Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
December-2022 Volume 24 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 24 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Insight into the physiological and pathological roles of USP44, a potential tumor target (Review)

  • Authors:
    • Yuming Lou
    • Minfeng Ye
    • Chaoyang Xu
    • Feng Tao
  • View Affiliations / Copyright

    Affiliations: Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China, Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China, Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
    Copyright: © Lou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 455
    |
    Published online on: November 1, 2022
       https://doi.org/10.3892/ol.2022.13575
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ubiquitin‑specific peptidase 44 (USP44) is a member of the ubiquitin‑specific proteases (USPs) family and its functions in various biological processes have been gradually elucidated in recent years. USP44 targets multiple downstream factors and regulates multiple mechanisms through its deubiquitination activity. Ubiquitination is, in essence, a process in which a single ubiquitin molecule or a multiubiquitin chain binds to a substrate protein to form an isopeptide bond. Deubiquitination is the catalyzing of the isopeptide bonds between ubiquitin and substrate proteins through deubiquitylating enzymes. These two processes serve an important role in the regulation of the expression, conformation, localization and function of substrate proteins by regulating their binding to ubiquitin. Based on existing research, this paper summarized the current state of knowledge about USP44. The physiological roles of USP44 in various cellular events and its pathophysiological roles in different cancer types are evaluated and the therapeutic potential of USP44 for cancer treatment is evaluated.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D and Goldberg AL: Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 78:761–771. 1994. View Article : Google Scholar : PubMed/NCBI

2 

Kwon YT and Ciechanover A: The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem Sci. 42:873–886. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Dikic I: Proteasomal and autophagic degradation systems. Annu Rev Biochem. 86:193–224. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Ronai ZA: Monoubiquitination in proteasomal degradation. Proc Natl Acad Sci USA. 113:8894–8896. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Martinez-Fonts K, Davis C, Tomita T, Elsasser S, Nager AR, Shi Y, Finley D and Matouschek A: The proteasome 19S cap and its ubiquitin receptors provide a versatile recognition platform for substrates. Nat Commun. 11:4772020. View Article : Google Scholar : PubMed/NCBI

6 

Varshavsky A: The ubiquitin system, an immense realm. Annu Rev Biochem. 81:167–176. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Husnjak K and Dikic I: Ubiquitin-binding proteins: Decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem. 81:291–322. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Yau R and Rape M: The increasing complexity of the ubiquitin code. Nat Cell Biol. 18:579–586. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Swatek KN and Komander D: Ubiquitin modifications. Cell Res. 26:399–422. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Mevissen TET and Komander D: Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem. 86:159–192. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Komander D and Rape M: The ubiquitin code. Annu Rev Biochem. 81:203–229. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, et al: Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell. 44:325–340. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Morreale FE and Walden H: Types of ubiquitin ligases. Cell. 165:248–248.e1. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Heride C, Urbé S and Clague MJ: Ubiquitin code assembly and disassembly. Curr Biol. 24:R215–R220. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Quesada V, Díaz-Perales A, Gutiérrez-Fernández A, Garabaya C, Cal S and López-Otín C: Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem Biophys Res Commun. 314:54–62. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Stegmeier F, Rape M, Draviam VM, Nalepa G, Sowa ME, Ang XL, McDonald ER III, Li MZ, Hannon GJ, Sorger PK, et al: Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature. 446:876–881. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Fuchs G, Shema E, Vesterman R, Kotler E, Wolchinsky Z, Wilder S, Golomb L, Pribluda A, Zhang F, Haj-Yahya M, et al: RNF20 and USP44 regulate stem cell differentiation by modulating H2B monoubiquitylation. Mol Cell. 46:662–673. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Zhang YK, Tian WZ, Zhang RS, Zhang YJ and Ma HT: Ubiquitin-specific protease 44 inhibits cell growth by suppressing AKT signaling in non-small cell lung cancer. Kaohsiung J Med Sci. 35:535–541. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Komander D, Clague MJ and Urbe S: Breaking the chains: Structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 10:550–563. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Belle JI and Nijnik A: H2A-DUBbing the mammalian epigenome: Expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology. Int J Biochem Cell Biol. 50:161–174. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Hu M, Li P, Li M, Li W, Yao T, Wu JW, Gu W, Cohen RE and Shi Y: Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell. 111:1041–1054. 2002. View Article : Google Scholar : PubMed/NCBI

22 

Wilkinson KD: Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11:1245–1256. 1997. View Article : Google Scholar : PubMed/NCBI

23 

Amerik A, Swaminathan S, Krantz BA, Wilkinson KD and Hochstrasser M: In vivo disassembly of free polyubiquitin chains by yeast Ubp14 modulates rates of protein degradation by the proteasome. EMBO J. 16:4826–4838. 1997. View Article : Google Scholar : PubMed/NCBI

24 

D'Andrea A and Pellman D: Deubiquitinating enzymes: A new class of biological regulators. Crit Rev Biochem Mol Biol. 33:337–352. 1998. View Article : Google Scholar : PubMed/NCBI

25 

Chung CH and Baek SH: Deubiquitinating enzymes: Their diversity and emerging roles. Biochem Biophys Res Commun. 266:633–640. 1999. View Article : Google Scholar : PubMed/NCBI

26 

Zhang Y, Foreman O, Wigle DA, Kosari F, Vasmatzis G, Salisbury JL, van Deursen J and Galardy PJ: USP44 regulates centrosome positioning to prevent aneuploidy and suppress tumorigenesis. J Clin Invest. 122:4362–4374. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Lan X, Atanassov BS, Li W, Zhang Y, Florens L, Mohan RD, Galardy PJ, Washburn MP, Workman JL and Dent SYR: USP44 is an integral component of N-CoR that contributes to gene repression by deubiquitinating histone H2B. Cell Rep. 17:2382–2393. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Mosbech A, Lukas C, Bekker-Jensen S and Mailand N: The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases. J Biol Chem. 288:16579–16587. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Suresh B, Ramakrishna S, Lee HJ, Choi JH, Kim JY, Ahn WS and Baek KH: K48- and K63-linked polyubiquitination of deubiquitinating enzyme USP44. Cell Biol Int. 34:799–808. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Zhang HY, Liao BW, Xu ZS, Ran Y, Wang DP, Yang Y, Luo WW and Wang YY: USP44 positively regulates innate immune response to DNA viruses through deubiquitinating MITA. PLoS Pathog. 16:e10081782020. View Article : Google Scholar : PubMed/NCBI

31 

Lang G, Bonnet J, Umlauf D, Karmodiya K, Koffler J, Stierle M, Devys D and Tora L: The tightly controlled deubiquitination activity of the human SAGA complex differentially modifies distinct gene regulatory elements. Mol Cell Biol. 31:3734–3744. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Zhang Z, Jones A, Joo HY, Zhou D, Cao Y, Chen S, Erdjument-Bromage H, Renfrow M, He H, Tempst P, et al: USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing. Genes Dev. 27:1581–1595. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Harrigan JA, Jacq X, Martin NM and Jackson SP: Deubiquitylating enzymes and drug discovery: Emerging opportunities. Nat Rev Drug Discov. 17:57–78. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Cheng J, Guo J, North BJ, Wang B, Cui CP, Li H, Tao K, Zhang L and Wei W: Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer. 1872:1883122019. View Article : Google Scholar : PubMed/NCBI

35 

Lin YH, Forster M, Liang Y, Yu M, Wang H, Robert F, Langlais D, Pelletier J, Clare S and Nijnik A: USP44 is dispensable for normal hematopoietic stem cell function, lymphocyte development, and B-cell-mediated immune response in a mouse model. Exp Hematol. 72:1–8. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Yu H: Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol. 14:706–714. 2002. View Article : Google Scholar : PubMed/NCBI

37 

Sudakin V, Chan GK and Yen TJ: Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J Cell Biol. 154:925–936. 2001. View Article : Google Scholar : PubMed/NCBI

38 

Garnett MJ, Mansfeld J, Godwin C, Matsusaka T, Wu J, Russell P, Pines J and Venkitaraman AR: UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nat Cell Biol. 11:1363–1369. 2009. View Article : Google Scholar : PubMed/NCBI

39 

Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J and Rape M: The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell. 144:769–781. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Williamson A, Banerjee S, Zhu X, Philipp I, Iavarone AT and Rape M: Regulation of ubiquitin chain initiation to control the timing of substrate degradation. Mol Cell. 42:744–757. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Chang L, Zhang Z, Yang J, McLaughlin SH and Barford D: Atomic structure of the APC/C and its mechanism of protein ubiquitination. Nature. 522:450–454. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Ciechanover A: Proteolysis: From the lysosome to ubiquitin and the proteasome. Nat Rev Mol. 6:79–87. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Meyer HJ and Rape M: Processive ubiquitin chain formation by the anaphase-promoting complex. Semin Cell Dev Biol. 22:544–550. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Primorac I and Musacchio A: Panta rhei: The APC/C at steady state. J Cell Biol. 201:177–189. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Reddy SK, Rape M, Margansky WA and Kirschner MW: Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature. 446:921–925. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Izawa D and Pines J: The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature. 517:631–634. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Alfieri C, Chang L, Zhang Z, Yang J, Maslen S, Skehel M and Barford D: Molecular basis of APC/C regulation by the spindle assembly checkpoint. Nature. 536:431–436. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Ciccia A and Elledge SJ: The DNA damage response: Making it safe to play with knives. Mol Cell. 40:179–204. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Bekker-Jensen S and Mailand N: Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair (Amst). 9:1219–1228. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Lukas J, Lukas C and Bartek J: More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol. 13:1161–1169. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Chen Y, Zhao Y, Yang X, Ren X, Huang S, Gong S, Tan X, Li J, He S, Li Y, et al: USP44 regulates irradiation-induced DNA double-strand break repair and suppresses tumorigenesis in nasopharyngeal carcinoma. Nat Commun. 13:5012022. View Article : Google Scholar : PubMed/NCBI

52 

Kamileri I, Karakasilioti I and Garinis GA: Nucleotide excision repair: New tricks with old bricks. Trends Genet. 28:566–573. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Marteijn JA, Lans H, Vermeulen W and Hoeijmakers JH: Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 15:465–481. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Zhang Y, Mandemaker IK, Matsumoto S, Foreman O, Holland CP, Lloyd WR, Sugasawa K, Vermeulen W, Marteijn JA and Galardy PJ: USP44 stabilizes DDB2 to facilitate nucleotide excision repair and prevent tumors. Front Cell Dev Biol. 9:6634112021. View Article : Google Scholar : PubMed/NCBI

55 

Sakaguchi S, Yamaguchi T, Nomura T and Ono M: Regulatory T cells and immune tolerance. Cell. 133:775–787. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Yang J, Wei P, Barbi J, Huang Q, Yang E, Bai Y, Nie J, Gao Y, Tao J, Lu Y, et al: The deubiquitinase USP44 promotes Treg function during inflammation by preventing FOXP3 degradation. EMBO Rep. 21:e503082020. View Article : Google Scholar : PubMed/NCBI

57 

Luo WW and Shu HB: Delicate regulation of the cGAS-MITA-mediated innate immune response. Cell Mol Immunol. 15:666–675. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Chen S, Li J, Wang DL and Sun FL: Histone H2B lysine 120 monoubiquitination is required for embryonic stem cell differentiation. Cell Res. 22:1402–1405. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Karpiuk O, Najafova Z, Kramer F, Hennion M, Galonska C, König A, Snaidero N, Vogel T, Shchebet A, Begus-Nahrmann Y, et al: The histone H2B monoubiquitination regulatory pathway is required for differentiation of multipotent stem cells. Mol Cell. 46:705–713. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Klionsky DJ: Autophagy: From phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 8:931–937. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Chen S, Jing Y, Kang X, Yang L, Wang DL, Zhang W, Zhang L, Chen P, Chang JF, Yang XM and Sun FL: Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy. Nucleic Acids Res. 45:1144–1158. 2017.PubMed/NCBI

62 

Zheng J, Wang B, Zheng R, Zhang J, Huang C, Zheng R, Huang Z, Qiu W, Liu M, Yang K, et al: Linc-RA1 inhibits autophagy and promotes radioresistance by preventing H2Bub1/USP44 combination in glioma cells. Cell Death Dis. 11:7582020. View Article : Google Scholar : PubMed/NCBI

63 

Targa A and Rancati G: Cancer: A CINful evolution. Curr Opin Cell Biol. 52:136–144. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Gordon DJ, Resio B and Pellman D: Causes and consequences of aneuploidy in cancer. Nat Rev Genet. 13:189–203. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Simonetti G, Bruno S, Padella A, Tenti E and Martinelli G: Aneuploidy: Cancer strength or vulnerability? Int J Cancer. 144:8–25. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Nishimura S, Oki E, Ando K, Iimori M, Nakaji Y, Nakashima Y, Saeki H, Oda Y and Maehara Y: High ubiquitin-specific protease 44 expression induces DNA aneuploidy and provides independent prognostic information in gastric cancer. Cancer Med. 6:1453–1464. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Zhang Y, van Deursen J and Galardy PJ: Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-cell leukemia. PLoS One. 6:e233892011. View Article : Google Scholar : PubMed/NCBI

68 

Yuan T, Yan F, Ying M, Cao J, He Q, Zhu H and Yang B: Inhibition of ubiquitin-specific proteases as a novel anticancer therapeutic strategy. Front Pharmacol. 9:10802018. View Article : Google Scholar : PubMed/NCBI

69 

Timson DJ: Fructose 1,6-bisphosphatase: Getting the message across. Biosci Rep. 39:BSR201901242019. View Article : Google Scholar : PubMed/NCBI

70 

Yang C, Zhu S, Yang H, Deng S, Fan P, Li M and Jin X: USP44 suppresses pancreatic cancer progression and overcomes gemcitabine resistance by deubiquitinating FBP1. Am J Cancer Res. 9:1722–1733. 2019.PubMed/NCBI

71 

Jin X, Pan Y, Wang L, Ma T, Zhang L, Tang AH, Billadeau DD, Wu H and Huang H: Fructose-1,6-bisphosphatase inhibits ERK activation and bypasses gemcitabine resistance in pancreatic cancer by blocking IQGAP1-MAPK interaction. Cancer Res. 77:4328–4341. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Teodoridis JM, Strathdee G and Brown R: Epigenetic silencing mediated by CpG island methylation: Potential as a therapeutic target and as a biomarker. Drug Resist Updat. 7:267–278. 2004. View Article : Google Scholar : PubMed/NCBI

73 

Sloane MA, Wong JW, Perera D, Nunez AC, Pimanda JE, Hawkins NJ, Sieber OM, Bourke MJ, Hesson LB and Ward RL: Epigenetic inactivation of the candidate tumor suppressor USP44 is a frequent and early event in colorectal neoplasia. Epigenetics. 9:1092–1100. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Huang T, Zhang Q, Ren W, Yan B, Yi L, Tang T, Lin H and Zhang Y: USP44 suppresses proliferation and enhances apoptosis in colorectal cancer cells by inactivating the Wnt/β-catenin pathway via Axin1 deubiquitination. Cell Biol Int. 44:1651–1659. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Zhou J, Wang T, Qiu T, Chen Z, Ma X, Zhang L and Zou J: Ubiquitin-specific protease-44 inhibits the proliferation and migration of cells via inhibition of JNK pathway in clear cell renal cell carcinoma. BMC Cancer. 20:2142020. View Article : Google Scholar : PubMed/NCBI

76 

Tang W, Cao Y and Ma X: Novel prognostic prediction model constructed through machine learning on the basis of methylation-driven genes in kidney renal clear cell carcinoma. Biosci Rep. 40:BSR202016042020. View Article : Google Scholar : PubMed/NCBI

77 

Molina JR, Yang P, Cassivi SD, Schild SE and Adjei AA: Non-small cell lung cancer: Epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 83:584–594. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Xu D, Tian W, Jiang C, Huang Z and Zheng S: The anthelmintic agent oxfendazole inhibits cell growth in non-small cell lung cancer by suppressing c-Src activation. Mol Med Rep. 19:2921–2926. 2019.PubMed/NCBI

79 

Liu T, Sun B, Zhao X, Li Y, Zhao X, Liu Y, Yao Z, Gu Q, Dong X, Shao B, et al: USP44+ cancer stem cell subclones contribute to breast cancer aggressiveness by promoting vasculogenic mimicry. Mol Cancer Ther. 14:2121–2131. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Sun B, Zhang S, Zhang D, Du J, Guo H, Zhao X, Zhang W and Hao X: Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma. Oncol Rep. 16:693–698. 2006.PubMed/NCBI

81 

Sun T, Sun BC, Zhao XL, Zhao N, Dong XY, Che N, Yao Z, Ma YM, Gu Q, Zong WK and Liu ZY: Promotion of tumor cell metastasis and vasculogenic mimicry by way of transcription coactivation by Bcl-2 and Twist1: A study of hepatocellular carcinoma. Hepatology. 54:1690–1706. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Luo F, Yang K, Liu RL, Meng C, Dang RF and Xu Y: Formation of vasculogenic mimicry in bone metastasis of prostate cancer: Correlation with cell apoptosis and senescence regulation pathways. Pathol Res Pract. 210:291–295. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Chen X, Wu X and Lei W: USP44 hypermethylation promotes cell proliferation and metastasis in breast cancer. Future Oncol. 17:279–289. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Tarcic O, Granit RZ, Pateras IS, Masury H, Maly B, Zwang Y, Yarden Y, Gorgoulis VG, Pikarsky E, Ben-Porath I and Oren M: RNF20 and histone H2B ubiquitylation exert opposing effects in Basal-Like versus luminal breast cancer. Cell Death Differ. 24:694–704. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Zou Y, Qiu G, Jiang L, Cai Z, Sun W, Hu H, Lu C, Jin W and Hu G: Overexpression of ubiquitin specific proteases 44 promotes the malignancy of glioma by stabilizing tumor-promoter securin. Oncotarget. 8:58231–58246. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Duan R, Du W and Guo W: EZH2: A novel target for cancer treatment. J Hematol Oncol. 13:1042020. View Article : Google Scholar : PubMed/NCBI

87 

Nutt SL, Keenan C, Chopin M and Allan RS: EZH2 function in immune cell development. Biol Chem. 401:933–943. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Yao Y, Hu H, Yang Y, Zhou G, Shang Z, Yang X, Sun K, Zhan S, Yu Z, Li P, et al: Downregulation of enhancer of zeste homolog 2 (EZH2) is essential for the induction of autophagy and apoptosis in colorectal cancer cells. Genes (Basel). 7:832016. View Article : Google Scholar : PubMed/NCBI

89 

Ito T, Teo YV, Evans SA, Neretti N and Sedivy JM: Regulation of cellular senescence by polycomb chromatin modifiers through distinct DNA damage- and histone methylation-dependent pathways. Cell Rep. 22:3480–3492. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Park JM, Lee JE, Park CM and Kim JH: USP44 promotes the tumorigenesis of prostate cancer cells through EZH2 protein stabilization. Mol Cells. 42:17–27. 2019.PubMed/NCBI

91 

Xiang T, Jiang HS, Zhang BT and Liu G: CircFOXO3 functions as a molecular sponge for miR-143-3p to promote the progression of gastric carcinoma via upregulating USP44. Gene. 753:1447982020. View Article : Google Scholar : PubMed/NCBI

92 

Wang Z, Oron E, Nelson B, Razis S and Ivanova N: Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell. 10:440–454. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, et al: Induced pluripotent stem cell lines derived from human somatic cells. Science. 318:1917–1920. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, et al: Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 122:947–956. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Jung M, Peterson H, Chavez L, Kahlem P, Lehrach H, Vilo J and Adjaye J: A data integration approach to mapping OCT4 gene regulatory networks operative in embryonic stem cells and embryonal carcinoma cells. PLoS One. 5:e107092010. View Article : Google Scholar : PubMed/NCBI

96 

Tropel P, Jung L, André C, Ndandougou A and Viville S: CpG island methylation correlates with the use of alternative promoters for USP44 gene expression in human pluripotent stem cells and testes. Stem Cells Dev. 26:1100–1110. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Mocciaro A and Rape M: Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control. J Cell Sci. 125:255–263. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Kernan J, Bonacci T and Emanuele MJ: Who guards the guardian? Mechanisms that restrain APC/C during the cell cycle. Biochim Biophys Acta Mol Cell Res. 1865:1924–1933. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Petroski MD and Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 6:9–20. 2005. View Article : Google Scholar : PubMed/NCBI

100 

Visconti R, Palazzo L, Della Monica R and Grieco D: Fcp1-dependent dephosphorylation is required for M-phase-promoting factor inactivation at mitosis exit. Nat Commun. 3:8942012. View Article : Google Scholar : PubMed/NCBI

101 

Berdasco M and Esteller M: Aberrant epigenetic landscape in cancer: How cellular identity goes awry. Dev Cell. 19:698–711. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Esteller M: Epigenetic gene silencing in cancer: The DNA hypermethylome. Hum Mol Genet. 16:R50–R59. 2007. View Article : Google Scholar : PubMed/NCBI

103 

Jung J, Kim Y, Song J, Yoon YJ, Kim DE, Kim JA, Jin Y, Lee YJ, Kim S, Kwon BM and Han DC: KRIBB53 binds to OCT4 and enhances its degradation through the proteasome, causing apoptotic cell death of OCT4-positive testicular germ cell tumors. Carcinogenesis. 39:838–849. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lou Y, Ye M, Xu C and Tao F: Insight into the physiological and pathological roles of USP44, a potential tumor target (Review). Oncol Lett 24: 455, 2022.
APA
Lou, Y., Ye, M., Xu, C., & Tao, F. (2022). Insight into the physiological and pathological roles of USP44, a potential tumor target (Review). Oncology Letters, 24, 455. https://doi.org/10.3892/ol.2022.13575
MLA
Lou, Y., Ye, M., Xu, C., Tao, F."Insight into the physiological and pathological roles of USP44, a potential tumor target (Review)". Oncology Letters 24.6 (2022): 455.
Chicago
Lou, Y., Ye, M., Xu, C., Tao, F."Insight into the physiological and pathological roles of USP44, a potential tumor target (Review)". Oncology Letters 24, no. 6 (2022): 455. https://doi.org/10.3892/ol.2022.13575
Copy and paste a formatted citation
x
Spandidos Publications style
Lou Y, Ye M, Xu C and Tao F: Insight into the physiological and pathological roles of USP44, a potential tumor target (Review). Oncol Lett 24: 455, 2022.
APA
Lou, Y., Ye, M., Xu, C., & Tao, F. (2022). Insight into the physiological and pathological roles of USP44, a potential tumor target (Review). Oncology Letters, 24, 455. https://doi.org/10.3892/ol.2022.13575
MLA
Lou, Y., Ye, M., Xu, C., Tao, F."Insight into the physiological and pathological roles of USP44, a potential tumor target (Review)". Oncology Letters 24.6 (2022): 455.
Chicago
Lou, Y., Ye, M., Xu, C., Tao, F."Insight into the physiological and pathological roles of USP44, a potential tumor target (Review)". Oncology Letters 24, no. 6 (2022): 455. https://doi.org/10.3892/ol.2022.13575
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team