Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
September-2022 Volume 24 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2022 Volume 24 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Field exposure to 50 Hz significantly affects wild‑type and unfolded p53 expression in NB69 neuroblastoma cells

  • Authors:
    • María Antonia Martínez
    • Alejandro Úbeda
    • Javier Martínez-Botas
    • María Ángeles Trillo
  • View Affiliations / Copyright

    Affiliations: Bioelectromagnetics Service, Department of Research, Ramón y Cajal University Hospital, Ramón Y Cajal Institute of Health Research, 28034 Madrid, Spain, Biochemistry Service, Department of Research, Ramón y Cajal University Hospital, Ramón Y Cajal Institute of Health Research, 28034 Madrid, Spain, Bioelectromagnetics Service, Department of Research, Ramón y Cajal University Hospital, Ramón Y Cajal Institute of Health Research, 28034 Madrid, Spain
    Copyright: © Martínez et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 295
    |
    Published online on: July 5, 2022
       https://doi.org/10.3892/ol.2022.13415
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Previous studies have shown that intermittent exposure to a 50 Hz, 100 µT sinusoidal magnetic field (MF) promotes proliferation of human neuroblastoma cells, NB69. This effect is mediated by activation of the epidermal growth factor receptor through a free radical‑dependent activation of the p38 pathway. The present study investigated the possibility that the oxidative stress‑sensitive protein p53 is a potential target of the MF, and that field exposure can affect the protein expression. To that end, NB69 cells were exposed to short intervals of 30 to 120 min to the aforementioned MF parameters. Two specific anti‑p53 antibodies that allow discrimination between the wild and unfolded forms of p53 were used to study the expression and cellular distribution of both isoforms of the protein. The expression of the antiapoptotic protein Bcl‑2, whose regulation is mediated by p53, was also analyzed. The obtained results revealed that MF exposure induced increases in p53 gene expression and in protein expression of the wild‑type form of p53. Field exposure also caused overexpression of the unfolded form of p53, together with changes in the nuclear/cytoplasmic distribution of both forms of the protein. The expression of protein Bcl‑2 was also significantly increased in response to the MF. As a whole, these results indicated that the MF is capable of interacting with the function, distribution and conformation of protein p53. Such interactions could be involved in previously reported MF effects on NB69 proliferation promotion.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Kheifets L, Ahlbom A, Crespi CM, Draper G, Hagihara J, Lowenthal RM, Mezei G, Oksuzyan S, Schüz J, Swanson J, et al: Pooled analysis of recent studies on magnetic fields and childhood leukaemia. Br J Cancer. 103:1128–1135. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Saito T, Nitta H, Kubo O, Yamamoto S, Yamaguchi N, Akiba S, Honda Y, Hagihara J, Isaka K, Ojima T, et al: Power-frequency magnetic fields and childhood brain tumors: A case-control study in Japan. J Epidemiol. 20:54–61. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Teepen JC and van Dijck JA: Impact of high electromagnetic field levels on childhood leukemia incidence. Int J Cancer. 131:769–778. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Koeman T, Slottje P, Schouten LJ, Peters S, Huss A, Veldink JH, Kromhout H, van den Brandt PA and Vermeulen R: Occupational exposure and amyotrophic lateral sclerosis in a prospective cohort. Occup Environ Med. 74:578–585. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Zhou H, Chen G, Chen C, Yu Y and Xu Z: Association between extremely low-frequency electromagnetic fields occupations and amyotrophic lateral sclerosis: A meta-analysis. PLoS One. 7:e483542012. View Article : Google Scholar : PubMed/NCBI

6 

Bunch KJ, Keegan TJ, Swanson J, Vincent TJ and Murphy MFG: Residential distance at birth from overhead high-voltage powerlines: Childhood cancer risk in Britain 1962-2008. Br J Cancer. 110:1402–1408. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Turner MC, Benke G, Bowman JD, Figuerola J, Fleming S, Hours M, Kincl L, Krewski D, McLean D, Parent ME, et al: Occupational exposure to extremely low-frequency magnetic fields and brain tumor risks in the INTEROCC study. Cancer Epidemiol Biomarkers Prev. 23:1863–1872. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Carpenter DO: Extremely low frequency electromagnetic fields and cancer: How source of funding affects results. Environ Res. 178:1086882019. View Article : Google Scholar : PubMed/NCBI

9 

International Agency for Research of Cancer (IARC), . IARC monograph on the evaluation of carcinogenic risks to humans. Vol 80. Non-Ionizing Radiation, Part 1, Static and Extremely Low Frequency (ELF) Electric and Magnetic Fields. IARC Press; Lyon: 2002, PubMed/NCBI

10 

Santini MT, Rainaldi G and Indovina PL: Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int J Radiat Biol. 85:294–313. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Saliev T, Begimbetova D, Masoud AR and Matkarimov B: Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. Prog Biophys Mol Biol. 141:25–36. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Adair RK: Extremely low frequency electromagnetic fields do not interact directly with DNA. Bioelectromagnetics. 19:136–138. 1998. View Article : Google Scholar : PubMed/NCBI

13 

Focke F, Schuermann D, Kuster N and Schär P: DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutat Res. 683:74–83. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Rageh MM, El-Gebaly RH and El-Bialy NS: Assessment of genotoxic and cytotoxic hazards in brain and bone marrow cells of newborn rats exposed to extremely low-frequency magnetic field. J Biomed Biotechnol. 2012:7160232012. View Article : Google Scholar : PubMed/NCBI

15 

Luukkonen J, Liimatainen A, Juutilainen J and Naarala J: Induction of genomic instability, oxidative processes, and mitochondrial activity by 50 Hz magnetic fields in human SH-SY5Y neuroblastoma cells. Mutat Res. 760:33–41. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Yang Y, Jin X, Yan C, Tian Y, Tang J and Shen X: Case-only study of interactions between DNA repair genes (hMLH1, APEX1, MGMT, XRCC1 and XPD) and low-frequency electromagnetic fields in childhood acute leukemia. Leuk Lymphoma. 49:2344–2350. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Porath D, Bezryadin A, de Vries S and Dekker C: Direct measurement of electrical transport through DNA molecules. Nature. 403:635–638. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Wan C, Fiebig T, Kelley SO, Treadway CR, Barton JK and Zewail AH: Femtosecond dynamics of DNA-mediated electron transfer. Proc Natl Acad Sci USA. 96:6014–6019. 1999. View Article : Google Scholar : PubMed/NCBI

19 

Giese B: Electron transfer through DNA and peptides. Bioorg Med Chem. 14:6139–6143. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Blank M and Goodman R: DNA is a fractal antenna in electromagnetic fields. Int J Radiat Biol. 87:409–415. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Kastenhuber ER and Lowe SW: Putting p53 in context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Pitolli C, Wang Y, Mancini M, Shi Y, Melino G and Amelio I: Do mutations turn p53 into an oncogene? Int J Mol Sci. 20:62412019. View Article : Google Scholar : PubMed/NCBI

23 

Lane DP: Cancer. p53, guardian of the genome. Nature. 358:15–16. 1992. View Article : Google Scholar : PubMed/NCBI

24 

Levine AJ: p53, the cellular gatekeeper for growth and division. Cell. 88:323–331. 1997. View Article : Google Scholar : PubMed/NCBI

25 

Williams AB and Schumacher B: p53 in the DNA-damage-repair process. Cold Spring Harb Perspect Med. 6:a0260702016. View Article : Google Scholar : PubMed/NCBI

26 

Lane DP: p53 and human cancers. Br Med Bull. 50:582–599. 1994. View Article : Google Scholar : PubMed/NCBI

27 

Vieler M and Sanyal S: p53 isoforms and their implications in cancer. Cancers (Basel). 10:2882018. View Article : Google Scholar : PubMed/NCBI

28 

Webley K, Bond JA, Jones CJ, Blaydes JP, Craig A, Hupp T and Wynford-Thomas D: Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol Cell Biol. 20:2803–2808. 2000. View Article : Google Scholar : PubMed/NCBI

29 

Ishimaru D, Maia LF, Maiolino LM, Quesado PA, Lopez PC, Almeida FC, Valente AP and Silva JL: Conversion of wild-type p53 core domain into a conformation that mimics a hot-spot mutant. J Mol Biol. 333:443–451. 2003. View Article : Google Scholar : PubMed/NCBI

30 

de Oliveira GAP, Petronilho EC, Pedrote MM, Marques MA, Vieira TCRG, Cino EA and Silva JL: The status of p53 oligomeric and aggregation states in cancer. Biomolecules. 10:5482020. View Article : Google Scholar : PubMed/NCBI

31 

Ostermeyer AG, Runko E, Winkfield B, Ahn B and Moll UM: Cytoplasmically sequestered wild-type p53 protein in neuroblastoma is relocated to the nucleus by a C-terminal peptide. Proc Natl Acad Sci USA. 93:15190–15194. 1996. View Article : Google Scholar : PubMed/NCBI

32 

Wolff A, Technau A, Ihling C, Technau-Ihling K, Erber R, Bosch FX and Brandner G: Evidence that wild-type p53 in neuroblastoma cells is in a conformation refractory to integration into the transcriptional complex. Oncogene. 20:1307–1317. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Riley T, Sontag E, Chen P and Levine A: Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 9:402–412. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Green DR and Kroemer G: Cytoplasmic functions of the tumour suppressor p53. Nature. 458:1127–1130. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Zhou X, Hao Q and Lu H: Mutant p53 in cancer therapy-the barrier or the path. J Mol Cell Biol. 11:293–305. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Tomita Y, Marchenko N, Erster S, Nemajerova A, Dehner A, Klein C, Pan H, Kessler H, Pancoska P and Moll UM: WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem. 281:8600–8606. 2006. View Article : Google Scholar : PubMed/NCBI

37 

De S, Campbell C, Venkitaraman AR and Esposito A: Pulsatile MAPK signaling modulates p53 activity to control cell fate decisions at the G2 checkpoint for DNA damage. Cell Rep. 30:2083–2093.e5. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Martínez MA, Úbeda A, Moreno J and Trillo MÁ: Power frequency magnetic fields affect the p38 MAPK-mediated regulation of NB69 cell proliferation implication of free radicals. Int J Mol Sci. 17:5102016. View Article : Google Scholar : PubMed/NCBI

39 

Martínez MA, Úbeda A and Trillo MÁ: Involvement of the EGF receptor in MAPK signaling activation by a 50 Hz magnetic field in human neuroblastoma cells. Cell Physiol Biochem. 52:893–907. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Martínez MA, Úbeda A and Trillo MÁ: Role of NADPH oxidase in MAPK signaling activation by a 50 Hz magnetic field in human neuroblastoma cells. Electromagn Biol Med. 40:103–116. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Bartek J, Iggo R, Gannon J and Lane DP: Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene. 5:893–899. 1990.PubMed/NCBI

42 

Méplan C, Richard MJ and Hainaut P: Metalloregulation of the tumor suppressor protein p53: Zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene. 19:5227–5236. 2000. View Article : Google Scholar : PubMed/NCBI

43 

Sabapathy K and Lane DP: Understanding p53 functions through p53 antibodies. J Mol Cell Biol. 11:317–329. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Trillo MA, Martínez MA, Cid MA, Leal J and Úbeda A: Influence of a 50 Hz magnetic field and of all-trans-retinol on the proliferation of human cancer cell lines. Int J Oncol. 40:1405–1413. 2012.PubMed/NCBI

45 

Martínez MA, Úbeda A, Cid MA and Trillo MÁ: The proliferative response of NB69 human neuroblastoma cells to a 50 Hz magnetic field is mediated by ERK1/2 signaling. Cell Physiol Biochem. 29:675–686. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e452001. View Article : Google Scholar : PubMed/NCBI

47 

Milner J, Cook A and Sheldon M: A new anti-p53 monoclonal antibody, previously reported to be directed against the large T antigen of simian virus 40. Oncogene. 1:453–455. 1987.PubMed/NCBI

48 

Gannon JV, Greaves R, Iggo R and Lane DP: Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 9:1595–1602. 1990. View Article : Google Scholar : PubMed/NCBI

49 

Nagata Y, Anan T, Yoshida T, Mizukami T, Taya Y, Fujiwara T, Kato H, Saya H and Nakao M: The stabilization mechanism of mutant-type p53 by impaired ubiquitination: The loss of wild-type p53 function and the hsp90 association. Oncogene. 18:6037–6049. 1999. View Article : Google Scholar : PubMed/NCBI

50 

Milner J: Flexibility: The key to p53 function? Trends Biochem Sci. 20:49–51. 1995. View Article : Google Scholar : PubMed/NCBI

51 

Stephen CW and Lane DP: Mutant conformation of p53. Precise epitope mapping using a filamentous phage epitope library. J Mol Biol. 225:577–583. 1992. View Article : Google Scholar : PubMed/NCBI

52 

Trillo MÁ, Martínez MA, Cid MA and Úbeda A: Retinoic acid inhibits the cytoproliferative response to weak 50-Hz magnetic fields in neuroblastoma cells. Oncol Rep. 29:885–894. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Ko LJ and Prives C: p53: Puzzle and paradigm. Genes Dev. 10:1054–1072. 1996. View Article : Google Scholar : PubMed/NCBI

54 

Chen S, Gao R, Yao C, Kobayashi M, Liu SZ, Yoder MC, Broxmeyer H, Kapur R, Boswell HS, Mayo LD and Liu Y: Genotoxic stresses promote clonal expansion of hematopoietic stem cells expressing mutant p53. Leukemia. 32:850–854. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Baharara J, Hosseini N and Farzin TR: Extremely low frequency electromagnetic field sensitizes cisplatin-resistant human ovarian adenocarcinoma cells via P53 activation. Cytotechnology. 68:1403–1413. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Tian F, Nakahara T, Yoshida M, Honda N, Hirose H and Miyakoshi J: Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient xrs5 cells. Biochem Biophys Res Commun. 292:355–361. 2002. View Article : Google Scholar : PubMed/NCBI

57 

Wang Y, Liu X, Zhang Y, Wan B, Zhang J, He W, Hu D, Yang Y, Lai J, He M and Chen C: Exposure to a 50 Hz magnetic field at 100 µT exerts no DNA damage in cardiomyocytes. Biol Open. 8:bio0412932019. View Article : Google Scholar : PubMed/NCBI

58 

Kesari KK, Juutilainen J, Luukkonen J and Naarala J: Induction of micronuclei and superoxide production in neuroblastoma and glioma cell lines exposed to weak 50 Hz magnetic fields. J R Soc Interface. Jan 1–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

59 

Falone S, Santini S Jr, Cordone V, Di Emidio G, Tatone C, Cacchio M and Amicarelli F: Extremely low-frequency magnetic fields and redox-responsive pathways linked to cancer drug resistance: Insights from co-exposure-based in vitro studies. Front Public Health. 6:332018. View Article : Google Scholar : PubMed/NCBI

60 

Harris CC and Hollstein M: Clinical implications of the p53 tumor-suppressor gene. N Engl J Med. 329:1318–1327. 1993. View Article : Google Scholar : PubMed/NCBI

61 

Vijayakumaran R, Tan KH, Miranda PJ, Haupt S and Haupt Y: Regulation of mutant p53 protein expression. Front Oncol. 5:2842015. View Article : Google Scholar : PubMed/NCBI

62 

Chen L, Malcolm AJ, Wood KM, Cole M, Variend S, Cullinane C, Pearson AD, Lunec J and Tweddle DA: p53 is nuclear and functional in both undifferentiated and differentiated neuroblastoma. Cell Cycle. 6:2685–2696. 2007. View Article : Google Scholar : PubMed/NCBI

63 

Sasaki M, Nie L and Maki CG: MDM2 binding induces a conformational change in p53 that is opposed by heat-shock protein 90 and precedes p53 proteasomal degradation. J Biol Chem. 282:14626–14634. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Milner J and Watson JV: Addition of fresh medium induces cell cycle and conformation changes in p53, a tumour suppressor protein. Oncogene. 5:1683–1690. 1990.PubMed/NCBI

65 

Milner J and Medcalf EA: Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell. 65:765–774. 1991. View Article : Google Scholar : PubMed/NCBI

66 

Do PM, Varanasi L, Fan S, Li C, Kubacka I, Newman V, Chauhan K, Daniels SR, Boccetta M, Garrett MR, et al: Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev. 26:830–845. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Schmidt V, Nagar R and Martinez LA: Control of nucleotide metabolism enables mutant p53′s oncogenic gain-of-function activity. Int J Mol Sci. 18:27592017. View Article : Google Scholar : PubMed/NCBI

68 

Lai H: Exposure to static and extremely-low frequency electromagnetic fields and cellular free radicals. Electromagn Biol Med. 38:231–248. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Fuchs SY, Adler V, Pincus MR and Ronai Z: MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci USA. 95:10541–10546. 1998. View Article : Google Scholar : PubMed/NCBI

70 

Buschmann T, Potapova O, Bar-Shira A, Ivanov VN, Fuchs SY, Henderson S, Fried VA, Minamoto T, Alarcon-Vargas D, Pincus MR, et al: Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol. 21:2743–2754. 2001. View Article : Google Scholar : PubMed/NCBI

71 

Ding GR, Nakahara T, Tian FR, Guo Y and Miyakoshi J: Transient suppression of X-ray-induced apoptosis by exposure to power frequency magnetic fields in MCF-7 cells. Biochem Biophys Res Commun. 286:953–957. 2001. View Article : Google Scholar : PubMed/NCBI

72 

Nakahara T, Yaguchi H, Yoshida M and Miyakoshi J: Effects of exposure of CHO-K1 cells to a 10-T static magnetic field. Radiology. 224:817–822. 2002. View Article : Google Scholar : PubMed/NCBI

73 

Brisdelli F, Bennato F, Bozzi A, Cinque B, Mancini F and Iorio R: ELF-MF attenuates quercetin-induced apoptosis in K562 cells through modulating the expression of Bcl-2 family proteins. Mol Cell Biochem. 397:33–43. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Martínez MA, Úbeda A, Martínez-Botas J and Trillo MÁ: Field exposure to 50 Hz significantly affects wild‑type and unfolded p53 expression in NB69 neuroblastoma cells. Oncol Lett 24: 295, 2022.
APA
Martínez, M.A., Úbeda, A., Martínez-Botas, J., & Trillo, M.Á. (2022). Field exposure to 50 Hz significantly affects wild‑type and unfolded p53 expression in NB69 neuroblastoma cells. Oncology Letters, 24, 295. https://doi.org/10.3892/ol.2022.13415
MLA
Martínez, M. A., Úbeda, A., Martínez-Botas, J., Trillo, M. Á."Field exposure to 50 Hz significantly affects wild‑type and unfolded p53 expression in NB69 neuroblastoma cells". Oncology Letters 24.3 (2022): 295.
Chicago
Martínez, M. A., Úbeda, A., Martínez-Botas, J., Trillo, M. Á."Field exposure to 50 Hz significantly affects wild‑type and unfolded p53 expression in NB69 neuroblastoma cells". Oncology Letters 24, no. 3 (2022): 295. https://doi.org/10.3892/ol.2022.13415
Copy and paste a formatted citation
x
Spandidos Publications style
Martínez MA, Úbeda A, Martínez-Botas J and Trillo MÁ: Field exposure to 50 Hz significantly affects wild‑type and unfolded p53 expression in NB69 neuroblastoma cells. Oncol Lett 24: 295, 2022.
APA
Martínez, M.A., Úbeda, A., Martínez-Botas, J., & Trillo, M.Á. (2022). Field exposure to 50 Hz significantly affects wild‑type and unfolded p53 expression in NB69 neuroblastoma cells. Oncology Letters, 24, 295. https://doi.org/10.3892/ol.2022.13415
MLA
Martínez, M. A., Úbeda, A., Martínez-Botas, J., Trillo, M. Á."Field exposure to 50 Hz significantly affects wild‑type and unfolded p53 expression in NB69 neuroblastoma cells". Oncology Letters 24.3 (2022): 295.
Chicago
Martínez, M. A., Úbeda, A., Martínez-Botas, J., Trillo, M. Á."Field exposure to 50 Hz significantly affects wild‑type and unfolded p53 expression in NB69 neuroblastoma cells". Oncology Letters 24, no. 3 (2022): 295. https://doi.org/10.3892/ol.2022.13415
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team