim HW,
Kang SK, Lee JW, Lee JH, Park JW, Irani K, et al: IDH2 deficiency
impairs mitochondrial function in endothelial cells and
endothelium-dependent vasomotor function. Free Radic Biol Med.
94:36–46. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lang F, Jha A, Meuter L, Pacak K and Yang
C: Identification of isocitrate dehydrogenase 2 (IDH2) mutation in
carotid body paraganglioma. Front Endocrinol (Lausanne).
12:7310962021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Cairns RA and Mak TW: Oncogenic isocitrate
dehydrogenase mutations: Mechanisms, models, and clinical
opportunities. Cancer Discov. 3:730–741. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Shi F, He Y, Li J, Tang M, Li Y, Xie L,
Zhao L, Hu J, Luo X, Zhou M, et al: Wild-type IDH2 contributes to
Epstein-Barr virus-dependent metabolic alterations and
tumorigenesis. Mol Metab. 36:1009662020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Cerchione C, Romano A, Daver N, DiNardo C,
Jabbour EJ, Konopleva M, Ravandi-Kashani F, Kadia T, Martelli MP,
Isidori A, et al: IDH1/IDH2 inhibition in acute myeloid leukemia.
Front Oncol. 11:6393872021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Stein EM, DiNardo CD, Fathi AT, Pollyea
DA, Stone RM, Altman JK, Roboz GJ, Patel MR, Collins R, Flinn IW,
et al: Molecular remission and response patterns in patients with
mutant-IDH2 acute myeloid leukemia treated with enasidenib. Blood.
133:676–687. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Abou Dalle I and DiNardo CD: The role of
enasidenib in the treatment of mutant IDH2 acute myeloid leukemia.
Ther Adv Hematol. 9:163–173. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rocquain J, Carbuccia N, Trouplin V,
Raynaud S, Murati A, Nezri M, Tadrist Z, Olschwang S, Vey N,
Birnbaum D, et al: Combined mutations of ASXL1, CBL, FLT3, IDH1,
IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in
myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer.
10:4012010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Montoro J, Yerlikaya A, Ali A and Raza A:
Improving treatment for myelodysplastic syndromes patients. Curr
Treat Options Oncol. 19:662018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gelsi-Boyer V, Trouplin V, Roquain J,
Adélaïde J, Carbuccia N, Esterni B, Finetti P, Murati A, Arnoulet
C, Zerazhi H, et al: ASXL1 mutation is associated with poor
prognosis and acute transformation in chronic myelomonocytic
leukaemia. Br J Haematol. 151:365–375. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Woods BA and Levine RL: The role of
mutations in epigenetic regulators in myeloid malignancies. Immunol
Rev. 263:22–35. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Molenaar RJ, Thota S, Nagata Y, Patel B,
Clemente M, Przychodzen B, Hirsh C, Viny AD, Hosano N, Bleeker FE,
et al: Clinical and biological implications of ancestral and
non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms.
Leukemia. 29:2134–2142. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Buege MJ, DiPippo AJ and DiNardo CD:
Evolving treatment strategies for elderly leukemia patients with
IDH mutations. Cancers (Basel). 10:1872018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Amaya ML and Pollyea DA: Targeting the
IDH2 pathway in acute myeloid leukemia. Clin Cancer Res.
24:4931–4936. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chen TC, Yao CY, Chen YR, Yuan CT, Lin CC,
Hsu YC, Chuang PH, Kao CJ, Li YH, Hou HA, et al: Oncogenesis
induced by combined Phf6 and Idh2 mutations through increased
oncometabolites and impaired DNA repair. Oncogene. 41:1576–1588.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Gross S, Cairns RA, Minden MD, Driggers
EM, Bittinger MA, Jang HG, Sasaki M, Jin S, Schenkein DP, Su SM, et
al: Cancer-associated metabolite 2-hydroxyglutarate accumulates in
acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2
mutations. J Exp Med. 207:339–344. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chen C, Liu Y, Lu C, Cross JR, Morris JP
IV, Shroff AS, Ward PS, Bradner JE, Thompson C and Lowe SW:
Cancer-associated IDH2 mutants drive an acute myeloid leukemia that
is susceptible to Brd4 inhibition. Genes Dev. 27:1974–1985. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Waitkus MS, Diplas BH and Yan H:
Biological role and therapeutic potential of IDH mutations in
cancer. Cancer Cell. 34:186–195. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Upadhyay VA, Brunner AM and Fathi AT:
Isocitrate dehydrogenase (IDH) inhibition as treatment of myeloid
malignancies: Progress and future directions. Pharmacol Ther.
177:123–128. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kats LM, Reschke M, Taulli R, Pozdnyakova
O, Burgess K, Bhargava P, Straley K, Karnik R, Meissner A, Small D,
et al: Proto-oncogenic role of mutant IDH2 in leukemia initiation
and maintenance. Cell Stem Cell. 14:329–341. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chotirat S, Thongnoppakhun W,
Wanachiwanawin W and Auewarakul CU: Acquired somatic mutations of
isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) in preleukemic
disorders. Blood Cells Mol Dis. 54:286–291. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sunthankar KI, Jenkins MT, Cote CH, Patel
SB, Welner RS and Ferrell PB: Isocitrate dehydrogenase mutations
are associated with altered IL-1β responses in acute myeloid
leukemia. Leukemia. 36:923–934. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Venugopal S, Takahashi K, Daver N, Maiti
A, Borthakur G, Loghavi S, Short NJ, Ohanian M, Masarova L, Issa G,
et al: Efficacy and safety of enasidenib and azacitidine
combination in patients with IDH2 mutated acute myeloid leukemia
and not eligible for intensive chemotherapy. Blood Cancer J.
12:102022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chen J, Yang J, Wei Q, Weng L, Wu F, Shi
Y, Cheng X, Cai X, Hu C and Cao P: Identification of a selective
inhibitor of IDH2/R140Q enzyme that induces cellular
differentiation in leukemia cells. Cell Commun Signal. 18:552020.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gao M, Zhu H, Fu L, Li Y, Bao X, Fu H,
Quan H, Wang L and Lou L: Pharmacological characterization of
TQ05310, a potent inhibitor of isocitrate dehydrogenase 2 R140Q and
R172K mutants. Cancer Sci. 110:3306–3314. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ma R and Yun CH: Crystal structures of
pan-IDH inhibitor AG-881 in complex with mutant human IDH1 and
IDH2. Biochem Biophys Res Commun. 503:2912–2917. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yen K, Travins J, Wang F, David MD, Artin
E, Straley K, Padyana A, Gross S, DeLaBarre B, Tobin E, et al:
AG-221, a first-in-class therapy targeting acute myeloid leukemia
harboring oncogenic IDH2 mutations. Cancer Discov. 7:478–493. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Quek L, David MD, Kennedy A, Metzner M,
Amatangelo M, Shih A, Stoilova B, Quivoron C, Heiblig M, Willekens
C, et al: Clonal heterogeneity of acute myeloid leukemia treated
with the IDH2 inhibitor enasidenib. Nat Med. 24:1167–1177. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kim Y, Jeung HK, Cheong JW, Song J, Bae
SH, Lee JI and Min YH: All-trans retinoic acid synergizes with
enasidenib to induce differentiation of IDH2-mutant acute myeloid
leukemia cells. Yonsei Med J. 61:762–773. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
DiNardo CD, Schuh AC, Stein EM, Montesinos
P, Wei AH, de Botton S, Zeidan AM, Fathi AT, Kantarjian HM, Bennett
JM, et al: Enasidenib plus azacitidine versus azacitidine alone in
patients with newly diagnosed, mutant-IDH2 acute myeloid leukaemia
(AG221-AML-005): A single-arm, phase 1b and randomised, phase 2
trial. Lancet Oncol. 22:1597–1608. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Stein EM, DiNardo CD, Pollyea DA, Fathi
AT, Roboz GJ, Altman JK, Stone RM, DeAngelo DJ, Levine RL, Flinn
IW, et al: Enasidenib in mutant-IDH2 relapsed or refractory acute
myeloid leukemia. Blood. 130:722–731. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang F, Travins J, DeLaBarre B,
Penard-Lacronique V, Schalm S, Hansen E, Straley K, Kernytsky A,
Liu W, Gliser C, et al: Targeted inhibition of mutant IDH2 in
leukemia cells induces cellular differentiation. Science.
340:622–626. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chen J, Yang J, Sun X, Wang Z, Cheng X, Lu
W, Cai X, Hu C, Shen X and Cao P: Allosteric inhibitor remotely
modulates the conformation of the orthestric pockets in mutant
IDH2/R140Q. Sci Rep. 7:164582017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang Z, Zhang Z, Li Y, Sun L, Peng D, Du
D, Zhang X, Han L, Zhao L, Lu L, et al: Preclinical efficacy
against acute myeloid leukaemia of SH1573, a novel mutant IDH2
inhibitor approved for clinical trials in China. Acta Pharm Sin B.
11:1526–1540. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Aref S, Kamel Areida el S, Abdel Aaal MF,
Adam OM, El-Ghonemy MS, El-Baiomy MA and Zeid TA: Prevalence and
clinical effect of IDH1 and IDH2 mutations among cytogenetically
normal acute myeloid leukemia patients. Clin Lymphoma Myeloma Leuk.
15:550–555. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Middeke JM, Metzeler KH, Röllig C, Krämer
M, Eckardt JN, Stasik S, Greif PA, Spiekermann K,
Rothenberg-Thurley M, Krug U, et al: Differential impact of IDH1/2
mutational subclasses on outcome in adult AML: Results from a large
multicenter study. Blood Adv. 6:1394–1405. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Itzykson R, Kosmider O, Renneville A,
Gelsi-Boyer V, Meggendorfer M, Morabito M, Berthon C, Adès L,
Fenaux P, Beyne-Rauzy O, et al: Prognostic score including gene
mutations in chronic myelomonocytic leukemia. J Clin Oncol.
31:2428–2436. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Willekens C, Rahme R, Duchmann M, Vidal V,
Saada V, Broutin S, Delahousse J, Renneville A, Marceau A, Clappier
E, et al: Effects of azacitidine in 93 patients with IDH1/2 mutated
acute myeloid leukemia/myelodysplastic syndromes: A French
retrospective multicenter study. Leuk Lymphoma. 62:438–445. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hosono N: Genetic abnormalities and
pathophysiology of MDS. Int J Clin Oncol. 24:885–892. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lin J, Yao DM, Qian J, Chen Q, Qian W, Li
Y, Yang J, Wang CZ, Chai HY, Qian Z, et al: IDH1 and IDH2 mutation
analysis in Chinese patients with acute myeloid leukemia and
myelodysplastic syndrome. Ann Hematol. 91:519–525. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kosmider O, Gelsi-Boyer V, Slama L,
Dreyfus F, Beyne-Rauzy O, Quesnel B, Hunault-Berger M, Slama B, Vey
N, Lacombe C, et al: Mutations of IDH1 and IDH2 genes in early and
accelerated phases of myelodysplastic syndromes and
MDS/myeloproliferative neoplasms. Leukemia. 24:1094–1096. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lin CC, Hou HA, Chou WC, Kuo YY, Liu CY,
Chen CY, Lai YJ, Tseng MH, Huang CF, Chiang YC, et al: IDH
mutations are closely associated with mutations of DNMT3A, ASXL1
and SRSF2 in patients with myelodysplastic syndromes and are stable
during disease evolution. Am J Hematol. 89:137–144. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lin P, Luo Y, Zhu S, Maggio D, Yang H, Hu
C, Wang J, Zhang H, Ren Y, Zhou X, et al: Isocitrate dehydrogenase
2 mutations correlate with leukemic transformation and are
predicted by 2-hydroxyglutarate in myelodysplastic syndromes. J
Cancer Res Clin Oncol. 144:1037–1047. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kharfan-Dabaja MA, Komrokji RS, Zhang Q,
Kumar A, Tsalatsanis A, Perkins J, Nishihori T, Field T, Al Ali N,
Mishra A, et al: TP53 and IDH2 somatic mutations are associated
with inferior overall survival after allogeneic hematopoietic cell
transplantation for myelodysplastic syndrome. Clin Lymphoma Myeloma
Leuk. 17:753–758. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Stein EM, Fathi AT, DiNardo CD, Pollyea
DA, Roboz GJ, Collins R, Sekeres MA, Stone RM, Attar EC, Frattini
MG, et al: Enasidenib in patients with mutant IDH2 myelodysplastic
syndromes: A phase 1 subgroup analysis of the multicentre,
AG221-C-001 trial. Lancet Haematol. 7:e309–e319. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Greenberg P, Cox C, LeBeau MM, Fenaux P,
Morel P, Sanz G, Sanz M, Vallespi T, Hamblin T, Oscier D, et al:
International scoring system for evaluating prognosis in
myelodysplastic syndromes. Blood. 89:2079–2088. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Turkalp Z, Karamchandani J and Das S: IDH
mutation in glioma: New insights and promises for the future. JAMA
Neurol. 71:1319–1325. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li JJ, Li R, Wang W, Zhang B, Song X,
Zhang C, Gao Y, Liao Q, He Y, You S, et al: IDH2 is a novel
diagnostic and prognostic serum biomarker for non-small-cell lung
cancer. Mol Oncol. 12:602–610. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chiang S, Weigelt B, Wen HC, Pareja F,
Raghavendra A, Martelotto LG, Burke KA, Basili T, Li A, Geyer FC,
et al: IDH2 mutations define a unique subtype of breast cancer with
altered nuclear polarity. Cancer Res. 76:7118–7129. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Steinhilber J, Mederake M, Bonzheim I,
Serinsöz-Linke E, Müller I, Fallier-Becker P, Lemonnier F, Gaulard
P, Fend F and Quintanilla-Martinez L: The pathological features of
angioimmunoblastic T-cell lymphomas with IDH2R172 mutations. Mod
Pathol. 32:1123–1134. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhu GG, Nafa K, Agaram N, Zehir A, Benayed
R, Sadowska J, Borsu L, Kelly C, Tap WD, Fabbri N, et al: Genomic
profiling identifies association of IDH1/IDH2 mutation with longer
relapse-free and metastasis-free survival in high-grade
chondrosarcoma. Clin Cancer Res. 26:419–427. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Libera L, Ottini G, Sahnane N, Pettenon F,
Turri-Zanoni M, Lambertoni A, Chiaravalli AM, Leone F, Battaglia P,
Castelnuovo P, et al: Methylation drivers and prognostic
implications in sinonasal poorly differentiated carcinomas. Cancers
(Basel). 13:50302021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Miller JJ, Shih HA, Andronesi OC and
Cahill DP: Isocitrate dehydrogenase-mutant glioma: Evolving
clinical and therapeutic implications. Cancer. 123:4535–4546. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Qi S, Yu L, Li H, Ou Y, Qiu X, Ding Y, Han
H and Zhang X: Isocitrate dehydrogenase mutation is associated with
tumor location and magnetic resonance imaging characteristics in
astrocytic neoplasms. Oncol Lett. 7:1895–1902. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Picca A, Berzero G, Di Stefano AL and
Sanson M: The clinical use of IDH1 and IDH2 mutations in gliomas.
Expert Rev Mol Diagn. 18:1041–1051. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gusyatiner O and Hegi ME: Glioma
epigenetics: From subclassification to novel treatment options.
Semin Cancer Biol. 51:50–58. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ludwig N, Rao A, Sandlesh P, Yerneni SS,
Swain AD, Bullock KM, Hansen KM, Zhang X, Jaman E, Allen J, et al:
Characterization of systemic immunosuppression by IDH mutant glioma
small extracellular vesicles. Neuro Oncol. 24:197–209. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Phan K, Ng W, Lu VM, McDonald KL, Fairhall
J, Reddy R and Wilson P: Association between IDH1 and IDH2
mutations and preoperative seizures in patients with low-grade
versus high-grade glioma: A systematic review and meta-analysis.
World Neurosurg. 111:e539–e545. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen R, Ravindra VM, Cohen AL, Jensen RL,
Salzman KL, Prescot AP and Colman H: Molecular features assisting
in diagnosis, surgery, and treatment decision making in low-grade
gliomas. Neurosurg Focus. 38:E22015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Thirumal Kumar D, Jerushah Emerald L,
George Priya Doss C, Sneha P, Siva R, Charles Emmanuel Jebaraj W
and Zayed H: Computational approach to unravel the impact of
missense mutations of proteins (D2HGDH and IDH2) causing
D-2-hydroxyglutaric aciduria 2. Metab Brain Dis. 33:1699–1710.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kim H, Kim SH, Cha H, Kim SR, Lee JH and
Park JW: IDH2 deficiency promotes mitochondrial dysfunction and
dopaminergic neurotoxicity: Implications for Parkinson's disease.
Free Radic Res. 50:853–860. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li J, Lu J, He Y, Wu Y, Wu Y, Song X,
Jiang Y, Tang M, Weng X, Yi W, et al: A new functional IDH2 genetic
variant is associated with the risk of lung cancer. Mol Carcinog.
56:1082–1087. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li J, He Y, Tan Z, Lu J, Li L, Song X, Shi
F, Xie L, You S, Luo X, et al: Wild-type IDH2 promotes the Warburg
effect and tumor growth through HIF1α in lung cancer. Theranostics.
8:4050–4061. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Park JH, Ku HJ, Lee JH and Park JW: Idh2
deficiency exacerbates acrolein-induced lung injury through
mitochondrial redox environment deterioration. Oxid Med Cell
Longev. 2017:15951032017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Park JH, Ku HJ, Lee JH and Park JW:
Disruption of IDH2 attenuates lipopolysaccharide-induced
inflammation and lung injury in an α-ketoglutarate-dependent
manner. Biochem Biophys Res Commun. 503:798–802. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Holst JM, Enemark MB, Pedersen MB,
Lauridsen KL, Hybel TE, Clausen MR, Frederiksen H, Møller MB,
Nørgaard P, Plesner TL, et al: Proteomic profiling differentiates
lymphoma patients with and without concurrent myeloproliferative
neoplasia. Cancers (Basel). 13:55262021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lemonnier F, Cairns RA, Inoue S, Li WY,
Dupuy A, Broutin S, Martin N, Fataccioli V, Pelletier R, Wakeham A,
et al: The IDH2 R172K mutation associated with angioimmunoblastic
T-cell lymphoma produces 2HG in T cells and impacts lymphoid
development. Proc Natl Acad Sci USA. 113:15084–15089. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wang C, McKeithan TW, Gong Q, Zhang W,
Bouska A, Rosenwald A, Gascoyne RD, Wu X, Wang J, Muhammad Z, et
al: IDH2R172 mutations define a unique subgroup of patients with
angioimmunoblastic T-cell lymphoma. Blood. 126:1741–1752. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Churchill H, Naina H, Boriack R, Rakheja D
and Chen W: Discordant intracellular and plasma
D-2-hydroxyglutarate levels in a patient with IDH2 mutated
angioimmunoblastic T-cell lymphoma. Int J Clin Exp Pathol.
8:11753–11759. 2015.PubMed/NCBI
|
|
80
|
Dupuy A, Lemonnier F, Fataccioli V,
Martin-Garcia N, Robe C, Pelletier R, Poullot E, Moktefi A,
Mokhtari K, Rousselet MC, et al: Multiple ways to detect IDH2
mutations in angioimmunoblastic T-cell lymphoma from
immunohistochemistry to next-generation sequencing. J Mol Diagn.
20:677–685. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ye Y, Ding N, Mi L, Shi Y, Liu W, Song Y,
Shu S and Zhu J: Correlation of mutational landscape and survival
outcome of peripheral T-cell lymphomas. Exp Hematol Oncol.
10:92021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Pareja F, da Silva EM, Frosina D, Geyer
FC, Lozada JR, Basili T, Da Cruz Paula A, Zhong E, Derakhshan F,
D'Alfonso T, et al: Immunohistochemical analysis of IDH2 R172
hotspot mutations in breast papillary neoplasms: Applications in
the diagnosis of tall cell carcinoma with reverse polarity. Mod
Pathol. 33:1056–1064. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Aljohani AI, Toss MS, Kurozumi S, Joseph
C, Aleskandarany MA, Miligy IM, Ansari RE, Mongan NP, Ellis IO,
Green AR and Rakha EA: The prognostic significance of wild-type
isocitrate dehydrogenase 2 (IDH2) in breast cancer. Breast Cancer
Res Treat. 179:79–90. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang Y, Agarwal E, Bertolini I, Ghosh JC,
Seo JH and Altieri DC: IDH2 reprograms mitochondrial dynamics in
cancer through a HIF-1α-regulated pseudohypoxic state. FASEB J.
33:13398–13411. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Jo VY, Chau NG, Hornick JL, Krane JF and
Sholl LM: Recurrent IDH2 R172X mutations in sinonasal
undifferentiated carcinoma. Mod Pathol. 30:650–659. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Dogan S, Chute DJ, Xu B, Ptashkin RN,
Chandramohan R, Casanova-Murphy J, Nafa K, Bishop JA, Chiosea SI,
Stelow EB, et al: Frequent IDH2 R172 mutations in undifferentiated
and poorly-differentiated sinonasal carcinomas. J Pathol.
242:400–408. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Riobello C, López-Hernández A, Cabal VN,
García-Marín R, Suárez-Fernández L, Sánchez-Fernández P, Vivanco B,
Blanco V, López F, Franchi A, et al: IDH2 mutation analysis in
undifferentiated and poorly differentiated sinonasal carcinomas for
diagnosis and clinical management. Am J Surg Pathol. 44:396–405.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kim YR, Kim KH, Lee S, Oh SK, Park JW, Lee
KY, Baek JI and Kim UK: Expression patterns of members of the
isocitrate dehydrogenase gene family in murine inner ear. Biotech
Histochem. 92:536–544. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
White K, Kim MJ, Han C, Park HJ, Ding D,
Boyd K, Walker L, Linser P, Meneses Z, Slade C, et al: Loss of IDH2
accelerates age-related hearing loss in male mice. Sci Rep.
8:50392018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ku HJ, Park JH, Kim SH and Park JW:
Isocitrate dehydrogenase 2 deficiency exacerbates dermis damage by
ultraviolet-B via ΔNp63 downregulation. Biochim Biophys Acta Mol
Basis Dis. 1864:1138–1147. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kim SH and Park JW: IDH2 deficiency
impairs cutaneous wound healing via ROS-dependent apoptosis.
Biochim Biophys Acta Mol Basis Dis. 1865:1655232019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lian CG, Xu Y, Ceol C, Wu F, Larson A,
Dresser K, Xu W, Tan L, Hu Y, Zhan Q, et al: Loss of
5-hydroxymethylcytosine is an epigenetic hallmark of melanoma.
Cell. 150:1135–1146. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lv Q, Xing S, Li Z, Li J, Gong P, Xu X,
Chang L, Jin X, Gao F, Li W, et al: Altered expression levels of
IDH2 are involved in the development of colon cancer. Exp Ther Med.
4:801–806. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Teicher BA, Linehan WM and Helman LJ:
Targeting cancer metabolism. Clin Cancer Res. 18:5537–5545. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Park JH, Ku HJ, Lee JH and Park JW: IDH2
deficiency accelerates skin pigmentation in mice via enhancing
melanogenesis. Redox Biol. 17:16–24. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Liu Z, Gan L, Zhang T, Ren Q and Sun C:
Melatonin alleviates adipose inflammation through elevating
α-ketoglutarate and diverting adipose-derived exosomes to
macrophages in mice. J Pineal Res. 64:e124552018. View Article : Google Scholar
|
|
97
|
Gong F, Gao L and Ding T: IDH2 protects
against nonalcoholic steatohepatitis by alleviating dyslipidemia
regulated by oxidative stress. Biochem Biophys Res Commun.
514:593–600. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Chen X, Zhuo S, Xu W, Chen X, Huang D, Sun
X and Cheng Y: Isocitrate dehydrogenase 2 contributes to radiation
resistance of oesophageal squamous cell carcinoma via regulating
mitochondrial function and ROS/pAKT signalling. Br J Cancer.
123:126–136. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lee SJ, Cha H, Lee S, Kim H, Ku HJ, Kim
SH, Park JH, Lee JH, Park KM and Park JW: Idh2 deficiency
accelerates renal dysfunction in aged mice. Biochem Biophys Res
Commun. 493:34–39. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Lee SH, Jo SH, Lee SM, Koh HJ, Song H,
Park JW, Lee WH and Huh TL: Role of NADP+-dependent isocitrate
dehydrogenase (NADP+-ICDH) on cellular defence against oxidative
injury by gamma-rays. Int J Radiat Biol. 80:635–642. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lee JH, Go Y, Kim DY, Lee SH, Kim OH, Jeon
YH, Kwon TK, Bae JH, Song DK, Rhyu IJ, et al: Isocitrate
dehydrogenase 2 protects mice from high-fat diet-induced metabolic
stress by limiting oxidative damage to the mitochondria from brown
adipose tissue. Exp Mol Med. 52:238–252. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Lee JH, Kim SY, Kil IS and Park JW:
Regulation of ionizing radiation-induced apoptosis by mitochondrial
NADP+-dependent isocitrate dehydrogenase. J Biol Chem.
282:13385–13394. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Kim SY, Yoo YH and Park JW: Silencing of
mitochondrial NADP(+)-dependent isocitrate dehydrogenase gene
enhances glioma radiosensitivity. Biochem Biophys Res Commun.
433:260–265. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Li S, Chou AP, Chen W, Chen R, Deng Y,
Phillips HS, Selfridge J, Zurayk M, Lou JJ, Everson RG, et al:
Overexpression of isocitrate dehydrogenase mutant proteins renders
glioma cells more sensitive to radiation. Neuro Oncol. 15:57–68.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
van den Bent MJ, Dubbink HJ, Marie Y,
Brandes AA, Taphoorn MJ, Wesseling P, Frenay M, Tijssen CC, Lacombe
D, Idbaih A, et al: IDH1 and IDH2 mutations are prognostic but not
predictive for outcome in anaplastic oligodendroglial tumors: A
report of the European organization for research and treatment of
cancer brain tumor group. Clin Cancer Res. 16:1597–1604. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bleeker FE, Atai NA, Lamba S, Jonker A,
Rijkeboer D, Bosch KS, Tigchelaar W, Troost D, Vandertop WP,
Bardelli A and Van Noorden CJ: The prognostic IDH1 (R132) mutation
is associated with reduced NADP+-dependent IDH activity in
glioblastoma. Acta Neuropathol. 119:487–494. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Cho HJ, Cho HY, Park JW, Kwon OS, Lee HS,
Huh TL and Kang BS: NADP+-dependent cytosolic isocitrate
dehydrogenase provides NADPH in the presence of cadmium due to the
moderate chelating effect of glutathione. J Biol Inorg Chem.
23:849–860. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhao CB, Shi L, Pu HH and Zhang QY: The
promoting effect of radiation on glucose metabolism in breast
cancer cells under the treatment of cobalt chloride. Pathol Oncol
Res. 23:47–53. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Oliveira P, Barboza LGA, Branco V,
Figueiredo N, Carvalho C and Guilhermino L: Effects of
microplastics and mercury in the freshwater bivalve corbicula
fluminea (Müller, 1774): Filtration rate, biochemical biomarkers
and mercury bioconcentration. Ecotoxicol Environ Saf. 164:155–163.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Kil IS, Shin SW, Yeo HS, Lee YS and Park
JW: Mitochondrial NADP+-dependent isocitrate dehydrogenase protects
cadmium-induced apoptosis. Mol Pharmacol. 70:1053–1061. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Li C, Xu Y, Li L, Yang X and Wang Y: Acid
stress induces cross-protection for cadmium tolerance of
multi-stress-tolerant Pichia kudriavzevii by regulating
cadmium transport and antioxidant defense system. J Hazard Mater.
366:151–159. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
da Silva Fonseca J, de Barros Marangoni
LF, Marques JA and Bianchini A: Energy metabolism enzymes
inhibition by the combined effects of increasing temperature and
copper exposure in the coral mussismilia harttii. Chemosphere.
236:1244202019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Pan JH, Kim HS, Beane KE, Montalbano AM,
Lee JH, Kim YJ, Kim JH, Kong BC, Kim S, Park JW, et al: IDH2
deficiency aggravates fructose-induced NAFLD by modulating hepatic
fatty acid metabolism and activating inflammatory signaling in
female mice. Nutrients. 10:6792018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chae U, Park JW, Lee SR, Lee HJ, Lee HS
and Lee DS: Reactive oxygen species-mediated senescence is
accelerated by inhibiting Cdk2 in Idh2-deficient conditions. Aging
(Albany NY). 11:7242–7256. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Xu Y, Liu L, Nakamura A, Someya S,
Miyakawa T and Tanokura M: Studies on the regulatory mechanism of
isocitrate dehydrogenase 2 using acetylation mimics. Sci Rep.
7:97852017. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Yu W, Dittenhafer-Reed KE and Denu JM:
SIRT3 protein deacetylates isocitrate dehydrogenase 2 (IDH2) and
regulates mitochondrial redox status. J Biol Chem. 287:14078–14086.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zou X, Zhu Y, Park SH, Liu G, O'Brien J,
Jiang H and Gius D: SIRT3-mediated dimerization of IDH2 directs
cancer cell metabolism and tumor growth. Cancer Res. 77:3990–3999.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Smolková K, Špačková J, Gotvaldová K,
Dvořák A, Křenková A, Hubálek M, Holendová B, Vítek L and Ježek P:
SIRT3 and GCN5L regulation of NADP+- and NADPH-driven reactions of
mitochondrial isocitrate dehydrogenase IDH2. Sci Rep. 10:86772020.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wang T, Zhang F, Peng W, Wang L, Zhang J,
Dong W, Tian X, Ye C, Li Y and Gong Y: Overexpression of NMNAT3
improves mitochondrial function and enhances antioxidative stress
capacity of bone marrow mesenchymal stem cells via the NAD+-Sirt3
pathway. Biosci Rep. 42:BSR202110052022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Yu Y, Chen Y, Liu K, Cheng J and Tu J:
SUMOylation enhances the activity of IDH2 under oxidative stress.
Biochem Biophys Res Commun. 532:591–597. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Ogawara Y, Katsumoto T, Aikawa Y, Shima Y,
Kagiyama Y, Soga T, Matsunaga H, Seki T, Araki K and Kitabayashi I:
IDH2 and NPM1 mutations cooperate to activate Hoxa9/Meis1 and
hypoxia pathways in acute myeloid Leukemia. Cancer Res.
75:2005–2016. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Leonardi R, Subramanian C, Jackowski S and
Rock CO: Cancer-associated isocitrate dehydrogenase mutations
inactivate NADPH-dependent reductive carboxylation. J Biol Chem.
287:14615–14620. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Kim H, Lee JH and Park JW: Down-regulation
of IDH2 sensitizes cancer cells to erastin-induced ferroptosis.
Biochem Biophys Res Commun. 525:366–371. 2020. View Article : Google Scholar : PubMed/NCBI
|