Open Access

Isolinderalactone inhibits glioblastoma cell supernatant‑induced angiogenesis

  • Authors:
    • Seo-Yeon Lee
    • Jung Hwa Park
    • Kang-Hyun Cho
    • Huiseon Kim
    • Hwa Kyoung Shin
  • View Affiliations

  • Published online on: August 2, 2022     https://doi.org/10.3892/ol.2022.13448
  • Article Number: 328
  • Copyright: © Lee et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glioblastoma multiforme (GBM) is the most frequently occurring malignant brain tumor in adults and is characterized by a high degree of vascularization. Glioblastoma cells communicate with their microenvironment and stimulate blood vessel formation to support tumor progression. It has previously been reported that isolinderalactone induces apoptosis in GBM cells and suppresses the growth of glioblastoma xenograft tumors in vivo. Furthermore, isolinderalactone has been shown to inhibit the hypoxia‑driven upregulation of vascular endothelial growth factor (VEGF) in U‑87 GBM cells and strongly reduce VEGF‑triggered angiogenesis in vitro and in vivo. In the present study, the direct angiogenic effect of GBM and the effect of isolinderalactone on tumor angiogenesis were investigated. Culture supernatants were obtained from U‑87 cells under normoxic or hypoxic conditions to provide normoxic conditioned medium (NCM) and hypoxic conditioned medium (HCM) respectively. The NCM and HCM were each used to treat to human brain microvascular endothelial cells (HBMECs), and their effects were observed using wounding migration and tube formation assays. HCM increased the migration and capillary‑like tube formation of HBMECs when compared with NCM, and treatment with isolinderalactone suppressed the HCM‑driven angiogenesis in vitro. Additionally, isolinderalactone decreased HCM‑triggered angiogenic sprouting in HBMECs in a 3D microfluidic device after the application of an HCM‑containing interstitial fluid flow. Furthermore, isolinderalactone strongly reduced HCM‑triggered angiogenesis in an in vivo Matrigel plug assay in mice. These findings provide evidence of angiogenesis inhibition by isolinderalactone, and demonstrate the anti-angiogenic effect of isolinderalactone against the direct angiogenic effect of GBM tumor cells.
View Figures
View References

Related Articles

Journal Cover

October-2022
Volume 24 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Lee S, Park JH, Cho K, Kim H and Shin H: Isolinderalactone inhibits glioblastoma cell supernatant‑induced angiogenesis. Oncol Lett 24: 328, 2022
APA
Lee, S., Park, J.H., Cho, K., Kim, H., & Shin, H. (2022). Isolinderalactone inhibits glioblastoma cell supernatant‑induced angiogenesis. Oncology Letters, 24, 328. https://doi.org/10.3892/ol.2022.13448
MLA
Lee, S., Park, J. H., Cho, K., Kim, H., Shin, H."Isolinderalactone inhibits glioblastoma cell supernatant‑induced angiogenesis". Oncology Letters 24.4 (2022): 328.
Chicago
Lee, S., Park, J. H., Cho, K., Kim, H., Shin, H."Isolinderalactone inhibits glioblastoma cell supernatant‑induced angiogenesis". Oncology Letters 24, no. 4 (2022): 328. https://doi.org/10.3892/ol.2022.13448