Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
December-2022 Volume 24 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 24 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

FOXK2 transcription factor and its roles in tumorigenesis (Review)

  • Authors:
    • Zhaojun Wang
    • Xinling Liu
    • Zhanju Wang
    • Zhenbo Hu
  • View Affiliations / Copyright

    Affiliations: Department of Hematology, Laboratory for Stem Cell and Regenerative Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 461
    |
    Published online on: November 3, 2022
       https://doi.org/10.3892/ol.2022.13581
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Forkhead box K2 (FOXK2) is a central transcriptional regulator of embryonic development and cell homeostasis. Since its discovery, evidence has shown that FOXK2 mediates a variety of biological processes involving in genomic stability, DNA repair, cancer stem cell maintenance, cell proliferation, apoptosis and cell metabolism. The inherent structural characteristics of FOXK2 enable it as a transcriptional factor (TF) to cooperate with other active molecules in cancer development. FOXK2 mediates several significant chromatin events that are necessary for some chromatin accessibility and protein‑protein interaction. FOXK2 is involved in the pathogenesis of a number of types of cancer as an oncoprotein or tumor suppressor depending on its interactive partners. Therefore, the loss of FOXK2 and its functions directly or indirectly affect the fate of cells. FOXK2 expresses differentially in a number of types of cancer and is involved in a number of aspects of carcinogenesis. However, its roles in tumorigenesis remain largely unexplored. The present review focused on the latest findings and evidence on the broad roles and possible mediating mechanisms of FOXK2 in carcinogenesis. The recent findings about FOXK2 may shed light on the direction of future FOXK2 research in tumorigenesis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Chen Y, Wu J, Liang G, Geng G, Zhao F, Yin P, Nowsheen S, Wu C, Li Y, Li L, et al: CHK2-FOXK axis promotes transcriptional control of autophagy programs. Sci Adv. 6:eaax58192020. View Article : Google Scholar : PubMed/NCBI

2 

He L, Gomes AP, Wang X, Yoon SO, Lee G, Nagiec MJ, Cho S, Chavez A, Islam T, Yu Y, et al: mTORC1 promotes metabolic reprogramming by the suppression of GSK3-dependent Foxk1 phosphorylation. Mol Cell. 70:949–960.e4. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Hackmann K, Stadler A, Schallner J, Franke K, Gerlach EM, Schrock E, Rump A, Fauth C, Tinschert S and Oexle K: Severe intellectual disability, west syndrome, Dandy-Walker malformation, and syndactyly in a patient with partial tetrasomy 17q25.3. Am J Med Genet A. 161A:3144–3149. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Nestal de Moraes G, Carneiro LD, Maia RC, Lam EW and Sharrocks AD: FOXK2 transcription factor and its emerging roles in cancer. Cancers (Basel). 11:3932019. View Article : Google Scholar : PubMed/NCBI

5 

Gitter A, Siegfried Z, Klutstein M, Fornes O, Oliva B, Simon I and Bar-Joseph Z: Backup in gene regulatory networks explains differences between binding and knockout results. Mol Syst Biol. 5:2762009. View Article : Google Scholar : PubMed/NCBI

6 

Dai Z, Dai X, Xiang Q and Feng J: Robustness of transcriptional regulatory program influences gene expression variability. BMC Genomics. 10:5732009. View Article : Google Scholar : PubMed/NCBI

7 

Wu WS and Lai FJ: Functional redundancy of transcription factors explains why most binding targets of a transcription factor are not affected when the transcription factor is knocked out. BMC Syst Biol. 9 (Suppl 6):S22015. View Article : Google Scholar : PubMed/NCBI

8 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI

11 

Kaestner KH, Knochel W and Martinez DE: Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14:142–146. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Lam EW, Brosens JJ, Gomes AR and Koo CY: Forkhead box proteins: Tuning forks for transcriptional harmony. Nat Rev Cancer. 13:482–495. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Hao X, Yu W, Wang Y, Li P and Wang J: Critical role of FOXO3a in carcinogenesis. Mol Cancer. 17:1042018. View Article : Google Scholar : PubMed/NCBI

14 

Nakagawa S, Gisselbrecht SS, Rogers JM, Hartl DL and Bulyk ML: DNA-binding specificity changes in the evolution of forkhead transcription factors. Proc Natl Acad Sci USA. 110:12349–12354. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Li C, Lai CF, Sigman DS and Gaynor RB: Cloning of a cellular factor, interleukin binding factor, that binds to NFAT-like motifs in the human immunodeficiency virus long terminal repeat. Proc Natl Acad Sci USA. 88:7739–7743. 1991. View Article : Google Scholar : PubMed/NCBI

16 

Huang JT and Lee V: Identification and characterization of a novel human FOXK1 gene in silico. Int J Oncol. 25:751–757. 2004.PubMed/NCBI

17 

Mahajan A, Yuan C, Lee H, Chen ES, Wu PY and Tsai MD: Structure and function of the phosphothreonine-specific FHA domain. Sci Signal. 1:re122008. View Article : Google Scholar : PubMed/NCBI

18 

Durocher D and Jackson SP: The FHA domain. FEBS Lett. 513:58–66. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Reinhardt HC and Yaffe MB: Phospho-Ser/Thr-binding domains: Navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol. 14:563–580. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Kalnina Z, Zayakin P, Silina K and Linē A: Alterations of pre-mRNA splicing in cancer. Genes Chromosomes Cancer. 42:342–357. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Roy M, Xu Q and Lee C: Evidence that public database records for many cancer-associated genes reflect a splice form found in tumors and lack normal splice forms. Nucleic Acids Res. 33:5026–5033. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, Peat D, Gillatt D and Harper SJ: VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62:4123–4131. 2002.PubMed/NCBI

23 

Hu Y, Fang C and Xu Y: The effect of isoforms of the cell polarity protein, human ASIP, on the cell cycle and Fas/FasL-mediated apoptosis in human hepatoma cells. Cell Mol Life Sci. 62:1974–1983. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Wang L, Duke L, Zhang PS, Arlinghaus RB, Symmans WF, Sahin A, Mendez R and Dai JL: Alternative splicing disrupts a nuclear localization signal in spleen tyrosine kinase that is required for invasion suppression in breast cancer. Cancer Res. 63:4724–4730. 2003.PubMed/NCBI

25 

Nirula A, Moore DJ and Gaynor RB: Constitutive binding of the transcription factor interleukin-2 (IL-2) enhancer binding factor to the IL-2 promoter. J Biol Chem. 272:7736–7745. 1997. View Article : Google Scholar : PubMed/NCBI

26 

Marais A, Ji Z, Child ES, Krause E, Mann DJ and Sharrocks AD: Cell cycle-dependent regulation of the forkhead transcription factor FOXK2 by CDK·cyclin complexes. J Biol Chem. 285:35728–35739. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Pan Q, Shai O, Lee LJ, Frey BJ and Blencowe BJ: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 40:1413–1415. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Li C, Lusis AJ, Sparkes R, Nirula A and Gaynor R: Characterization and chromosomal mapping of the gene encoding the cellular DNA binding protein ILF. Genomics. 13:665–671. 1992. View Article : Google Scholar : PubMed/NCBI

29 

Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP and Burge CB: Alternative isoform regulation in human tissue transcriptomes. Nature. 456:470–476. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Merkin J, Russell C, Chen P and Burge CB: Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science. 338:1593–1599. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Climente-González H, Porta-Pardo E, Godzik A and Eyras E: The functional impact of alternative splicing in cancer. Cell Rep. 20:2215–2226. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Wang W, Li X, Lee M, Jun S, Aziz KE, Feng L, Tran MK, Li N, McCrea PD, Park JI and Chen J: FOXKs promote Wnt/β-catenin signaling by translocating DVL into the nucleus. Dev Cell. 32:707–718. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao X, Wu W, Zhang Y, Yu W, Ao X and Wang J: FOXK transcription factors: Regulation and critical role in cancer. Cancer Lett. 458:1–12. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Giardina B, Messana I, Scatena R and Castagnola M: The multiple functions of hemoglobin. Crit Rev Biochem Mol Biol. 30:165–196. 1995. View Article : Google Scholar : PubMed/NCBI

35 

Arbez N, Ratovitski T, Roby E, Chighladze E, Stewart JC, Ren M, Wang X, Lavery DJ and Ross CA: Post-translational modifications clustering within proteolytic domains decrease mutant huntingtin toxicity. J Biol Chem. 292:19238–19249. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Snider NT and Omary MB: Post-translational modifications of intermediate filament proteins: Mechanisms and functions. Nat Rev Mol Cell Biol. 15:163–177. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Richard SA, Jiang Y, Xiang LH, Zhou S, Wang J, Su Z and Xu H: Post-translational modifications of high mobility group box 1 and cancer. Am J Transl Res. 9:5181–5196. 2017.PubMed/NCBI

38 

Corujo D and Buschbeck M: Post-translational modifications of H2A histone variants and their role in cancer. Cancers (Basel). 10:592018. View Article : Google Scholar : PubMed/NCBI

39 

Iavarone F, Desiderio C, Vitali A, Messana I, Martelli C, Castagnola M and Cabras T: Cryptides: Latent peptides everywhere. Crit Rev Biochem Mol Biol. 53:246–263. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Huang H, Arighi CN, Ross KE, Ren J, Li G, Chen SC, Wang Q, Cowart J, Vijay-Shanker K and Wu CH: iPTMnet: An integrated resource for protein post-translational modification network discovery. Nucleic Acids Res. 46:D542–D550. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Yao B, Christian KM, He C, Jin P, Ming GL and Song H: Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci. 17:537–549. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Liu MY, DeNizio JE, Schutsky EK and Kohli RM: The expanding scope and impact of epigenetic cytosine modifications. Curr Opin Chem Biol. 33:67–73. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Jones MJ, Goodman SJ and Kobor MS: DNA methylation and healthy human aging. Aging Cell. 14:924–932. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Bird A: Perceptions of epigenetics. Nature. 447:396–398. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Tsuchida T, Mano T, Koshi-Mano K, Bannai T, Matsubara T, Yamashita S, Ushijima T, Nagata K, Murayama S, Toda T, et al: Methylation changes and aberrant expression of FGFR3 in Lewy body disease neurons. Brain Res. 1697:59–66. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Pan XY, Yang Y, Meng HW, Li HD, Chen X, Huang HM, Bu FT, Yu HX, Wang Q, Huang C, et al: DNA methylation of PTGIS enhances hepatic stellate cells activation and liver fibrogenesis. Front Pharmacol. 9:5532018. View Article : Google Scholar : PubMed/NCBI

47 

Hopp L, Löffler-Wirth H, Galle J and Binder H: Combined SOM-portrayal of gene expression and DNA methylation landscapes disentangles modes of epigenetic regulation in glioblastoma. Epigenomics. 10:745–764. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Lopez-Serra P and Esteller M: DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene. 31:1609–1622. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Le TN, Schumann U, Smith NA, Tiwari S, Au PC, Zhu QH, Taylor JM, Kazan K, Llewellyn DJ, Zhang R, et al: DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol. 15:4582014. View Article : Google Scholar : PubMed/NCBI

50 

Jung M and Pfeifer GP: Aging and DNA methylation. BMC Biol. 13:72015. View Article : Google Scholar : PubMed/NCBI

51 

Bormann F, Rodríguez-Paredes M, Lasitschka F, Edelmann D, Musch T, Benner A, Bergman Y, Dieter SM, Ball CR, Glimm H, et al: Cell-of-Origin DNA methylation signatures are maintained during colorectal carcinogenesis. Cell Rep. 23:3407–3418. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Jaenisch R and Bird A: Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet. 33 (Suppl):S245–S254. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Egger G, Liang G, Aparicio A and Jones PA: Epigenetics in human disease and prospects for epigenetic therapy. Nature. 429:457–463. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Robertson KD: DNA methylation and human disease. Nat Rev Genet. 6:597–610. 2005. View Article : Google Scholar : PubMed/NCBI

55 

Bird A, Taggart M, Frommer M, Miller OJ and Macleod D: A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 40:91–99. 1985. View Article : Google Scholar : PubMed/NCBI

56 

Goodrich JM, Furlong MA, Caban-Martinez AJ, Jung AM, Batai K, Jenkins T, Beitel S, Littau S, Gulotta J, Wallentine D, et al: Differential DNA methylation by hispanic ethnicity among firefighters in the United States. Epigenet Insights. Mar 26–2021.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

57 

Crujeiras AB, Pissios P, Moreno-Navarrete JM, Diaz-Lagares A, Sandoval J, Gomez A, Ricart W, Esteller M, Casanueva FF and Fernandez-Real JM: An epigenetic signature in adipose tissue is linked to nicotinamide N-methyltransferase gene expression. Mol Nutr Food Res. Apr 24–2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

58 

Camprubí C, Salas-Huetos A, Aiese-Cigliano R, Godo A, Pons MC, Castellano G, Grossmann M, Sanseverino W, Martin-Subero JI, Garrido N and Blanco J: Spermatozoa from infertile patients exhibit differences of DNA methylation associated with spermatogenesis-related processes: An array-based analysis. Reprod Biomed Online. 33:709–719. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Nwanaji-Enwerem JC, Jenkins TG, Colicino E, Cardenas A, Baccarelli AA and Boyer EW: Serum dioxin levels and sperm DNA methylation age: Findings in Vietnam war veterans exposed to agent orange. Reprod Toxicol. 96:27–35. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Park SL, Patel YM, Loo LW, Mullen DJ, Offringa IA, Maunakea A, Stram DO, Siegmund K, Murphy SE, Tiirikainen M and Le Marchand L: Association of internal smoking dose with blood DNA methylation in three racial/ethnic populations. Clin Epigenetics. 10:1102018. View Article : Google Scholar : PubMed/NCBI

61 

Yehuda R, Daskalakis NP, Bierer LM, Bader HN, Klengel T, Holsboer F and Binder EB: Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biol Psychiatry. 80:372–380. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Hughes MF: Arsenic toxicity and potential mechanisms of action. Toxicol Lett. 133:1–16. 2002. View Article : Google Scholar : PubMed/NCBI

63 

Jones PA and Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3:415–428. 2002. View Article : Google Scholar : PubMed/NCBI

64 

Jones PA and Baylin SB: The epigenomics of cancer. Cell. 128:683–692. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Timbergen MJM, Boers R, Vriends ALM, Boers J, van IJcken WFJ, Lavrijsen M, Grünhagen DJ, Verhoef C, Sleijfer S, Smits R, et al: Differentially methylated regions in desmoid-type fibromatosis: A comparison between CTNNB1 S45F and T41A tumors. Front Oncol. 10:5650312020. View Article : Google Scholar : PubMed/NCBI

66 

Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Münzel M, Wagner M, Müller M, Khan F, et al: Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell. 152:1146–1159. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Iurlaro M, Ficz G, Oxley D, Raiber EA, Bachman M, Booth MJ, Andrews S, Balasubramanian S and Reik W: A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14:R1192013. View Article : Google Scholar : PubMed/NCBI

68 

Hu S, Wan J, Su Y, Song Q, Zeng Y, Nguyen HN, Shin J, Cox E, Rho HS, Woodard C, et al: DNA methylation presents distinct binding sites for human transcription factors. Elife. 2:e007262013. View Article : Google Scholar : PubMed/NCBI

69 

Baymaz HI, Fournier A, Laget S, Ji Z, Jansen PW, Smits AH, Ferry L, Mensinga A, Poser I, Sharrocks A, et al: MBD5 and MBD6 interact with the human PR-DUB complex through their methyl-CpG-binding domain. Proteomics. 14:2179–2189. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Du Q, Luu PL, Stirzaker C and Clark SJ: Methyl-CpG-binding domain proteins: Readers of the epigenome. Epigenomics. 7:1051–1073. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Li X, Wilmanns M, Thornton J and Köhn M: Elucidating human phosphatase-substrate networks. Sci Signal. 6:rs102013. View Article : Google Scholar : PubMed/NCBI

72 

Sacco F, Perfetto L, Castagnoli L and Cesareni G: The human phosphatase interactome: An intricate family portrait. FEBS Lett. 586:2732–2739. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Fukami Y and Lipmann F: Reversal of Rous sarcoma-specific immunoglobulin phosphorylation on tyrosine (ADP as phosphate acceptor) catalyzed by the src gene kinase. Proc Natl Acad Sci USA. 80:1872–1876. 1983. View Article : Google Scholar : PubMed/NCBI

74 

Kole HK, Abdel-Ghany M and Racker E: Specific dephosphorylation of phosphoproteins by protein-serine and -tyrosine kinases. Proc Natl Acad Sci USA. 85:5849–5853. 1988. View Article : Google Scholar : PubMed/NCBI

75 

Almawi AW, Matthews LA and Guarné A: FHA domains: Phosphopeptide binding and beyond. Prog Biophys Mol Biol. 127:105–110. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN and Futcher B: Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature. 406:90–94. 2000. View Article : Google Scholar : PubMed/NCBI

77 

Pic-Taylor A, Darieva Z, Morgan BA and Sharrocks AD: Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p. Mol Cell Biol. 24:10036–10046. 2004. View Article : Google Scholar : PubMed/NCBI

78 

Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY and Yao KM: Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci. 118:795–806. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Myatt SS and Lam EW: The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 7:847–859. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Li A, Wang J, Wu M, Zhang X and Zhang H: The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: Persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway. Eur J Pharmacol. 747:71–87. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Aitken A: 14-3-3 proteins: A historic overview. Semin Cancer Biol. 16:162–172. 2006. View Article : Google Scholar : PubMed/NCBI

82 

Nakatsumi H, Oka T, Higa T, Shirane M and Nakayama KI: Nuclear-cytoplasmic shuttling protein PP2AB56 contributes to mTORC1-dependent dephosphorylation of FOXK1. Genes Cells. 23:599–605. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Nakatsumi H, Matsumoto M and Nakayama KI: Noncanonical pathway for regulation of CCL2 expression by an mTORC1-FOXK1 axis promotes recruitment of tumor-associated macrophages. Cell Rep. 21:2471–2486. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Sakaguchi M, Cai W, Wang CH, Cederquist CT, Damasio M, Homan EP, Batista T, Ramirez AK, Gupta MK, Steger M, et al: FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nat Commun. 10:15822019. View Article : Google Scholar : PubMed/NCBI

85 

Amaya MJ, Oliveira AG, Guimarães ES, Casteluber MC, Carvalho SM, Andrade LM, Pinto MC, Mennone A, Oliveira CA, Resende RR, et al: The insulin receptor translocates to the nucleus to regulate cell proliferation in liver. Hepatology. 59:274–283. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Katoh M and Katoh M: Identification and characterization of human FOXK1 gene in silico. Int J Mol Med. 14:127–132. 2004.PubMed/NCBI

87 

Bowman CJ, Ayer DE and Dynlacht BD: Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat Cell Biol. 16:1202–1214. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Sukonina V, Ma H, Zhang W, Bartesaghi S, Subhash S, Heglind M, Foyn H, Betz MJ, Nilsson D, Lidell ME, et al: FOXK1 and FOXK2 regulate aerobic glycolysis. Nature. 566:279–283. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Xia YK, Zeng YR, Zhang ML, Liu P, Liu F, Zhang H, He CX, Sun YP, Zhang JY, Zhang C, et al: Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein Cell. 12:557–577. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Danciu TE, Chupreta S, Cruz O, Fox JE, Whitman M and Iñiguez-Lluhí JA: Small ubiquitin-like modifier (SUMO) modification mediates function of the inhibitory domains of developmental regulators FOXC1 and FOXC2. J Biol Chem. 287:18318–18329. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Sutinen P, Rahkama V, Rytinki M and Palvimo JJ: Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol. 28:1719–1728. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Song JG, Xie HH, Li N, Wu K, Qiu JG, Shen DM and Huang CJ: SUMO-specific protease 6 promotes gastric cancer cell growth via deSUMOylation of FoxM1. Tumour Biol. 36:9865–9871. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Meredith LJ, Wang CM, Nascimento L, Liu R, Wang L and Yang WH: The key regulator for language and speech development, FOXP2, is a novel substrate for SUMOylation. J Cell Biochem. 117:426–438. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Rocca DL, Wilkinson KA and Henley JM: SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Sci Rep. 7:8772017. View Article : Google Scholar : PubMed/NCBI

95 

Nestal de Moraes G, Ji Z, Fan LY, Yao S, Zona S, Sharrocks AD and Lam EW: SUMOylation modulates FOXK2-mediated paclitaxel sensitivity in breast cancer cells. Oncogenesis. 7:292018. View Article : Google Scholar : PubMed/NCBI

96 

Shmueli A and Oren M: Life, death and ubiquitin: Taming the mule. Cell. 121:963–965. 2005. View Article : Google Scholar : PubMed/NCBI

97 

López-Otín C and Hunter T: The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer. 10:278–292. 2010. View Article : Google Scholar : PubMed/NCBI

98 

Ikeda F and Dikic I: Atypical ubiquitin chains: New molecular signals. ‘Protein modifications: Beyond the usual suspects’ review series. EMBO Rep. 9:536–542. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Suryadinata R, Roesley SN, Yang G and Sarčević B: Mechanisms of generating polyubiquitin chains of different topology. Cells. 3:674–689. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Rajalingam K and Dikic I: SnapShot: Expanding the ubiquitin code. Cell. 164:1074–1074.e1. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI

102 

Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW and Müller J: Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB. Nature. 465:243–247. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Abdel-Wahab O, Gao J, Adli M, Dey A, Trimarchi T, Chung YR, Kuscu C, Hricik T, Ndiaye-Lobry D, Lafave LM, et al: Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J Exp Med. 210:2641–2659. 2013. View Article : Google Scholar : PubMed/NCBI

104 

LaFave LM, Béguelin W, Koche R, Teater M, Spitzer B, Chramiec A, Papalexi E, Keller MD, Hricik T, Konstantinoff K, et al: Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med. 21:1344–1349. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Micol JB and Abdel-Wahab O: The role of additional sex combs-like proteins in cancer. Cold Spring Harb Perspect Med. 6:a0265262016. View Article : Google Scholar : PubMed/NCBI

106 

Campagne A, Lee MK, Zielinski D, Michaud A, Le Corre S, Dingli F, Chen H, Shahidian LZ, Vassilev I, Servant N, et al: BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nat Commun. 10:3482019. View Article : Google Scholar : PubMed/NCBI

107 

Ji Z, Mohammed H, Webber A, Ridsdale J, Han N, Carroll JS and Sharrocks AD: The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex. Nucleic Acids Res. 42:6232–6242. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Abdel-Wahab O and Dey A: The ASXL-BAP1 axis: New factors in myelopoiesis, cancer and epigenetics. Leukemia. 27:10–15. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Carbone M, Yang H, Pass HI, Krausz T, Testa JR and Gaudino G: BAP1 and cancer. Nat Rev Cancer. 13:153–159. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Chittock EC, Latwiel S, Miller TC and Müller CW: Molecular architecture of polycomb repressive complexes. Biochem Soc Trans. 45:193–205. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Okino Y, Machida Y, Frankland-Searby S and Machida YJ: BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. J Biol Chem. 290:1580–1591. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F, Herrera-Medina EM, Rauscher F III, Reinberg D and Barlev NA: Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol. 27:6756–6769. 2007. View Article : Google Scholar : PubMed/NCBI

113 

Li G, Margueron R, Hu G, Stokes D, Wang YH and Reinberg D: Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol Cell. 38:41–53. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Wang XW, Guo QQ, Yu Y, Zhou TT, Zhang SY, Wang Z, Liu JW, Tang J, Jiang XY, Wang SS, et al: The deacetylation of Foxk2 by Sirt1 reduces chemosensitivity to cisplatin. J Cell Mol Med. 26:491–506. 2022. View Article : Google Scholar : PubMed/NCBI

115 

Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS and Haussler D: Ultraconserved elements in the human genome. Science. 304:1321–1325. 2004. View Article : Google Scholar : PubMed/NCBI

116 

Johnsson P, Lipovich L, Grandér D and Morris KV: Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta. 1840:1063–1071. 2014. View Article : Google Scholar : PubMed/NCBI

117 

Cech TR and Steitz JA: The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 157:77–94. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Kentwell J, Gundara JS and Sidhu SB: Noncoding RNAs in endocrine malignancy. Oncologist. 19:483–491. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Lieberman J: Tapping the RNA world for therapeutics. Nat Struct Mol Biol. 25:357–364. 2018. View Article : Google Scholar : PubMed/NCBI

120 

Gomes CPC, Schroen B, Kuster GM, Robinson EL, Ford K, Squire IB, Heymans S, Martelli F, Emanueli C and Devaux Y; EU-CardioRNA COST Action (CA17129), : Regulatory RNAs in heart failure. Circulation. 141:313–328. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Ebert MS and Sharp PA: Roles for microRNAs in conferring robustness to biological processes. Cell. 149:515–524. 2012. View Article : Google Scholar : PubMed/NCBI

122 

Yamamura S, Imai-Sumida M, Tanaka Y and Dahiya R: Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci. 75:467–484. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

125 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

126 

Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, et al: Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell. 35:868–880. 2009. View Article : Google Scholar : PubMed/NCBI

127 

Min KW, Jo MH, Shin S, Davila S, Zealy RW, Kang SI, Lloyd LT, Hohng S and Yoon JH: AUF1 facilitates microRNA-mediated gene silencing. Nucleic Acids Res. 45:6064–6073. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Sun M, Ding J, Li D, Yang G, Cheng Z and Zhu Q: NUDT21 regulates 3′-UTR length and microRNA-mediated gene silencing in hepatocellular carcinoma. Cancer Lett. 410:158–168. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Chen D, Wang H, Chen J, Li Z, Li S, Hu Z, Huang S, Zhao Y and He X: MicroRNA-129-5p regulates glycolysis and cell proliferation by targeting the glucose transporter SLC2A3 in gastric cancer cells. Front Pharmacol. 9:5022018. View Article : Google Scholar : PubMed/NCBI

130 

Cui Z, Liu L, Kwame Amevor F, Zhu Q, Wang Y, Li D, Shu G, Tian Y and Zhao X: High expression of miR-204 in chicken atrophic ovaries promotes granulosa cell apoptosis and inhibits autophagy. Front Cell Dev Biol. 8:5800722020. View Article : Google Scholar : PubMed/NCBI

131 

Lin MF, Yang YF, Peng ZP, Zhang MF, Liang JY, Chen W, Liu XH and Zheng YL: FOXK2, regulted by miR-1271-5p, promotes cell growth and indicates unfavorable prognosis in hepatocellular carcinoma. Int J Biochem Cell Biol. 88:155–161. 2017. View Article : Google Scholar : PubMed/NCBI

132 

Chen S, Jiang S, Hu F, Xu Y, Wang T and Mei Q: Foxk2 inhibits non-small cell lung cancer epithelial-mesenchymal transition and proliferation through the repression of different key target genes. Oncol Rep. 37:2335–2347. 2017. View Article : Google Scholar : PubMed/NCBI

133 

Harada K, Baba Y, Ishimoto T, Shigaki H, Kosumi K, Yoshida N, Watanabe M and Baba H: The role of microRNA in esophageal squamous cell carcinoma. J Gastroenterol. 51:520–530. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Liu M, Yu J, Wang D, Niu Y, Chen S, Gao P, Yang Z, Wang H, Zhang J, Zhang C, et al: Epigenetically upregulated MicroRNA-602 is involved in a negative feedback loop with FOXK2 in esophageal squamous cell carcinoma. Mol Ther. 27:1796–1809. 2019. View Article : Google Scholar : PubMed/NCBI

135 

Wang D, Wang H, Liu C, Mu X and Cheng S: Hyperglycemia inhibition of endothelial miR-140-3p mediates angiogenic dysfunction in diabetes mellitus. J Diabetes Complications. 33:374–382. 2019. View Article : Google Scholar : PubMed/NCBI

136 

Li S, Zhao L, Li X, Shang G, Gao L, Song Z and Li T: Mir-204 regulates LPS-induced A549 cell damage by targeting FOXK2. J Healthc Eng. 2021:74046712021. View Article : Google Scholar : PubMed/NCBI

137 

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Chen LL: The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI

139 

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI

140 

Kristensen LS, Hansen TB, Venø MT and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI

141 

Patop IL and Kadener S: circRNAs in cancer. Curr Opin Genet Dev. 48:121–127. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Zhang M and Xin Y: Circular RNAs: A new frontier for cancer diagnosis and therapy. J Hematol Oncol. 11:212018. View Article : Google Scholar : PubMed/NCBI

143 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

144 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

145 

Hu W, Bi ZY, Chen ZL, Liu C, Li LL, Zhang F, Zhou Q, Zhu W, Song YY, Zhan BT, et al: Emerging landscape of circular RNAs in lung cancer. Cancer Lett. 427:18–27. 2018. View Article : Google Scholar : PubMed/NCBI

146 

Hua Q, Chen Y, Liu Y, Li M, Diao Q, Xue H, Zeng H, Huang L and Jiang Y: Circular RNA 0039411 is involved in neodymium oxide-induced inflammation and antiproliferation in a human bronchial epithelial cell line via sponging miR-93-5p. Toxicol Sci. 170:69–81. 2019. View Article : Google Scholar : PubMed/NCBI

147 

Han D, Wang Y, Wang Y, Dai X, Zhou T, Chen J, Tao B, Zhang J and Cao F: The tumor-suppressive human circular RNA CircITCH sponges miR-330-5p to ameliorate doxorubicin-induced cardiotoxicity through upregulating SIRT6, survivin and SERCA2a. Circ Res. 127:e108–e125. 2020. View Article : Google Scholar : PubMed/NCBI

148 

Yang C, Yuan W, Yang X, Li P, Wang J, Han J, Tao J, Li P, Yang H, Lv Q and Zhang W: Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 17:192018. View Article : Google Scholar : PubMed/NCBI

149 

Li J, Guo R, Liu Q, Sun J and Wang H: Circular RNA Circ-ITCH inhibits the malignant behaviors of cervical cancer by microRNA-93-5p/FOXK2 axis. Reprod Sci. 27:860–868. 2020. View Article : Google Scholar : PubMed/NCBI

150 

Shi X, Liu TT, Yu XN, Balakrishnan A, Zhu HR, Guo HY, Zhang GC, Bilegsaikhan E, Sun JL, Song GQ, et al: microRNA-93-5p promotes hepatocellular carcinoma progression via a microRNA-93-5p/MAP3K2/c-Jun positive feedback circuit. Oncogene. 39:5768–5781. 2020. View Article : Google Scholar : PubMed/NCBI

151 

Ma DH, Li BS, Liu JJ, Xiao YF, Yong X, Wang SM, Wu YY, Zhu HB, Wang DX and Yang SM: miR-93-5p/IFNAR1 axis promotes gastric cancer metastasis through activating the STAT3 signaling pathway. Cancer Lett. 408:23–32. 2017. View Article : Google Scholar : PubMed/NCBI

152 

Chen X, Chen S, Xiu YL, Sun KX, Zong ZH and Zhao Y: RhoC is a major target of microRNA-93-5P in epithelial ovarian carcinoma tumorigenesis and progression. Mol Cancer. 14:312015. View Article : Google Scholar : PubMed/NCBI

153 

Li J, Chu ZP, Han H, Zhang Y, Tian F, Zhang JQ and Huang XH: Suppression of miR-93-5p inhibits high-risk HPV-positive cervical cancer progression via targeting of BTG3. Hum Cell. 32:160–171. 2019. View Article : Google Scholar : PubMed/NCBI

154 

Li Y, Ge YZ, Xu L and Jia R: Circular RNA ITCH: A novel tumor suppressor in multiple cancers. Life Sci. 254:1171762020. View Article : Google Scholar : PubMed/NCBI

155 

Sun J, Yin A, Zhang W, Lv J, Liang Y, Li H, Li Y and Li X: CircUBAP2 inhibits proliferation and metastasis of clear cell renal cell carcinoma via targeting miR-148a-3p/FOXK2 pathway. Cell Transplant. 29:9636897209257512020. View Article : Google Scholar : PubMed/NCBI

156 

Xu Q, Cheng D, Li G, Liu Y, Li P, Sun W, Ma D and Ni C: CircHIPK3 regulates pulmonary fibrosis by facilitating glycolysis in miR-30a-3p/FOXK2-dependent manner. Int J Biol Sci. 17:2294–2307. 2021. View Article : Google Scholar : PubMed/NCBI

157 

Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et al: The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 47:199–208. 2015. View Article : Google Scholar : PubMed/NCBI

158 

St Laurent G, Wahlestedt C and Kapranov P: The landscape of long noncoding RNA classification. Trends Genet. 31:239–251. 2015. View Article : Google Scholar : PubMed/NCBI

159 

Kitagawa M, Kitagawa K, Kotake Y, Niida H and Ohhata T: Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci. 70:4785–4794. 2013. View Article : Google Scholar : PubMed/NCBI

160 

Ballarino M, Morlando M, Fatica A and Bozzoni I: Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Invest. 126:2021–2030. 2016. View Article : Google Scholar : PubMed/NCBI

161 

Brazão TF, Johnson JS, Müller J, Heger A, Ponting CP and Tybulewicz VL: Long noncoding RNAs in B-cell development and activation. Blood. 128:e10–e19. 2016. View Article : Google Scholar : PubMed/NCBI

162 

Delás MJ, Sabin LR, Dolzhenko E, Knott SR, Munera Maravilla E, Jackson BT, Wild SA, Kovacevic T, Stork EM, Zhou M, et al: lncRNA requirements for mouse acute myeloid leukemia and normal differentiation. Elife. 6:e256072017. View Article : Google Scholar : PubMed/NCBI

163 

Sirey TM, Roberts K, Haerty W, Bedoya-Reina O, Rogatti-Granados S, Tan JY, Li N, Heather LC, Carter RN, Cooper S, et al: The long non-coding RNA Cerox1 is a post transcriptional regulator of mitochondrial complex I catalytic activity. Elife. 8:e450512019. View Article : Google Scholar : PubMed/NCBI

164 

Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI

165 

Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, et al: A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 25:666–681. 2014. View Article : Google Scholar : PubMed/NCBI

166 

Huarte M: The emerging role of lncRNAs in cancer. Nat Med. 21:1253–1261. 2015. View Article : Google Scholar : PubMed/NCBI

167 

Liao D, Liu X, Yuan X, Feng P, Ouyang Z, Liu Y and Li C: Long non-coding RNA tumor protein 53 target gene 1 promotes cervical cancer development via regulating microRNA-33a-5p to target forkhead box K2. Cell Cycle. 21:572–584. 2022. View Article : Google Scholar : PubMed/NCBI

168 

Diaz-Lagares A, Crujeiras AB, Lopez-Serra P, Soler M, Setien F, Goyal A, Sandoval J, Hashimoto Y, Martinez-Cardús A, Gomez A, et al: Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc Natl Acad Sci USA. 113:E7535–E7544. 2016. View Article : Google Scholar : PubMed/NCBI

169 

Chen B, Lan J, Xiao Y, Liu P, Guo D, Gu Y, Song Y, Zhong Q, Ma D, Lei P and Liu Q: Long noncoding RNA TP53TG1 suppresses the growth and metastasis of hepatocellular carcinoma by regulating the PRDX4/β-catenin pathway. Cancer Lett. 513:75–89. 2021. View Article : Google Scholar : PubMed/NCBI

170 

Pan J, Fang S, Tian H, Zhou C, Zhao X, Tian H, He J, Shen W, Meng X, Jin X and Gong Z: lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer. 19:92020. View Article : Google Scholar : PubMed/NCBI

171 

Lin C, Xiang Y, Sheng J, Liu S, Cui M and Zhang X: Long non-coding RNA CRNDE promotes malignant progression of hepatocellular carcinoma through the miR-33a-5p/CDK6 axis. J Physiol Biochem. 76:469–481. 2020. View Article : Google Scholar : PubMed/NCBI

172 

Sasaki M, Ishikawa T, Ishiguro M, Okazaki S, Yamauchi S, Kikuchi A, Matsuyama T, Kawada K, Tokunaga M, Uetake H and Kinugasa Y: The effectiveness of plasma miR-33a-5p as a predictive biomarker for the efficacy of colorectal cancer chemotherapy. Oncol Lett. 21:4892021. View Article : Google Scholar : PubMed/NCBI

173 

Zhao Z, Gao J and Huang S: LncRNA SNHG7 promotes the HCC progression through miR-122-5p/FOXK2 axis. Dig Dis Sci. 67:925–935. 2022. View Article : Google Scholar : PubMed/NCBI

174 

van der Heide LP, Wijchers PJ, von Oerthel L, Burbach JP, Hoekman MF and Smidt MP: FoxK2 is required for cellular proliferation and survival. J Cell Physiol. 230:1013–1023. 2015. View Article : Google Scholar : PubMed/NCBI

175 

Qian Y, Xia S and Feng Z: Sox9 mediated transcriptional activation of FOXK2 is critical for colorectal cancer cells proliferation. Biochem Biophys Res Commun. 483:475–481. 2017. View Article : Google Scholar : PubMed/NCBI

176 

Ji Z, Donaldson IJ, Liu J, Hayes A, Zeef LA and Sharrocks AD: The forkhead transcription factor FOXK2 promotes AP-1-mediated transcriptional regulation. Mol Cell Biol. 32:385–398. 2012. View Article : Google Scholar : PubMed/NCBI

177 

Meehan RR, Lewis JD, McKay S, Kleiner EL and Bird AP: Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell. 58:499–507. 1989. View Article : Google Scholar : PubMed/NCBI

178 

Hendrich B and Bird A: Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 18:6538–6547. 1998. View Article : Google Scholar : PubMed/NCBI

179 

Chen X, Ji Z, Webber A and Sharrocks AD: Genome-wide binding studies reveal DNA binding specificity mechanisms and functional interplay amongst forkhead transcription factors. Nucleic Acids Res. 44:1566–1578. 2016. View Article : Google Scholar : PubMed/NCBI

180 

Komorek J, Kuppuswamy M, Subramanian T, Vijayalingam S, Lomonosova E, Zhao LJ, Mymryk JS, Schmitt K and Chinnadurai G: Adenovirus type 5 E1A and E6 proteins of low-risk cutaneous beta-human papillomaviruses suppress cell transformation through interaction with FOXK1/K2 transcription factors. J Virol. 84:2719–2731. 2010. View Article : Google Scholar : PubMed/NCBI

181 

Tang F, Cao F, Lu C, He X, Weng L and Sun L: Dvl2 facilitates the coordination of NF-κB and Wnt signaling to promote colitis-associated colorectal progression. Cancer Sci. 113:565–575. 2022. View Article : Google Scholar : PubMed/NCBI

182 

Good MC, Zalatan JG and Lim WA: Scaffold proteins: Hubs for controlling the flow of cellular information. Science. 332:680–686. 2011. View Article : Google Scholar : PubMed/NCBI

183 

Pan CQ, Sudol M, Sheetz M and Low BC: Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell Signal. 24:2143–2165. 2012. View Article : Google Scholar : PubMed/NCBI

184 

Kagan JC, Magupalli VG and Wu H: SMOCs: Supramolecular organizing centres that control innate immunity. Nat Rev Immunol. 14:821–826. 2014. View Article : Google Scholar : PubMed/NCBI

185 

Langeberg LK and Scott JD: Signalling scaffolds and local organization of cellular behaviour. Nat Rev Mol Cell Biol. 16:232–244. 2015. View Article : Google Scholar : PubMed/NCBI

186 

Liu Y, Ao X, Jia Z, Bai XY, Xu Z, Hu G, Jiang X, Chen M and Wu H: FOXK2 transcription factor suppresses ERα-positive breast cancer cell growth through down-regulating the stability of ERα via mechanism involving BRCA1/BARD1. Sci Rep. 5:87962015. View Article : Google Scholar : PubMed/NCBI

187 

Parsons R, Li GM, Longley MJ, Fang WH, Papadopoulos N, Jen J, de la Chapelle A, Kinzler KW, Vogelstein B and Modrich P: Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 75:1227–1236. 1993. View Article : Google Scholar : PubMed/NCBI

188 

Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M and Kolodner R: The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 75:1027–1038. 1993. View Article : Google Scholar : PubMed/NCBI

189 

Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomäki P, Sistonen P, Aaltonen LA, Nyström-Lahti M, et al: Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 75:1215–1225. 1993. View Article : Google Scholar : PubMed/NCBI

190 

Katoh M, Igarashi M, Fukuda H, Nakagama H and Katoh M: Cancer genetics and genomics of human FOX family genes. Cancer Lett. 328:198–206. 2013. View Article : Google Scholar : PubMed/NCBI

191 

Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, Lemaçon A, Soucy P, Glubb D, Rostamianfar A, et al: Association analysis identifies 65 new breast cancer risk loci. Nature. 551:92–94. 2017. View Article : Google Scholar : PubMed/NCBI

192 

Fujii Y and Nakamura M: FOXK2 transcription factor is a novel G/T-mismatch DNA binding protein. J Biochem. 147:705–709. 2010. View Article : Google Scholar : PubMed/NCBI

193 

Zhang F, Ma X, Li H, Zhang Y, Li X, Chen L, Guo G, Gao Y, Gu L, Xie Y, et al: FOXK2 suppresses the malignant phenotype and induces apoptosis through inhibition of EGFR in clear-cell renal cell carcinoma. Int J Cancer. 142:2543–2557. 2018. View Article : Google Scholar : PubMed/NCBI

194 

Shan L, Zhou X, Liu X, Wang Y, Su D, Hou Y, Yu N, Yang C, Liu B, Gao J, et al: FOXK2 elicits massive transcription repression and suppresses the hypoxic response and breast cancer carcinogenesis. Cancer Cell. 30:708–722. 2016. View Article : Google Scholar : PubMed/NCBI

195 

Wang B, Zhang X, Wang W, Zhu Z, Tang F, Wang D, Liu X, Zhuang H and Yan X: Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis. Onco Targets Ther. 11:1067–1075. 2018. View Article : Google Scholar : PubMed/NCBI

196 

Li S, Wang P, Ju H, Zhu T, Shi J and Huang Y: FOXK2 promotes the proliferation of papillary thyroid cancer cell by down-regulating autophagy. J Cancer. 13:858–868. 2022. View Article : Google Scholar : PubMed/NCBI

197 

Feng H, Jin Z, Liang J, Zhao Q, Zhan L, Yang Z, Yan J, Kuang J, Cheng X and Qiu W: FOXK2 transcriptionally activating VEGFA induces apatinib resistance in anaplastic thyroid cancer through VEGFA/VEGFR1 pathway. Oncogene. 40:6115–6129. 2021. View Article : Google Scholar : PubMed/NCBI

198 

Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, Hu S, Qiu Z, Qian M, Tian D, et al: Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 9:3879–3902. 2019. View Article : Google Scholar : PubMed/NCBI

199 

Baylin SB and Jones PA: Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 8:a0195052016. View Article : Google Scholar : PubMed/NCBI

200 

Jones PA, Issa JP and Baylin S: Targeting the cancer epigenome for therapy. Nat Rev Genet. 17:630–641. 2016. View Article : Google Scholar : PubMed/NCBI

201 

Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin AR, Amin A, Aquilano K, Arbiser J, Arreola A, Arzumanyan A, et al: Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol. 35 (Suppl 1):S276–S304. 2015. View Article : Google Scholar : PubMed/NCBI

202 

Duijf PHG, Nanayakkara D, Nones K, Srihari S, Kalimutho M and Khanna KK: Mechanisms of genomic instability in breast cancer. Trends Mol Med. 25:595–611. 2019. View Article : Google Scholar : PubMed/NCBI

203 

Rusin M, Zajkowicz A and Butkiewicz D: Resveratrol induces senescence-like growth inhibition of U-2 OS cells associated with the instability of telomeric DNA and upregulation of BRCA1. Mech Ageing Dev. 130:528–537. 2009. View Article : Google Scholar : PubMed/NCBI

204 

Falck J, Mailand N, Syljuåsen RG, Bartek J and Lukas J: The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 410:842–847. 2001. View Article : Google Scholar : PubMed/NCBI

205 

Matsuoka S, Huang M and Elledge SJ: Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 282:1893–1897. 1998. View Article : Google Scholar : PubMed/NCBI

206 

Mas-Ponte D and Supek F: DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. Nat Genet. 52:958–968. 2020. View Article : Google Scholar : PubMed/NCBI

207 

Barroso-Sousa R, Jain E, Cohen O, Kim D, Buendia-Buendia J, Winer E, Lin N, Tolaney SM and Wagle N: Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann Oncol. 31:387–394. 2020. View Article : Google Scholar : PubMed/NCBI

208 

LeBlanc SJ, Gauer JW, Hao P, Case BC, Hingorani MM, Weninger KR and Erie DA: Coordinated protein and DNA conformational changes govern mismatch repair initiation by MutS. Nucleic Acids Res. 46:10782–10795. 2018.PubMed/NCBI

209 

Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, Barbour H, Corbeil L, Hébert J, Drobetsky E, et al: Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci USA. 111:285–290. 2014. View Article : Google Scholar : PubMed/NCBI

210 

Kundert K and Fraser JS: DNA-binding proteins meet their mismatch. Nature. 587:199–200. 2020. View Article : Google Scholar : PubMed/NCBI

211 

Li J, Coïc E, Lee K, Lee CS, Kim JA, Wu Q and Haber JE: Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1. PLoS Genet. 8:e10026302012. View Article : Google Scholar : PubMed/NCBI

212 

Maciejowski J and de Lange T: Telomeres in cancer: Tumour suppression and genome instability. Nat Rev Mol Cell Biol. 18:175–186. 2017. View Article : Google Scholar : PubMed/NCBI

213 

Chakravarti D, LaBella KA and DePinho RA: Telomeres: History, health and hallmarks of aging. Cell. 184:306–322. 2021. View Article : Google Scholar : PubMed/NCBI

214 

Tang M, Feng X, Pei G, Srivastava M, Wang C, Chen Z, Li S, Zhang H, Zhao Z, Li X and Chen J: FOXK1 participates in DNA damage response by controlling 53BP1 function. Cell Rep. 32:1080182020. View Article : Google Scholar : PubMed/NCBI

215 

Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A and Hemminki K: Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 343:78–85. 2000. View Article : Google Scholar : PubMed/NCBI

216 

Berdasco M and Esteller M: Aberrant epigenetic landscape in cancer: How cellular identity goes awry. Dev Cell. 19:698–711. 2010. View Article : Google Scholar : PubMed/NCBI

217 

Esteller M: Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 8:286–298. 2007. View Article : Google Scholar : PubMed/NCBI

218 

Bitman-Lotan E and Orian A: Nuclear organization and regulation of the differentiated state. Cell Mol Life Sci. 78:3141–3158. 2021. View Article : Google Scholar : PubMed/NCBI

219 

Goldberg AD, Allis CD and Bernstein E: Epigenetics: A landscape takes shape. Cell. 128:635–638. 2007. View Article : Google Scholar : PubMed/NCBI

220 

Nam AS, Chaligne R and Landau DA: Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat Rev Genet. 22:3–18. 2021. View Article : Google Scholar : PubMed/NCBI

221 

Feng Y, Liu X and Pauklin S: 3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein Cell. 12:440–454. 2021. View Article : Google Scholar : PubMed/NCBI

222 

Toh TB, Lim JJ and Chow EK: Epigenetics in cancer stem cells. Mol Cancer. 16:292017. View Article : Google Scholar : PubMed/NCBI

223 

Dvorak HF: Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315:1650–1659. 1986. View Article : Google Scholar : PubMed/NCBI

224 

Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI

225 

Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautès-Fridman C and Fridman WH: Immune infiltration in human tumors: A prognostic factor that should not be ignored. Oncogene. 29:1093–1102. 2010. View Article : Google Scholar : PubMed/NCBI

226 

Grivennikov SI, Greten FR and Karin M: Immunity, inflammation, and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI

227 

Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI

228 

van Bilsen JHM, Dulos R, van Stee MF, Meima MY, Rouhani Rankouhi T, Neergaard Jacobsen L, Staudt Kvistgaard A, Garthoff JA, Knippels LMJ, Knipping K, et al: Seeking windows of opportunity to shape lifelong immune health: A network-based strategy to predict and prioritize markers of early life immune modulation. Front Immunol. 11:6442020. View Article : Google Scholar : PubMed/NCBI

229 

Oh H and Ghosh S: NF-κB: Roles and regulation in different CD4(+) T-cell subsets. Immunol Rev. 252:41–51. 2013. View Article : Google Scholar : PubMed/NCBI

230 

Blanchett S, Boal-Carvalho I, Layzell S and Seddon B: NF-κB and extrinsic cell death pathways-entwined do-or-die decisions for T cells. Trends Immunol. 42:76–88. 2021. View Article : Google Scholar : PubMed/NCBI

231 

Gilmore TD: Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 25:6680–6684. 2006. View Article : Google Scholar : PubMed/NCBI

232 

Karin M and Greten FR: NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 5:749–759. 2005. View Article : Google Scholar : PubMed/NCBI

233 

Li Q, Withoff S and Verma IM: Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends Immunol. 26:318–325. 2005. View Article : Google Scholar : PubMed/NCBI

234 

DeNardo DG, Andreu P and Coussens LM: Interactions between lymphocytes and myeloid cells regulate pro-versus anti-tumor immunity. Cancer Metastasis Rev. 29:309–316. 2010. View Article : Google Scholar : PubMed/NCBI

235 

Ohnishi S, Ma N, Thanan R, Pinlaor S, Hammam O, Murata M and Kawanishi S: DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxid Med Cell Longev. 2013:3870142013. View Article : Google Scholar : PubMed/NCBI

236 

Martin TD, Patel RS, Cook DR, Choi MY, Patil A, Liang AC, Li MZ, Haigis KM and Elledge SJ: The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science. 373:1327–1335. 2021. View Article : Google Scholar : PubMed/NCBI

237 

Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA and Knight R: The microbiome and human cancer. Science. 371:eabc45522021. View Article : Google Scholar : PubMed/NCBI

238 

Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A and Wargo JA: The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 33:570–580. 2018. View Article : Google Scholar : PubMed/NCBI

239 

Rowe WP, Huebner RJ, Gilmore LK, Parrott RH and Ward TG: Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med. 84:570–573. 1953. View Article : Google Scholar : PubMed/NCBI

240 

Trentin JJ, Yabe Y and Taylor G: The quest for human cancer viruses. Science. 137:835–841. 1962. View Article : Google Scholar : PubMed/NCBI

241 

Javier RT: Adenovirus type 9 E4 open reading frame 1 encodes a transforming protein required for the production of mammary tumors in rats. J Virol. 68:3917–3924. 1994. View Article : Google Scholar : PubMed/NCBI

242 

Sanchez-Prieto R, de Alava E, Palomino T, Guinea J, Fernandez V, Cebrian S, LLeonart M, Cabello P, Martin P, San Roman C, et al: An association between viral genes and human oncogenic alterations: The adenovirus E1A induces the Ewing tumor fusion transcript EWS-FLI1. Nat Med. 5:1076–1079. 1999. View Article : Google Scholar : PubMed/NCBI

243 

Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI

244 

Semenza GL: Hypoxia-inducible factor 1: Master regulator of O2 homeostasis. Curr Opin Genet Dev. 8:588–594. 1998. View Article : Google Scholar : PubMed/NCBI

245 

Vaupel P and Mayer A: Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 26:225–239. 2007. View Article : Google Scholar : PubMed/NCBI

246 

Sui H, Fan S, Liu W, Li Y, Zhang X, Du Y and Bao H: LINC00028 regulates the development of TGFβ1-treated human tenon capsule fibroblasts by targeting miR-204-5p. Biochem Biophys Res Commun. Feb 19–2020.(Epub ahead of print). View Article : Google Scholar

247 

Wittstatt J, Weider M, Wegner M and Reiprich S: MicroRNA miR-204 regulates proliferation and differentiation of oligodendroglia in culture. Glia. 68:2015–2027. 2020. View Article : Google Scholar : PubMed/NCBI

248 

Zhang J, Su M and Yin Z: Construction of inflammatory directed polymer micelles and its application in acute lung injury. AAPS PharmSciTech. 21:2172020. View Article : Google Scholar : PubMed/NCBI

249 

Wang S, Liu Z, Wang L and Zhang X: NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 6:327–334. 2009. View Article : Google Scholar : PubMed/NCBI

250 

Engelman JA, Luo J and Cantley LC: The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI

251 

Malumbres M: Cyclin-dependent kinases. Genome Biol. 15:1222014. View Article : Google Scholar : PubMed/NCBI

252 

Greer EL and Brunet A: FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 24:7410–7425. 2005. View Article : Google Scholar : PubMed/NCBI

253 

Katoh M and Katoh M: Human FOX gene family (Review). Int J Oncol. 25:1495–1500. 2004.PubMed/NCBI

254 

Koranda M, Schleiffer A, Endler L and Ammerer G: Forkhead-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature. 406:94–98. 2000. View Article : Google Scholar : PubMed/NCBI

255 

Pic A, Lim FL, Ross SJ, Veal EA, Johnson AL, Sultan MR, West AG, Johnston LH, Sharrocks AD and Morgan BA: The forkhead protein Fkh2 is a component of the yeast cell cycle transcription factor SFF. EMBO J. 19:3750–3761. 2000. View Article : Google Scholar : PubMed/NCBI

256 

Kumar R, Reynolds DM, Shevchenko A, Shevchenko A, Goldstone SD and Dalton S: Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr Biol. 10:896–906. 2000. View Article : Google Scholar : PubMed/NCBI

257 

Ho KK, Myatt SS and Lam EW: A number of forks in the path: Cycling with FoxO. Oncogene. 27:2300–2311. 2008. View Article : Google Scholar : PubMed/NCBI

258 

Laoukili J, Stahl M and Medema RH: FoxM1: At the crossroads of ageing and cancer. Biochim Biophys Acta. 1775:92–102. 2007.PubMed/NCBI

259 

Yan J, Xu L, Crawford G, Wang Z and Burgess SM: The forkhead transcription factor FoxI1 remains bound to condensed mitotic chromosomes and stably remodels chromatin structure. Mol Cell Biol. 26:155–168. 2006. View Article : Google Scholar : PubMed/NCBI

260 

Liang J and Shang Y: Estrogen and cancer. Annu Rev Physiol. 75:225–240. 2013. View Article : Google Scholar : PubMed/NCBI

261 

Douglas CC, Johnson SA and Arjmandi BH: Soy and its isoflavones: The truth behind the science in breast cancer. Anticancer Agents Med Chem. 13:1178–1187. 2013. View Article : Google Scholar : PubMed/NCBI

262 

Eroles P, Bosch A, Pérez-Fidalgo JA and Lluch A: Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treat Rev. 38:698–707. 2012. View Article : Google Scholar : PubMed/NCBI

263 

Nestal de Moraes G, Khongkow P, Gong C, Yao S, Gomes AR, Ji Z, Kandola N, Delbue D, Man EP, Khoo US, et al: Forkhead box K2 modulates epirubicin and paclitaxel sensitivity through FOXO3a in breast cancer. Oncogenesis. 4:e1672015. View Article : Google Scholar : PubMed/NCBI

264 

Zhang Y, Wang Y, Zhao G, Tanner EJ, Adli M and Matei D: FOXK2 promotes ovarian cancer stemness by regulating the unfolded protein response pathway. J Clin Invest. 132:e1515912022. View Article : Google Scholar : PubMed/NCBI

265 

Amin ARMR, Karpowicz PA, Carey TE, Arbiser J, Nahta R, Chen ZG, Dong JT, Kucuk O, Khan GN, Huang GS, et al: Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol. 35 (Suppl 1):S55–S77. 2015. View Article : Google Scholar : PubMed/NCBI

266 

Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, Nuzzo CM, Vaccaro V, Vari S, Cognetti F and Ciuffreda L: PTEN: Multiple functions in human malignant tumors. Front Oncol. 5:242015. View Article : Google Scholar : PubMed/NCBI

267 

Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, Lambert J, Beldjord K, Lengliné E, De Gunzburg N, Payet-Bornet D, Lhermitte L, Mossafa H, et al: Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: A group for research in adult acute lymphoblastic leukemia study. J Clin Oncol. 31:4333–4342. 2013. View Article : Google Scholar : PubMed/NCBI

268 

Tesio M, Trinquand A, Macintyre E and Asnafi V: Oncogenic PTEN functions and models in T-cell malignancies. Oncogene. 35:3887–3896. 2016. View Article : Google Scholar : PubMed/NCBI

269 

Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, et al: The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 49:1211–1218. 2017. View Article : Google Scholar : PubMed/NCBI

270 

Wu W, Chen Y, Ye S, Yang H, Yang J and Quan J: Transcription factor forkhead box K1 regulates miR-32 expression and enhances cell proliferation in colorectal cancer. Oncol Lett. 21:4072021. View Article : Google Scholar : PubMed/NCBI

271 

Wu W, Tan W, Ye S, Zhou Y and Quan J: Analysis of the promoter region of the human miR-32 gene in colorectal cancer. Oncol Lett. 17:3743–3750. 2019.PubMed/NCBI

272 

Opel D, Schnaiter A, Dodier D, Jovanovic M, Gerhardinger A, Idler I, Mertens D, Bullinger L, Stilgenbauer S and Fulda S: Targeting inhibitor of apoptosis proteins by Smac mimetic elicits cell death in poor prognostic subgroups of chronic lymphocytic leukemia. Int J Cancer. 137:2959–2970. 2015. View Article : Google Scholar : PubMed/NCBI

273 

Mergny JL, Lacroix L, Teulade-Fichou MP, Hounsou C, Guittat L, Hoarau M, Arimondo PB, Vigneron JP, Lehn JM, Riou JF, et al: Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc Natl Acad Sci USA. 98:3062–3067. 2001. View Article : Google Scholar : PubMed/NCBI

274 

Yin XM, Oltvai ZN and Korsmeyer SJ: BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 369:321–323. 1994. View Article : Google Scholar : PubMed/NCBI

275 

Youle RJ and Strasser A: The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 9:47–59. 2008. View Article : Google Scholar : PubMed/NCBI

276 

Asnaghi L, Calastretti A, Bevilacqua A, D'Agnano I, Gatti G, Canti G, Delia D, Capaccioli S and Nicolin A: Bcl-2 phosphorylation and apoptosis activated by damaged microtubules require mTOR and are regulated by Akt. Oncogene. 23:5781–5791. 2004. View Article : Google Scholar : PubMed/NCBI

277 

Van Der Heide LP, Hoekman MF and Smidt MP: The ins and outs of FoxO shuttling: Mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 380:297–309. 2004. View Article : Google Scholar : PubMed/NCBI

278 

Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1:27–31. 1995. View Article : Google Scholar : PubMed/NCBI

279 

Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 82:4–6. 1990. View Article : Google Scholar : PubMed/NCBI

280 

Baeriswyl V and Christofori G: The angiogenic switch in carcinogenesis. Semin Cancer Biol. 19:329–337. 2009. View Article : Google Scholar : PubMed/NCBI

281 

Cao Y: Antiangiogenic cancer therapy. Semin Cancer Biol. 14:139–145. 2004. View Article : Google Scholar : PubMed/NCBI

282 

Bergers G and Benjamin LE: Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 3:401–410. 2003. View Article : Google Scholar : PubMed/NCBI

283 

Song Y, Zeng S, Zheng G, Chen D, Li P, Yang M, Luo K, Yin J, Gu Y, Zhang Z, et al: FOXO3a-driven miRNA signatures suppresses VEGF-A/NRP1 signaling and breast cancer metastasis. Oncogene. 40:777–790. 2021. View Article : Google Scholar : PubMed/NCBI

284 

Karaman S, Leppänen VM and Alitalo K: Vascular endothelial growth factor signaling in development and disease. Development. 145:dev1510192018. View Article : Google Scholar : PubMed/NCBI

285 

Ellis LM and Hicklin DJ: VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat Rev Cancer. 8:579–591. 2008. View Article : Google Scholar : PubMed/NCBI

286 

El Atat O, Fakih A and El-Sibai M: RHOG activates RAC1 through CDC42 leading to tube formation in vascular endothelial cells. Cells. 8:1712019. View Article : Google Scholar : PubMed/NCBI

287 

Jin Z, Cheng X, Feng H, Kuang J, Yang W, Peng C, Shen B and Qiu W: Apatinib inhibits angiogenesis via suppressing Akt/GSK3β/ANG signaling pathway in anaplastic thyroid cancer. Cell Physiol Biochem. 44:1471–1484. 2017. View Article : Google Scholar : PubMed/NCBI

288 

Wang S, Xiao Z, Hong Z, Jiao H, Zhu S, Zhao Y, Bi J, Qiu J, Zhang D, Yan J, et al: FOXF1 promotes angiogenesis and accelerates bevacizumab resistance in colorectal cancer by transcriptionally activating VEGFA. Cancer Lett. 439:78–90. 2018. View Article : Google Scholar : PubMed/NCBI

289 

Sun T, Wang H, Li Q, Qian Z and Shen C: Forkhead box protein k1 recruits TET1 to act as a tumor suppressor and is associated with MRI detection. Jpn J Clin Oncol. 46:209–221. 2016. View Article : Google Scholar : PubMed/NCBI

290 

Bensinger SJ and Christofk HR: New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol. 23:352–361. 2012. View Article : Google Scholar : PubMed/NCBI

291 

Palm W and Thompson CB: Nutrient acquisition strategies of mammalian cells. Nature. 546:234–242. 2017. View Article : Google Scholar : PubMed/NCBI

292 

Cairns RA, Harris IS and Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95. 2011. View Article : Google Scholar : PubMed/NCBI

293 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

294 

Tamada M, Suematsu M and Saya H: Pyruvate kinase M2: Multiple faces for conferring benefits on cancer cells. Clin Cancer Res. 18:5554–5561. 2012. View Article : Google Scholar : PubMed/NCBI

295 

Waldhart AN, Dykstra H, Peck AS, Boguslawski EA, Madaj ZB, Wen J, Veldkamp K, Hollowell M, Zheng B, Cantley LC, et al: Phosphorylation of TXNIP by AKT mediates acute influx of glucose in response to insulin. Cell Rep. 19:2005–2013. 2017. View Article : Google Scholar : PubMed/NCBI

296 

Sheth SS, Castellani LW, Chari S, Wagg C, Thipphavong CK, Bodnar JS, Tontonoz P, Attie AD, Lopaschuk GD and Lusis AJ: Thioredoxin-interacting protein deficiency disrupts the fasting-feeding metabolic transition. J Lipid Res. 46:123–134. 2005. View Article : Google Scholar : PubMed/NCBI

297 

Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI

298 

Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 8:705–713. 2008. View Article : Google Scholar : PubMed/NCBI

299 

Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K and Mizushima N: Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25:795–800. 2011. View Article : Google Scholar : PubMed/NCBI

300 

Sun T, Li X, Zhang P, Chen WD, Zhang HL, Li DD, Deng R, Qian XJ, Jiao L, Ji J, et al: Acetylation of beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat Commun. 6:72152015. View Article : Google Scholar : PubMed/NCBI

301 

Kimmelman AC and White E: Autophagy and tumor metabolism. Cell Metab. 25:1037–1043. 2017. View Article : Google Scholar : PubMed/NCBI

302 

Nakatogawa H, Suzuki K, Kamada Y and Ohsumi Y: Dynamics and diversity in autophagy mechanisms: Lessons from yeast. Nat Rev Mol Cell Biol. 10:458–467. 2009. View Article : Google Scholar : PubMed/NCBI

303 

Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q and Guan KL: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 152:290–303. 2013. View Article : Google Scholar : PubMed/NCBI

304 

Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR and Weirauch MT: The human transcription factors. Cell. 172:650–665. 2018. View Article : Google Scholar : PubMed/NCBI

305 

Reiter F, Wienerroither S and Stark A: Combinatorial function of transcription factors and cofactors. Curr Opin Genet Dev. 43:73–81. 2017. View Article : Google Scholar : PubMed/NCBI

306 

Wunderlich Z and Mirny LA: Different gene regulation strategies revealed by analysis of binding motifs. Trends Genet. 25:434–440. 2009. View Article : Google Scholar : PubMed/NCBI

307 

Kuroyanagi H: Fox-1 family of RNA-binding proteins. Cell Mol Life Sci. 66:3895–3907. 2009. View Article : Google Scholar : PubMed/NCBI

308 

Morgunova E and Taipale J: Structural perspective of cooperative transcription factor binding. Curr Opin Struct Biol. 47:1–8. 2017. View Article : Google Scholar : PubMed/NCBI

309 

Klemm SL, Shipony Z and Greenleaf WJ: Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 20:207–220. 2019. View Article : Google Scholar : PubMed/NCBI

310 

Iwafuchi-Doi M and Zaret KS: Pioneer transcription factors in cell reprogramming. Genes Dev. 28:2679–2692. 2014. View Article : Google Scholar : PubMed/NCBI

311 

Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M and Zaret KS: Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell. 161:555–568. 2015. View Article : Google Scholar : PubMed/NCBI

312 

Swinstead EE, Miranda TB, Paakinaho V, Baek S, Goldstein I, Hawkins M, Karpova TS, Ball D, Mazza D, Lavis LD, et al: Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell. 165:593–605. 2016. View Article : Google Scholar : PubMed/NCBI

313 

Hughes AL, Jin Y, Rando OJ and Struhl K: A functional evolutionary approach to identify determinants of nucleosome positioning: A unifying model for establishing the genome-wide pattern. Mol Cell. 48:5–15. 2012. View Article : Google Scholar : PubMed/NCBI

314 

Struhl K and Segal E: Determinants of nucleosome positioning. Nat Struct Mol Biol. 20:267–273. 2013. View Article : Google Scholar : PubMed/NCBI

315 

Swinstead EE, Paakinaho V, Presman DM and Hager GL: Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: A new perspective: Multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. Bioessays. 38:1150–1157. 2016. View Article : Google Scholar : PubMed/NCBI

316 

Zhu F, Farnung L, Kaasinen E, Sahu B, Yin Y, Wei B, Dodonova SO, Nitta KR, Morgunova E, Taipale M, et al: The interaction landscape between transcription factors and the nucleosome. Nature. 562:76–81. 2018. View Article : Google Scholar : PubMed/NCBI

317 

Iwafuchi-Doi M and Zaret KS: Cell fate control by pioneer transcription factors. Development. 143:1833–1837. 2016. View Article : Google Scholar : PubMed/NCBI

318 

Allis CD and Jenuwein T: The molecular hallmarks of epigenetic control. Nat Rev Genet. 17:487–500. 2016. View Article : Google Scholar : PubMed/NCBI

319 

Dann GP, Liszczak GP, Bagert JD, Müller MM, Nguyen UTT, Wojcik F, Brown ZZ, Bos J, Panchenko T, Pihl R, et al: ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature. 548:607–611. 2017. View Article : Google Scholar : PubMed/NCBI

320 

Iwafuchi-Doi M, Donahue G, Kakumanu A, Watts JA, Mahony S, Pugh BF, Lee D, Kaestner KH and Zaret KS: The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol Cell. 62:79–91. 2016. View Article : Google Scholar : PubMed/NCBI

321 

Iwafuchi M, Cuesta I, Donahue G, Takenaka N, Osipovich AB, Magnuson MA, Roder H, Seeholzer SH, Santisteban P and Zaret KS: Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones. Nat Genet. 52:418–427. 2020. View Article : Google Scholar : PubMed/NCBI

322 

Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M and Zaret KS: Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 9:279–289. 2002. View Article : Google Scholar : PubMed/NCBI

323 

Shim EY, Woodcock C and Zaret KS: Nucleosome positioning by the winged helix transcription factor HNF3. Genes Dev. 12:5–10. 1998. View Article : Google Scholar : PubMed/NCBI

324 

Chen J, Zhang Z, Li L, Chen BC, Revyakin A, Hajj B, Legant W, Dahan M, Lionnet T, Betzig E, et al: Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell. 156:1274–1285. 2014. View Article : Google Scholar : PubMed/NCBI

325 

Gebhardt JC, Suter DM, Roy R, Zhao ZW, Chapman AR, Basu S, Maniatis T and Xie XS: Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods. 10:421–426. 2013. View Article : Google Scholar : PubMed/NCBI

326 

Mazza D, Abernathy A, Golob N, Morisaki T and McNally JG: A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40:e1192012. View Article : Google Scholar : PubMed/NCBI

327 

Morisaki T, Müller WG, Golob N, Mazza D and McNally JG: Single-molecule analysis of transcription factor binding at transcription sites in live cells. Nat Commun. 5:44562014. View Article : Google Scholar : PubMed/NCBI

328 

Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V, Meyer C and Krapp A: Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun. 4:17132013. View Article : Google Scholar : PubMed/NCBI

329 

Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M and Naef F: Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9:e10005952011. View Article : Google Scholar : PubMed/NCBI

330 

Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N and Stratton MR: A census of human cancer genes. Nat Rev Cancer. 4:177–183. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang Z, Liu X, Wang Z and Hu Z: FOXK2 transcription factor and its roles in tumorigenesis (Review). Oncol Lett 24: 461, 2022.
APA
Wang, Z., Liu, X., Wang, Z., & Hu, Z. (2022). FOXK2 transcription factor and its roles in tumorigenesis (Review). Oncology Letters, 24, 461. https://doi.org/10.3892/ol.2022.13581
MLA
Wang, Z., Liu, X., Wang, Z., Hu, Z."FOXK2 transcription factor and its roles in tumorigenesis (Review)". Oncology Letters 24.6 (2022): 461.
Chicago
Wang, Z., Liu, X., Wang, Z., Hu, Z."FOXK2 transcription factor and its roles in tumorigenesis (Review)". Oncology Letters 24, no. 6 (2022): 461. https://doi.org/10.3892/ol.2022.13581
Copy and paste a formatted citation
x
Spandidos Publications style
Wang Z, Liu X, Wang Z and Hu Z: FOXK2 transcription factor and its roles in tumorigenesis (Review). Oncol Lett 24: 461, 2022.
APA
Wang, Z., Liu, X., Wang, Z., & Hu, Z. (2022). FOXK2 transcription factor and its roles in tumorigenesis (Review). Oncology Letters, 24, 461. https://doi.org/10.3892/ol.2022.13581
MLA
Wang, Z., Liu, X., Wang, Z., Hu, Z."FOXK2 transcription factor and its roles in tumorigenesis (Review)". Oncology Letters 24.6 (2022): 461.
Chicago
Wang, Z., Liu, X., Wang, Z., Hu, Z."FOXK2 transcription factor and its roles in tumorigenesis (Review)". Oncology Letters 24, no. 6 (2022): 461. https://doi.org/10.3892/ol.2022.13581
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team