You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Chen Y, Wu J, Liang G, Geng G, Zhao F, Yin P, Nowsheen S, Wu C, Li Y, Li L, et al: CHK2-FOXK axis promotes transcriptional control of autophagy programs. Sci Adv. 6:eaax58192020. View Article : Google Scholar : PubMed/NCBI | |
|
He L, Gomes AP, Wang X, Yoon SO, Lee G, Nagiec MJ, Cho S, Chavez A, Islam T, Yu Y, et al: mTORC1 promotes metabolic reprogramming by the suppression of GSK3-dependent Foxk1 phosphorylation. Mol Cell. 70:949–960.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hackmann K, Stadler A, Schallner J, Franke K, Gerlach EM, Schrock E, Rump A, Fauth C, Tinschert S and Oexle K: Severe intellectual disability, west syndrome, Dandy-Walker malformation, and syndactyly in a patient with partial tetrasomy 17q25.3. Am J Med Genet A. 161A:3144–3149. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Nestal de Moraes G, Carneiro LD, Maia RC, Lam EW and Sharrocks AD: FOXK2 transcription factor and its emerging roles in cancer. Cancers (Basel). 11:3932019. View Article : Google Scholar : PubMed/NCBI | |
|
Gitter A, Siegfried Z, Klutstein M, Fornes O, Oliva B, Simon I and Bar-Joseph Z: Backup in gene regulatory networks explains differences between binding and knockout results. Mol Syst Biol. 5:2762009. View Article : Google Scholar : PubMed/NCBI | |
|
Dai Z, Dai X, Xiang Q and Feng J: Robustness of transcriptional regulatory program influences gene expression variability. BMC Genomics. 10:5732009. View Article : Google Scholar : PubMed/NCBI | |
|
Wu WS and Lai FJ: Functional redundancy of transcription factors explains why most binding targets of a transcription factor are not affected when the transcription factor is knocked out. BMC Syst Biol. 9 (Suppl 6):S22015. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kaestner KH, Knochel W and Martinez DE: Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14:142–146. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Lam EW, Brosens JJ, Gomes AR and Koo CY: Forkhead box proteins: Tuning forks for transcriptional harmony. Nat Rev Cancer. 13:482–495. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Hao X, Yu W, Wang Y, Li P and Wang J: Critical role of FOXO3a in carcinogenesis. Mol Cancer. 17:1042018. View Article : Google Scholar : PubMed/NCBI | |
|
Nakagawa S, Gisselbrecht SS, Rogers JM, Hartl DL and Bulyk ML: DNA-binding specificity changes in the evolution of forkhead transcription factors. Proc Natl Acad Sci USA. 110:12349–12354. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Lai CF, Sigman DS and Gaynor RB: Cloning of a cellular factor, interleukin binding factor, that binds to NFAT-like motifs in the human immunodeficiency virus long terminal repeat. Proc Natl Acad Sci USA. 88:7739–7743. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Huang JT and Lee V: Identification and characterization of a novel human FOXK1 gene in silico. Int J Oncol. 25:751–757. 2004.PubMed/NCBI | |
|
Mahajan A, Yuan C, Lee H, Chen ES, Wu PY and Tsai MD: Structure and function of the phosphothreonine-specific FHA domain. Sci Signal. 1:re122008. View Article : Google Scholar : PubMed/NCBI | |
|
Durocher D and Jackson SP: The FHA domain. FEBS Lett. 513:58–66. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Reinhardt HC and Yaffe MB: Phospho-Ser/Thr-binding domains: Navigating the cell cycle and DNA damage response. Nat Rev Mol Cell Biol. 14:563–580. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kalnina Z, Zayakin P, Silina K and Linē A: Alterations of pre-mRNA splicing in cancer. Genes Chromosomes Cancer. 42:342–357. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Roy M, Xu Q and Lee C: Evidence that public database records for many cancer-associated genes reflect a splice form found in tumors and lack normal splice forms. Nucleic Acids Res. 33:5026–5033. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, Peat D, Gillatt D and Harper SJ: VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res. 62:4123–4131. 2002.PubMed/NCBI | |
|
Hu Y, Fang C and Xu Y: The effect of isoforms of the cell polarity protein, human ASIP, on the cell cycle and Fas/FasL-mediated apoptosis in human hepatoma cells. Cell Mol Life Sci. 62:1974–1983. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Duke L, Zhang PS, Arlinghaus RB, Symmans WF, Sahin A, Mendez R and Dai JL: Alternative splicing disrupts a nuclear localization signal in spleen tyrosine kinase that is required for invasion suppression in breast cancer. Cancer Res. 63:4724–4730. 2003.PubMed/NCBI | |
|
Nirula A, Moore DJ and Gaynor RB: Constitutive binding of the transcription factor interleukin-2 (IL-2) enhancer binding factor to the IL-2 promoter. J Biol Chem. 272:7736–7745. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Marais A, Ji Z, Child ES, Krause E, Mann DJ and Sharrocks AD: Cell cycle-dependent regulation of the forkhead transcription factor FOXK2 by CDK·cyclin complexes. J Biol Chem. 285:35728–35739. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Q, Shai O, Lee LJ, Frey BJ and Blencowe BJ: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 40:1413–1415. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Lusis AJ, Sparkes R, Nirula A and Gaynor R: Characterization and chromosomal mapping of the gene encoding the cellular DNA binding protein ILF. Genomics. 13:665–671. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP and Burge CB: Alternative isoform regulation in human tissue transcriptomes. Nature. 456:470–476. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Merkin J, Russell C, Chen P and Burge CB: Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science. 338:1593–1599. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Climente-González H, Porta-Pardo E, Godzik A and Eyras E: The functional impact of alternative splicing in cancer. Cell Rep. 20:2215–2226. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Li X, Lee M, Jun S, Aziz KE, Feng L, Tran MK, Li N, McCrea PD, Park JI and Chen J: FOXKs promote Wnt/β-catenin signaling by translocating DVL into the nucleus. Dev Cell. 32:707–718. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao X, Wu W, Zhang Y, Yu W, Ao X and Wang J: FOXK transcription factors: Regulation and critical role in cancer. Cancer Lett. 458:1–12. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Giardina B, Messana I, Scatena R and Castagnola M: The multiple functions of hemoglobin. Crit Rev Biochem Mol Biol. 30:165–196. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Arbez N, Ratovitski T, Roby E, Chighladze E, Stewart JC, Ren M, Wang X, Lavery DJ and Ross CA: Post-translational modifications clustering within proteolytic domains decrease mutant huntingtin toxicity. J Biol Chem. 292:19238–19249. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Snider NT and Omary MB: Post-translational modifications of intermediate filament proteins: Mechanisms and functions. Nat Rev Mol Cell Biol. 15:163–177. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Richard SA, Jiang Y, Xiang LH, Zhou S, Wang J, Su Z and Xu H: Post-translational modifications of high mobility group box 1 and cancer. Am J Transl Res. 9:5181–5196. 2017.PubMed/NCBI | |
|
Corujo D and Buschbeck M: Post-translational modifications of H2A histone variants and their role in cancer. Cancers (Basel). 10:592018. View Article : Google Scholar : PubMed/NCBI | |
|
Iavarone F, Desiderio C, Vitali A, Messana I, Martelli C, Castagnola M and Cabras T: Cryptides: Latent peptides everywhere. Crit Rev Biochem Mol Biol. 53:246–263. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Huang H, Arighi CN, Ross KE, Ren J, Li G, Chen SC, Wang Q, Cowart J, Vijay-Shanker K and Wu CH: iPTMnet: An integrated resource for protein post-translational modification network discovery. Nucleic Acids Res. 46:D542–D550. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yao B, Christian KM, He C, Jin P, Ming GL and Song H: Epigenetic mechanisms in neurogenesis. Nat Rev Neurosci. 17:537–549. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu MY, DeNizio JE, Schutsky EK and Kohli RM: The expanding scope and impact of epigenetic cytosine modifications. Curr Opin Chem Biol. 33:67–73. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jones MJ, Goodman SJ and Kobor MS: DNA methylation and healthy human aging. Aging Cell. 14:924–932. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bird A: Perceptions of epigenetics. Nature. 447:396–398. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Tsuchida T, Mano T, Koshi-Mano K, Bannai T, Matsubara T, Yamashita S, Ushijima T, Nagata K, Murayama S, Toda T, et al: Methylation changes and aberrant expression of FGFR3 in Lewy body disease neurons. Brain Res. 1697:59–66. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pan XY, Yang Y, Meng HW, Li HD, Chen X, Huang HM, Bu FT, Yu HX, Wang Q, Huang C, et al: DNA methylation of PTGIS enhances hepatic stellate cells activation and liver fibrogenesis. Front Pharmacol. 9:5532018. View Article : Google Scholar : PubMed/NCBI | |
|
Hopp L, Löffler-Wirth H, Galle J and Binder H: Combined SOM-portrayal of gene expression and DNA methylation landscapes disentangles modes of epigenetic regulation in glioblastoma. Epigenomics. 10:745–764. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lopez-Serra P and Esteller M: DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene. 31:1609–1622. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Le TN, Schumann U, Smith NA, Tiwari S, Au PC, Zhu QH, Taylor JM, Kazan K, Llewellyn DJ, Zhang R, et al: DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol. 15:4582014. View Article : Google Scholar : PubMed/NCBI | |
|
Jung M and Pfeifer GP: Aging and DNA methylation. BMC Biol. 13:72015. View Article : Google Scholar : PubMed/NCBI | |
|
Bormann F, Rodríguez-Paredes M, Lasitschka F, Edelmann D, Musch T, Benner A, Bergman Y, Dieter SM, Ball CR, Glimm H, et al: Cell-of-Origin DNA methylation signatures are maintained during colorectal carcinogenesis. Cell Rep. 23:3407–3418. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jaenisch R and Bird A: Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nat Genet. 33 (Suppl):S245–S254. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Egger G, Liang G, Aparicio A and Jones PA: Epigenetics in human disease and prospects for epigenetic therapy. Nature. 429:457–463. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Robertson KD: DNA methylation and human disease. Nat Rev Genet. 6:597–610. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bird A, Taggart M, Frommer M, Miller OJ and Macleod D: A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell. 40:91–99. 1985. View Article : Google Scholar : PubMed/NCBI | |
|
Goodrich JM, Furlong MA, Caban-Martinez AJ, Jung AM, Batai K, Jenkins T, Beitel S, Littau S, Gulotta J, Wallentine D, et al: Differential DNA methylation by hispanic ethnicity among firefighters in the United States. Epigenet Insights. Mar 26–2021.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Crujeiras AB, Pissios P, Moreno-Navarrete JM, Diaz-Lagares A, Sandoval J, Gomez A, Ricart W, Esteller M, Casanueva FF and Fernandez-Real JM: An epigenetic signature in adipose tissue is linked to nicotinamide N-methyltransferase gene expression. Mol Nutr Food Res. Apr 24–2018.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Camprubí C, Salas-Huetos A, Aiese-Cigliano R, Godo A, Pons MC, Castellano G, Grossmann M, Sanseverino W, Martin-Subero JI, Garrido N and Blanco J: Spermatozoa from infertile patients exhibit differences of DNA methylation associated with spermatogenesis-related processes: An array-based analysis. Reprod Biomed Online. 33:709–719. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nwanaji-Enwerem JC, Jenkins TG, Colicino E, Cardenas A, Baccarelli AA and Boyer EW: Serum dioxin levels and sperm DNA methylation age: Findings in Vietnam war veterans exposed to agent orange. Reprod Toxicol. 96:27–35. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Park SL, Patel YM, Loo LW, Mullen DJ, Offringa IA, Maunakea A, Stram DO, Siegmund K, Murphy SE, Tiirikainen M and Le Marchand L: Association of internal smoking dose with blood DNA methylation in three racial/ethnic populations. Clin Epigenetics. 10:1102018. View Article : Google Scholar : PubMed/NCBI | |
|
Yehuda R, Daskalakis NP, Bierer LM, Bader HN, Klengel T, Holsboer F and Binder EB: Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biol Psychiatry. 80:372–380. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hughes MF: Arsenic toxicity and potential mechanisms of action. Toxicol Lett. 133:1–16. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Jones PA and Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet. 3:415–428. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Jones PA and Baylin SB: The epigenomics of cancer. Cell. 128:683–692. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Timbergen MJM, Boers R, Vriends ALM, Boers J, van IJcken WFJ, Lavrijsen M, Grünhagen DJ, Verhoef C, Sleijfer S, Smits R, et al: Differentially methylated regions in desmoid-type fibromatosis: A comparison between CTNNB1 S45F and T41A tumors. Front Oncol. 10:5650312020. View Article : Google Scholar : PubMed/NCBI | |
|
Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Münzel M, Wagner M, Müller M, Khan F, et al: Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell. 152:1146–1159. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Iurlaro M, Ficz G, Oxley D, Raiber EA, Bachman M, Booth MJ, Andrews S, Balasubramanian S and Reik W: A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14:R1192013. View Article : Google Scholar : PubMed/NCBI | |
|
Hu S, Wan J, Su Y, Song Q, Zeng Y, Nguyen HN, Shin J, Cox E, Rho HS, Woodard C, et al: DNA methylation presents distinct binding sites for human transcription factors. Elife. 2:e007262013. View Article : Google Scholar : PubMed/NCBI | |
|
Baymaz HI, Fournier A, Laget S, Ji Z, Jansen PW, Smits AH, Ferry L, Mensinga A, Poser I, Sharrocks A, et al: MBD5 and MBD6 interact with the human PR-DUB complex through their methyl-CpG-binding domain. Proteomics. 14:2179–2189. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Du Q, Luu PL, Stirzaker C and Clark SJ: Methyl-CpG-binding domain proteins: Readers of the epigenome. Epigenomics. 7:1051–1073. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Wilmanns M, Thornton J and Köhn M: Elucidating human phosphatase-substrate networks. Sci Signal. 6:rs102013. View Article : Google Scholar : PubMed/NCBI | |
|
Sacco F, Perfetto L, Castagnoli L and Cesareni G: The human phosphatase interactome: An intricate family portrait. FEBS Lett. 586:2732–2739. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fukami Y and Lipmann F: Reversal of Rous sarcoma-specific immunoglobulin phosphorylation on tyrosine (ADP as phosphate acceptor) catalyzed by the src gene kinase. Proc Natl Acad Sci USA. 80:1872–1876. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
Kole HK, Abdel-Ghany M and Racker E: Specific dephosphorylation of phosphoproteins by protein-serine and -tyrosine kinases. Proc Natl Acad Sci USA. 85:5849–5853. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Almawi AW, Matthews LA and Guarné A: FHA domains: Phosphopeptide binding and beyond. Prog Biophys Mol Biol. 127:105–110. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN and Futcher B: Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature. 406:90–94. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Pic-Taylor A, Darieva Z, Morgan BA and Sharrocks AD: Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p. Mol Cell Biol. 24:10036–10046. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY and Yao KM: Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci. 118:795–806. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Myatt SS and Lam EW: The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 7:847–859. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Li A, Wang J, Wu M, Zhang X and Zhang H: The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: Persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway. Eur J Pharmacol. 747:71–87. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Aitken A: 14-3-3 proteins: A historic overview. Semin Cancer Biol. 16:162–172. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Nakatsumi H, Oka T, Higa T, Shirane M and Nakayama KI: Nuclear-cytoplasmic shuttling protein PP2AB56 contributes to mTORC1-dependent dephosphorylation of FOXK1. Genes Cells. 23:599–605. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nakatsumi H, Matsumoto M and Nakayama KI: Noncanonical pathway for regulation of CCL2 expression by an mTORC1-FOXK1 axis promotes recruitment of tumor-associated macrophages. Cell Rep. 21:2471–2486. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sakaguchi M, Cai W, Wang CH, Cederquist CT, Damasio M, Homan EP, Batista T, Ramirez AK, Gupta MK, Steger M, et al: FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nat Commun. 10:15822019. View Article : Google Scholar : PubMed/NCBI | |
|
Amaya MJ, Oliveira AG, Guimarães ES, Casteluber MC, Carvalho SM, Andrade LM, Pinto MC, Mennone A, Oliveira CA, Resende RR, et al: The insulin receptor translocates to the nucleus to regulate cell proliferation in liver. Hepatology. 59:274–283. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M and Katoh M: Identification and characterization of human FOXK1 gene in silico. Int J Mol Med. 14:127–132. 2004.PubMed/NCBI | |
|
Bowman CJ, Ayer DE and Dynlacht BD: Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs. Nat Cell Biol. 16:1202–1214. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sukonina V, Ma H, Zhang W, Bartesaghi S, Subhash S, Heglind M, Foyn H, Betz MJ, Nilsson D, Lidell ME, et al: FOXK1 and FOXK2 regulate aerobic glycolysis. Nature. 566:279–283. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xia YK, Zeng YR, Zhang ML, Liu P, Liu F, Zhang H, He CX, Sun YP, Zhang JY, Zhang C, et al: Tumor-derived neomorphic mutations in ASXL1 impairs the BAP1-ASXL1-FOXK1/K2 transcription network. Protein Cell. 12:557–577. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Danciu TE, Chupreta S, Cruz O, Fox JE, Whitman M and Iñiguez-Lluhí JA: Small ubiquitin-like modifier (SUMO) modification mediates function of the inhibitory domains of developmental regulators FOXC1 and FOXC2. J Biol Chem. 287:18318–18329. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sutinen P, Rahkama V, Rytinki M and Palvimo JJ: Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol. 28:1719–1728. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Song JG, Xie HH, Li N, Wu K, Qiu JG, Shen DM and Huang CJ: SUMO-specific protease 6 promotes gastric cancer cell growth via deSUMOylation of FoxM1. Tumour Biol. 36:9865–9871. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Meredith LJ, Wang CM, Nascimento L, Liu R, Wang L and Yang WH: The key regulator for language and speech development, FOXP2, is a novel substrate for SUMOylation. J Cell Biochem. 117:426–438. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Rocca DL, Wilkinson KA and Henley JM: SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Sci Rep. 7:8772017. View Article : Google Scholar : PubMed/NCBI | |
|
Nestal de Moraes G, Ji Z, Fan LY, Yao S, Zona S, Sharrocks AD and Lam EW: SUMOylation modulates FOXK2-mediated paclitaxel sensitivity in breast cancer cells. Oncogenesis. 7:292018. View Article : Google Scholar : PubMed/NCBI | |
|
Shmueli A and Oren M: Life, death and ubiquitin: Taming the mule. Cell. 121:963–965. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
López-Otín C and Hunter T: The regulatory crosstalk between kinases and proteases in cancer. Nat Rev Cancer. 10:278–292. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ikeda F and Dikic I: Atypical ubiquitin chains: New molecular signals. ‘Protein modifications: Beyond the usual suspects’ review series. EMBO Rep. 9:536–542. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Suryadinata R, Roesley SN, Yang G and Sarčević B: Mechanisms of generating polyubiquitin chains of different topology. Cells. 3:674–689. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rajalingam K and Dikic I: SnapShot: Expanding the ubiquitin code. Cell. 164:1074–1074.e1. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI | |
|
Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK, Fraterman S, Wilm M, Muir TW and Müller J: Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB. Nature. 465:243–247. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Abdel-Wahab O, Gao J, Adli M, Dey A, Trimarchi T, Chung YR, Kuscu C, Hricik T, Ndiaye-Lobry D, Lafave LM, et al: Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo. J Exp Med. 210:2641–2659. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
LaFave LM, Béguelin W, Koche R, Teater M, Spitzer B, Chramiec A, Papalexi E, Keller MD, Hricik T, Konstantinoff K, et al: Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med. 21:1344–1349. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Micol JB and Abdel-Wahab O: The role of additional sex combs-like proteins in cancer. Cold Spring Harb Perspect Med. 6:a0265262016. View Article : Google Scholar : PubMed/NCBI | |
|
Campagne A, Lee MK, Zielinski D, Michaud A, Le Corre S, Dingli F, Chen H, Shahidian LZ, Vassilev I, Servant N, et al: BAP1 complex promotes transcription by opposing PRC1-mediated H2A ubiquitylation. Nat Commun. 10:3482019. View Article : Google Scholar : PubMed/NCBI | |
|
Ji Z, Mohammed H, Webber A, Ridsdale J, Han N, Carroll JS and Sharrocks AD: The forkhead transcription factor FOXK2 acts as a chromatin targeting factor for the BAP1-containing histone deubiquitinase complex. Nucleic Acids Res. 42:6232–6242. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Abdel-Wahab O and Dey A: The ASXL-BAP1 axis: New factors in myelopoiesis, cancer and epigenetics. Leukemia. 27:10–15. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Carbone M, Yang H, Pass HI, Krausz T, Testa JR and Gaudino G: BAP1 and cancer. Nat Rev Cancer. 13:153–159. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chittock EC, Latwiel S, Miller TC and Müller CW: Molecular architecture of polycomb repressive complexes. Biochem Soc Trans. 45:193–205. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Okino Y, Machida Y, Frankland-Searby S and Machida YJ: BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. J Biol Chem. 290:1580–1591. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F, Herrera-Medina EM, Rauscher F III, Reinberg D and Barlev NA: Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol. 27:6756–6769. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Li G, Margueron R, Hu G, Stokes D, Wang YH and Reinberg D: Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol Cell. 38:41–53. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wang XW, Guo QQ, Yu Y, Zhou TT, Zhang SY, Wang Z, Liu JW, Tang J, Jiang XY, Wang SS, et al: The deacetylation of Foxk2 by Sirt1 reduces chemosensitivity to cisplatin. J Cell Mol Med. 26:491–506. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS and Haussler D: Ultraconserved elements in the human genome. Science. 304:1321–1325. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Johnsson P, Lipovich L, Grandér D and Morris KV: Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta. 1840:1063–1071. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Cech TR and Steitz JA: The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 157:77–94. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kentwell J, Gundara JS and Sidhu SB: Noncoding RNAs in endocrine malignancy. Oncologist. 19:483–491. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lieberman J: Tapping the RNA world for therapeutics. Nat Struct Mol Biol. 25:357–364. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gomes CPC, Schroen B, Kuster GM, Robinson EL, Ford K, Squire IB, Heymans S, Martelli F, Emanueli C and Devaux Y; EU-CardioRNA COST Action (CA17129), : Regulatory RNAs in heart failure. Circulation. 141:313–328. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ebert MS and Sharp PA: Roles for microRNAs in conferring robustness to biological processes. Cell. 149:515–524. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamura S, Imai-Sumida M, Tanaka Y and Dahiya R: Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci. 75:467–484. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, et al: Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell. 35:868–880. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Min KW, Jo MH, Shin S, Davila S, Zealy RW, Kang SI, Lloyd LT, Hohng S and Yoon JH: AUF1 facilitates microRNA-mediated gene silencing. Nucleic Acids Res. 45:6064–6073. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sun M, Ding J, Li D, Yang G, Cheng Z and Zhu Q: NUDT21 regulates 3′-UTR length and microRNA-mediated gene silencing in hepatocellular carcinoma. Cancer Lett. 410:158–168. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen D, Wang H, Chen J, Li Z, Li S, Hu Z, Huang S, Zhao Y and He X: MicroRNA-129-5p regulates glycolysis and cell proliferation by targeting the glucose transporter SLC2A3 in gastric cancer cells. Front Pharmacol. 9:5022018. View Article : Google Scholar : PubMed/NCBI | |
|
Cui Z, Liu L, Kwame Amevor F, Zhu Q, Wang Y, Li D, Shu G, Tian Y and Zhao X: High expression of miR-204 in chicken atrophic ovaries promotes granulosa cell apoptosis and inhibits autophagy. Front Cell Dev Biol. 8:5800722020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin MF, Yang YF, Peng ZP, Zhang MF, Liang JY, Chen W, Liu XH and Zheng YL: FOXK2, regulted by miR-1271-5p, promotes cell growth and indicates unfavorable prognosis in hepatocellular carcinoma. Int J Biochem Cell Biol. 88:155–161. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Jiang S, Hu F, Xu Y, Wang T and Mei Q: Foxk2 inhibits non-small cell lung cancer epithelial-mesenchymal transition and proliferation through the repression of different key target genes. Oncol Rep. 37:2335–2347. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Harada K, Baba Y, Ishimoto T, Shigaki H, Kosumi K, Yoshida N, Watanabe M and Baba H: The role of microRNA in esophageal squamous cell carcinoma. J Gastroenterol. 51:520–530. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu M, Yu J, Wang D, Niu Y, Chen S, Gao P, Yang Z, Wang H, Zhang J, Zhang C, et al: Epigenetically upregulated MicroRNA-602 is involved in a negative feedback loop with FOXK2 in esophageal squamous cell carcinoma. Mol Ther. 27:1796–1809. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Wang H, Liu C, Mu X and Cheng S: Hyperglycemia inhibition of endothelial miR-140-3p mediates angiogenic dysfunction in diabetes mellitus. J Diabetes Complications. 33:374–382. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Zhao L, Li X, Shang G, Gao L, Song Z and Li T: Mir-204 regulates LPS-induced A549 cell damage by targeting FOXK2. J Healthc Eng. 2021:74046712021. View Article : Google Scholar : PubMed/NCBI | |
|
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen LL: The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kristensen LS, Hansen TB, Venø MT and Kjems J: Circular RNAs in cancer: Opportunities and challenges in the field. Oncogene. 37:555–565. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Patop IL and Kadener S: circRNAs in cancer. Curr Opin Genet Dev. 48:121–127. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M and Xin Y: Circular RNAs: A new frontier for cancer diagnosis and therapy. J Hematol Oncol. 11:212018. View Article : Google Scholar : PubMed/NCBI | |
|
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hu W, Bi ZY, Chen ZL, Liu C, Li LL, Zhang F, Zhou Q, Zhu W, Song YY, Zhan BT, et al: Emerging landscape of circular RNAs in lung cancer. Cancer Lett. 427:18–27. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hua Q, Chen Y, Liu Y, Li M, Diao Q, Xue H, Zeng H, Huang L and Jiang Y: Circular RNA 0039411 is involved in neodymium oxide-induced inflammation and antiproliferation in a human bronchial epithelial cell line via sponging miR-93-5p. Toxicol Sci. 170:69–81. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Han D, Wang Y, Wang Y, Dai X, Zhou T, Chen J, Tao B, Zhang J and Cao F: The tumor-suppressive human circular RNA CircITCH sponges miR-330-5p to ameliorate doxorubicin-induced cardiotoxicity through upregulating SIRT6, survivin and SERCA2a. Circ Res. 127:e108–e125. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Yuan W, Yang X, Li P, Wang J, Han J, Tao J, Li P, Yang H, Lv Q and Zhang W: Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Mol Cancer. 17:192018. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Guo R, Liu Q, Sun J and Wang H: Circular RNA Circ-ITCH inhibits the malignant behaviors of cervical cancer by microRNA-93-5p/FOXK2 axis. Reprod Sci. 27:860–868. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shi X, Liu TT, Yu XN, Balakrishnan A, Zhu HR, Guo HY, Zhang GC, Bilegsaikhan E, Sun JL, Song GQ, et al: microRNA-93-5p promotes hepatocellular carcinoma progression via a microRNA-93-5p/MAP3K2/c-Jun positive feedback circuit. Oncogene. 39:5768–5781. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma DH, Li BS, Liu JJ, Xiao YF, Yong X, Wang SM, Wu YY, Zhu HB, Wang DX and Yang SM: miR-93-5p/IFNAR1 axis promotes gastric cancer metastasis through activating the STAT3 signaling pathway. Cancer Lett. 408:23–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Chen S, Xiu YL, Sun KX, Zong ZH and Zhao Y: RhoC is a major target of microRNA-93-5P in epithelial ovarian carcinoma tumorigenesis and progression. Mol Cancer. 14:312015. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Chu ZP, Han H, Zhang Y, Tian F, Zhang JQ and Huang XH: Suppression of miR-93-5p inhibits high-risk HPV-positive cervical cancer progression via targeting of BTG3. Hum Cell. 32:160–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Ge YZ, Xu L and Jia R: Circular RNA ITCH: A novel tumor suppressor in multiple cancers. Life Sci. 254:1171762020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun J, Yin A, Zhang W, Lv J, Liang Y, Li H, Li Y and Li X: CircUBAP2 inhibits proliferation and metastasis of clear cell renal cell carcinoma via targeting miR-148a-3p/FOXK2 pathway. Cell Transplant. 29:9636897209257512020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Q, Cheng D, Li G, Liu Y, Li P, Sun W, Ma D and Ni C: CircHIPK3 regulates pulmonary fibrosis by facilitating glycolysis in miR-30a-3p/FOXK2-dependent manner. Int J Biol Sci. 17:2294–2307. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR, Prensner JR, Evans JR, Zhao S, et al: The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 47:199–208. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
St Laurent G, Wahlestedt C and Kapranov P: The landscape of long noncoding RNA classification. Trends Genet. 31:239–251. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kitagawa M, Kitagawa K, Kotake Y, Niida H and Ohhata T: Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci. 70:4785–4794. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ballarino M, Morlando M, Fatica A and Bozzoni I: Non-coding RNAs in muscle differentiation and musculoskeletal disease. J Clin Invest. 126:2021–2030. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Brazão TF, Johnson JS, Müller J, Heger A, Ponting CP and Tybulewicz VL: Long noncoding RNAs in B-cell development and activation. Blood. 128:e10–e19. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Delás MJ, Sabin LR, Dolzhenko E, Knott SR, Munera Maravilla E, Jackson BT, Wild SA, Kovacevic T, Stork EM, Zhou M, et al: lncRNA requirements for mouse acute myeloid leukemia and normal differentiation. Elife. 6:e256072017. View Article : Google Scholar : PubMed/NCBI | |
|
Sirey TM, Roberts K, Haerty W, Bedoya-Reina O, Rogatti-Granados S, Tan JY, Li N, Heather LC, Carter RN, Cooper S, et al: The long non-coding RNA Cerox1 is a post transcriptional regulator of mitochondrial complex I catalytic activity. Elife. 8:e450512019. View Article : Google Scholar : PubMed/NCBI | |
|
Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, Liu F, Pan W, Wang TT, Zhou CC, et al: A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 25:666–681. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Huarte M: The emerging role of lncRNAs in cancer. Nat Med. 21:1253–1261. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liao D, Liu X, Yuan X, Feng P, Ouyang Z, Liu Y and Li C: Long non-coding RNA tumor protein 53 target gene 1 promotes cervical cancer development via regulating microRNA-33a-5p to target forkhead box K2. Cell Cycle. 21:572–584. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Diaz-Lagares A, Crujeiras AB, Lopez-Serra P, Soler M, Setien F, Goyal A, Sandoval J, Hashimoto Y, Martinez-Cardús A, Gomez A, et al: Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc Natl Acad Sci USA. 113:E7535–E7544. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen B, Lan J, Xiao Y, Liu P, Guo D, Gu Y, Song Y, Zhong Q, Ma D, Lei P and Liu Q: Long noncoding RNA TP53TG1 suppresses the growth and metastasis of hepatocellular carcinoma by regulating the PRDX4/β-catenin pathway. Cancer Lett. 513:75–89. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Pan J, Fang S, Tian H, Zhou C, Zhao X, Tian H, He J, Shen W, Meng X, Jin X and Gong Z: lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer. 19:92020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin C, Xiang Y, Sheng J, Liu S, Cui M and Zhang X: Long non-coding RNA CRNDE promotes malignant progression of hepatocellular carcinoma through the miR-33a-5p/CDK6 axis. J Physiol Biochem. 76:469–481. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki M, Ishikawa T, Ishiguro M, Okazaki S, Yamauchi S, Kikuchi A, Matsuyama T, Kawada K, Tokunaga M, Uetake H and Kinugasa Y: The effectiveness of plasma miR-33a-5p as a predictive biomarker for the efficacy of colorectal cancer chemotherapy. Oncol Lett. 21:4892021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Z, Gao J and Huang S: LncRNA SNHG7 promotes the HCC progression through miR-122-5p/FOXK2 axis. Dig Dis Sci. 67:925–935. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
van der Heide LP, Wijchers PJ, von Oerthel L, Burbach JP, Hoekman MF and Smidt MP: FoxK2 is required for cellular proliferation and survival. J Cell Physiol. 230:1013–1023. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Qian Y, Xia S and Feng Z: Sox9 mediated transcriptional activation of FOXK2 is critical for colorectal cancer cells proliferation. Biochem Biophys Res Commun. 483:475–481. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ji Z, Donaldson IJ, Liu J, Hayes A, Zeef LA and Sharrocks AD: The forkhead transcription factor FOXK2 promotes AP-1-mediated transcriptional regulation. Mol Cell Biol. 32:385–398. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Meehan RR, Lewis JD, McKay S, Kleiner EL and Bird AP: Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell. 58:499–507. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Hendrich B and Bird A: Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 18:6538–6547. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Ji Z, Webber A and Sharrocks AD: Genome-wide binding studies reveal DNA binding specificity mechanisms and functional interplay amongst forkhead transcription factors. Nucleic Acids Res. 44:1566–1578. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Komorek J, Kuppuswamy M, Subramanian T, Vijayalingam S, Lomonosova E, Zhao LJ, Mymryk JS, Schmitt K and Chinnadurai G: Adenovirus type 5 E1A and E6 proteins of low-risk cutaneous beta-human papillomaviruses suppress cell transformation through interaction with FOXK1/K2 transcription factors. J Virol. 84:2719–2731. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Tang F, Cao F, Lu C, He X, Weng L and Sun L: Dvl2 facilitates the coordination of NF-κB and Wnt signaling to promote colitis-associated colorectal progression. Cancer Sci. 113:565–575. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Good MC, Zalatan JG and Lim WA: Scaffold proteins: Hubs for controlling the flow of cellular information. Science. 332:680–686. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Pan CQ, Sudol M, Sheetz M and Low BC: Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell Signal. 24:2143–2165. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kagan JC, Magupalli VG and Wu H: SMOCs: Supramolecular organizing centres that control innate immunity. Nat Rev Immunol. 14:821–826. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Langeberg LK and Scott JD: Signalling scaffolds and local organization of cellular behaviour. Nat Rev Mol Cell Biol. 16:232–244. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Ao X, Jia Z, Bai XY, Xu Z, Hu G, Jiang X, Chen M and Wu H: FOXK2 transcription factor suppresses ERα-positive breast cancer cell growth through down-regulating the stability of ERα via mechanism involving BRCA1/BARD1. Sci Rep. 5:87962015. View Article : Google Scholar : PubMed/NCBI | |
|
Parsons R, Li GM, Longley MJ, Fang WH, Papadopoulos N, Jen J, de la Chapelle A, Kinzler KW, Vogelstein B and Modrich P: Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell. 75:1227–1236. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M and Kolodner R: The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 75:1027–1038. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomäki P, Sistonen P, Aaltonen LA, Nyström-Lahti M, et al: Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell. 75:1215–1225. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M, Igarashi M, Fukuda H, Nakagama H and Katoh M: Cancer genetics and genomics of human FOX family genes. Cancer Lett. 328:198–206. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, Lemaçon A, Soucy P, Glubb D, Rostamianfar A, et al: Association analysis identifies 65 new breast cancer risk loci. Nature. 551:92–94. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fujii Y and Nakamura M: FOXK2 transcription factor is a novel G/T-mismatch DNA binding protein. J Biochem. 147:705–709. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang F, Ma X, Li H, Zhang Y, Li X, Chen L, Guo G, Gao Y, Gu L, Xie Y, et al: FOXK2 suppresses the malignant phenotype and induces apoptosis through inhibition of EGFR in clear-cell renal cell carcinoma. Int J Cancer. 142:2543–2557. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shan L, Zhou X, Liu X, Wang Y, Su D, Hou Y, Yu N, Yang C, Liu B, Gao J, et al: FOXK2 elicits massive transcription repression and suppresses the hypoxic response and breast cancer carcinogenesis. Cancer Cell. 30:708–722. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang B, Zhang X, Wang W, Zhu Z, Tang F, Wang D, Liu X, Zhuang H and Yan X: Forkhead box K2 inhibits the proliferation, migration, and invasion of human glioma cells and predicts a favorable prognosis. Onco Targets Ther. 11:1067–1075. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Wang P, Ju H, Zhu T, Shi J and Huang Y: FOXK2 promotes the proliferation of papillary thyroid cancer cell by down-regulating autophagy. J Cancer. 13:858–868. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Feng H, Jin Z, Liang J, Zhao Q, Zhan L, Yang Z, Yan J, Kuang J, Cheng X and Qiu W: FOXK2 transcriptionally activating VEGFA induces apatinib resistance in anaplastic thyroid cancer through VEGFA/VEGFR1 pathway. Oncogene. 40:6115–6129. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, Hu S, Qiu Z, Qian M, Tian D, et al: Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 9:3879–3902. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Baylin SB and Jones PA: Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol. 8:a0195052016. View Article : Google Scholar : PubMed/NCBI | |
|
Jones PA, Issa JP and Baylin S: Targeting the cancer epigenome for therapy. Nat Rev Genet. 17:630–641. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Block KI, Gyllenhaal C, Lowe L, Amedei A, Amin AR, Amin A, Aquilano K, Arbiser J, Arreola A, Arzumanyan A, et al: Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin Cancer Biol. 35 (Suppl 1):S276–S304. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Duijf PHG, Nanayakkara D, Nones K, Srihari S, Kalimutho M and Khanna KK: Mechanisms of genomic instability in breast cancer. Trends Mol Med. 25:595–611. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rusin M, Zajkowicz A and Butkiewicz D: Resveratrol induces senescence-like growth inhibition of U-2 OS cells associated with the instability of telomeric DNA and upregulation of BRCA1. Mech Ageing Dev. 130:528–537. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Falck J, Mailand N, Syljuåsen RG, Bartek J and Lukas J: The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 410:842–847. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuoka S, Huang M and Elledge SJ: Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 282:1893–1897. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Mas-Ponte D and Supek F: DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. Nat Genet. 52:958–968. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Barroso-Sousa R, Jain E, Cohen O, Kim D, Buendia-Buendia J, Winer E, Lin N, Tolaney SM and Wagle N: Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann Oncol. 31:387–394. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
LeBlanc SJ, Gauer JW, Hao P, Case BC, Hingorani MM, Weninger KR and Erie DA: Coordinated protein and DNA conformational changes govern mismatch repair initiation by MutS. Nucleic Acids Res. 46:10782–10795. 2018.PubMed/NCBI | |
|
Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, Barbour H, Corbeil L, Hébert J, Drobetsky E, et al: Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci USA. 111:285–290. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kundert K and Fraser JS: DNA-binding proteins meet their mismatch. Nature. 587:199–200. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Coïc E, Lee K, Lee CS, Kim JA, Wu Q and Haber JE: Regulation of budding yeast mating-type switching donor preference by the FHA domain of Fkh1. PLoS Genet. 8:e10026302012. View Article : Google Scholar : PubMed/NCBI | |
|
Maciejowski J and de Lange T: Telomeres in cancer: Tumour suppression and genome instability. Nat Rev Mol Cell Biol. 18:175–186. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chakravarti D, LaBella KA and DePinho RA: Telomeres: History, health and hallmarks of aging. Cell. 184:306–322. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tang M, Feng X, Pei G, Srivastava M, Wang C, Chen Z, Li S, Zhang H, Zhao Z, Li X and Chen J: FOXK1 participates in DNA damage response by controlling 53BP1 function. Cell Rep. 32:1080182020. View Article : Google Scholar : PubMed/NCBI | |
|
Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A and Hemminki K: Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 343:78–85. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Berdasco M and Esteller M: Aberrant epigenetic landscape in cancer: How cellular identity goes awry. Dev Cell. 19:698–711. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Esteller M: Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 8:286–298. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bitman-Lotan E and Orian A: Nuclear organization and regulation of the differentiated state. Cell Mol Life Sci. 78:3141–3158. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Goldberg AD, Allis CD and Bernstein E: Epigenetics: A landscape takes shape. Cell. 128:635–638. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Nam AS, Chaligne R and Landau DA: Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat Rev Genet. 22:3–18. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Y, Liu X and Pauklin S: 3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein Cell. 12:440–454. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Toh TB, Lim JJ and Chow EK: Epigenetics in cancer stem cells. Mol Cancer. 16:292017. View Article : Google Scholar : PubMed/NCBI | |
|
Dvorak HF: Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315:1650–1659. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautès-Fridman C and Fridman WH: Immune infiltration in human tumors: A prognostic factor that should not be ignored. Oncogene. 29:1093–1102. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Grivennikov SI, Greten FR and Karin M: Immunity, inflammation, and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
van Bilsen JHM, Dulos R, van Stee MF, Meima MY, Rouhani Rankouhi T, Neergaard Jacobsen L, Staudt Kvistgaard A, Garthoff JA, Knippels LMJ, Knipping K, et al: Seeking windows of opportunity to shape lifelong immune health: A network-based strategy to predict and prioritize markers of early life immune modulation. Front Immunol. 11:6442020. View Article : Google Scholar : PubMed/NCBI | |
|
Oh H and Ghosh S: NF-κB: Roles and regulation in different CD4(+) T-cell subsets. Immunol Rev. 252:41–51. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Blanchett S, Boal-Carvalho I, Layzell S and Seddon B: NF-κB and extrinsic cell death pathways-entwined do-or-die decisions for T cells. Trends Immunol. 42:76–88. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gilmore TD: Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 25:6680–6684. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Karin M and Greten FR: NF-kappaB: Linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 5:749–759. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Withoff S and Verma IM: Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends Immunol. 26:318–325. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
DeNardo DG, Andreu P and Coussens LM: Interactions between lymphocytes and myeloid cells regulate pro-versus anti-tumor immunity. Cancer Metastasis Rev. 29:309–316. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ohnishi S, Ma N, Thanan R, Pinlaor S, Hammam O, Murata M and Kawanishi S: DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxid Med Cell Longev. 2013:3870142013. View Article : Google Scholar : PubMed/NCBI | |
|
Martin TD, Patel RS, Cook DR, Choi MY, Patil A, Liang AC, Li MZ, Haigis KM and Elledge SJ: The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation. Science. 373:1327–1335. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA and Knight R: The microbiome and human cancer. Science. 371:eabc45522021. View Article : Google Scholar : PubMed/NCBI | |
|
Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A and Wargo JA: The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 33:570–580. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rowe WP, Huebner RJ, Gilmore LK, Parrott RH and Ward TG: Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med. 84:570–573. 1953. View Article : Google Scholar : PubMed/NCBI | |
|
Trentin JJ, Yabe Y and Taylor G: The quest for human cancer viruses. Science. 137:835–841. 1962. View Article : Google Scholar : PubMed/NCBI | |
|
Javier RT: Adenovirus type 9 E4 open reading frame 1 encodes a transforming protein required for the production of mammary tumors in rats. J Virol. 68:3917–3924. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Sanchez-Prieto R, de Alava E, Palomino T, Guinea J, Fernandez V, Cebrian S, LLeonart M, Cabello P, Martin P, San Roman C, et al: An association between viral genes and human oncogenic alterations: The adenovirus E1A induces the Ewing tumor fusion transcript EWS-FLI1. Nat Med. 5:1076–1079. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Semenza GL: Hypoxia-inducible factor 1: Master regulator of O2 homeostasis. Curr Opin Genet Dev. 8:588–594. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Vaupel P and Mayer A: Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 26:225–239. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sui H, Fan S, Liu W, Li Y, Zhang X, Du Y and Bao H: LINC00028 regulates the development of TGFβ1-treated human tenon capsule fibroblasts by targeting miR-204-5p. Biochem Biophys Res Commun. Feb 19–2020.(Epub ahead of print). View Article : Google Scholar | |
|
Wittstatt J, Weider M, Wegner M and Reiprich S: MicroRNA miR-204 regulates proliferation and differentiation of oligodendroglia in culture. Glia. 68:2015–2027. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Su M and Yin Z: Construction of inflammatory directed polymer micelles and its application in acute lung injury. AAPS PharmSciTech. 21:2172020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Liu Z, Wang L and Zhang X: NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 6:327–334. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Engelman JA, Luo J and Cantley LC: The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 7:606–619. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Malumbres M: Cyclin-dependent kinases. Genome Biol. 15:1222014. View Article : Google Scholar : PubMed/NCBI | |
|
Greer EL and Brunet A: FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 24:7410–7425. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh M and Katoh M: Human FOX gene family (Review). Int J Oncol. 25:1495–1500. 2004.PubMed/NCBI | |
|
Koranda M, Schleiffer A, Endler L and Ammerer G: Forkhead-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature. 406:94–98. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Pic A, Lim FL, Ross SJ, Veal EA, Johnson AL, Sultan MR, West AG, Johnston LH, Sharrocks AD and Morgan BA: The forkhead protein Fkh2 is a component of the yeast cell cycle transcription factor SFF. EMBO J. 19:3750–3761. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar R, Reynolds DM, Shevchenko A, Shevchenko A, Goldstone SD and Dalton S: Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr Biol. 10:896–906. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Ho KK, Myatt SS and Lam EW: A number of forks in the path: Cycling with FoxO. Oncogene. 27:2300–2311. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Laoukili J, Stahl M and Medema RH: FoxM1: At the crossroads of ageing and cancer. Biochim Biophys Acta. 1775:92–102. 2007.PubMed/NCBI | |
|
Yan J, Xu L, Crawford G, Wang Z and Burgess SM: The forkhead transcription factor FoxI1 remains bound to condensed mitotic chromosomes and stably remodels chromatin structure. Mol Cell Biol. 26:155–168. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Liang J and Shang Y: Estrogen and cancer. Annu Rev Physiol. 75:225–240. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Douglas CC, Johnson SA and Arjmandi BH: Soy and its isoflavones: The truth behind the science in breast cancer. Anticancer Agents Med Chem. 13:1178–1187. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Eroles P, Bosch A, Pérez-Fidalgo JA and Lluch A: Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treat Rev. 38:698–707. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Nestal de Moraes G, Khongkow P, Gong C, Yao S, Gomes AR, Ji Z, Kandola N, Delbue D, Man EP, Khoo US, et al: Forkhead box K2 modulates epirubicin and paclitaxel sensitivity through FOXO3a in breast cancer. Oncogenesis. 4:e1672015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Wang Y, Zhao G, Tanner EJ, Adli M and Matei D: FOXK2 promotes ovarian cancer stemness by regulating the unfolded protein response pathway. J Clin Invest. 132:e1515912022. View Article : Google Scholar : PubMed/NCBI | |
|
Amin ARMR, Karpowicz PA, Carey TE, Arbiser J, Nahta R, Chen ZG, Dong JT, Kucuk O, Khan GN, Huang GS, et al: Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol. 35 (Suppl 1):S55–S77. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, Nuzzo CM, Vaccaro V, Vari S, Cognetti F and Ciuffreda L: PTEN: Multiple functions in human malignant tumors. Front Oncol. 5:242015. View Article : Google Scholar : PubMed/NCBI | |
|
Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, Lambert J, Beldjord K, Lengliné E, De Gunzburg N, Payet-Bornet D, Lhermitte L, Mossafa H, et al: Toward a NOTCH1/FBXW7/RAS/PTEN-based oncogenetic risk classification of adult T-cell acute lymphoblastic leukemia: A group for research in adult acute lymphoblastic leukemia study. J Clin Oncol. 31:4333–4342. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Tesio M, Trinquand A, Macintyre E and Asnafi V: Oncogenic PTEN functions and models in T-cell malignancies. Oncogene. 35:3887–3896. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, et al: The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 49:1211–1218. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu W, Chen Y, Ye S, Yang H, Yang J and Quan J: Transcription factor forkhead box K1 regulates miR-32 expression and enhances cell proliferation in colorectal cancer. Oncol Lett. 21:4072021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu W, Tan W, Ye S, Zhou Y and Quan J: Analysis of the promoter region of the human miR-32 gene in colorectal cancer. Oncol Lett. 17:3743–3750. 2019.PubMed/NCBI | |
|
Opel D, Schnaiter A, Dodier D, Jovanovic M, Gerhardinger A, Idler I, Mertens D, Bullinger L, Stilgenbauer S and Fulda S: Targeting inhibitor of apoptosis proteins by Smac mimetic elicits cell death in poor prognostic subgroups of chronic lymphocytic leukemia. Int J Cancer. 137:2959–2970. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Mergny JL, Lacroix L, Teulade-Fichou MP, Hounsou C, Guittat L, Hoarau M, Arimondo PB, Vigneron JP, Lehn JM, Riou JF, et al: Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc Natl Acad Sci USA. 98:3062–3067. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Yin XM, Oltvai ZN and Korsmeyer SJ: BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature. 369:321–323. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Youle RJ and Strasser A: The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 9:47–59. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Asnaghi L, Calastretti A, Bevilacqua A, D'Agnano I, Gatti G, Canti G, Delia D, Capaccioli S and Nicolin A: Bcl-2 phosphorylation and apoptosis activated by damaged microtubules require mTOR and are regulated by Akt. Oncogene. 23:5781–5791. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Van Der Heide LP, Hoekman MF and Smidt MP: The ins and outs of FoxO shuttling: Mechanisms of FoxO translocation and transcriptional regulation. Biochem J. 380:297–309. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1:27–31. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 82:4–6. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Baeriswyl V and Christofori G: The angiogenic switch in carcinogenesis. Semin Cancer Biol. 19:329–337. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y: Antiangiogenic cancer therapy. Semin Cancer Biol. 14:139–145. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bergers G and Benjamin LE: Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 3:401–410. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Song Y, Zeng S, Zheng G, Chen D, Li P, Yang M, Luo K, Yin J, Gu Y, Zhang Z, et al: FOXO3a-driven miRNA signatures suppresses VEGF-A/NRP1 signaling and breast cancer metastasis. Oncogene. 40:777–790. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Karaman S, Leppänen VM and Alitalo K: Vascular endothelial growth factor signaling in development and disease. Development. 145:dev1510192018. View Article : Google Scholar : PubMed/NCBI | |
|
Ellis LM and Hicklin DJ: VEGF-targeted therapy: Mechanisms of anti-tumour activity. Nat Rev Cancer. 8:579–591. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
El Atat O, Fakih A and El-Sibai M: RHOG activates RAC1 through CDC42 leading to tube formation in vascular endothelial cells. Cells. 8:1712019. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Z, Cheng X, Feng H, Kuang J, Yang W, Peng C, Shen B and Qiu W: Apatinib inhibits angiogenesis via suppressing Akt/GSK3β/ANG signaling pathway in anaplastic thyroid cancer. Cell Physiol Biochem. 44:1471–1484. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Xiao Z, Hong Z, Jiao H, Zhu S, Zhao Y, Bi J, Qiu J, Zhang D, Yan J, et al: FOXF1 promotes angiogenesis and accelerates bevacizumab resistance in colorectal cancer by transcriptionally activating VEGFA. Cancer Lett. 439:78–90. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sun T, Wang H, Li Q, Qian Z and Shen C: Forkhead box protein k1 recruits TET1 to act as a tumor suppressor and is associated with MRI detection. Jpn J Clin Oncol. 46:209–221. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bensinger SJ and Christofk HR: New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol. 23:352–361. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Palm W and Thompson CB: Nutrient acquisition strategies of mammalian cells. Nature. 546:234–242. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cairns RA, Harris IS and Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Tamada M, Suematsu M and Saya H: Pyruvate kinase M2: Multiple faces for conferring benefits on cancer cells. Clin Cancer Res. 18:5554–5561. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Waldhart AN, Dykstra H, Peck AS, Boguslawski EA, Madaj ZB, Wen J, Veldkamp K, Hollowell M, Zheng B, Cantley LC, et al: Phosphorylation of TXNIP by AKT mediates acute influx of glucose in response to insulin. Cell Rep. 19:2005–2013. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sheth SS, Castellani LW, Chari S, Wagg C, Thipphavong CK, Bodnar JS, Tontonoz P, Attie AD, Lopaschuk GD and Lusis AJ: Thioredoxin-interacting protein deficiency disrupts the fasting-feeding metabolic transition. J Lipid Res. 46:123–134. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 8:705–713. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K and Mizushima N: Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25:795–800. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Sun T, Li X, Zhang P, Chen WD, Zhang HL, Li DD, Deng R, Qian XJ, Jiao L, Ji J, et al: Acetylation of beclin 1 inhibits autophagosome maturation and promotes tumour growth. Nat Commun. 6:72152015. View Article : Google Scholar : PubMed/NCBI | |
|
Kimmelman AC and White E: Autophagy and tumor metabolism. Cell Metab. 25:1037–1043. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Nakatogawa H, Suzuki K, Kamada Y and Ohsumi Y: Dynamics and diversity in autophagy mechanisms: Lessons from yeast. Nat Rev Mol Cell Biol. 10:458–467. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong Q and Guan KL: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 152:290–303. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR and Weirauch MT: The human transcription factors. Cell. 172:650–665. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Reiter F, Wienerroither S and Stark A: Combinatorial function of transcription factors and cofactors. Curr Opin Genet Dev. 43:73–81. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wunderlich Z and Mirny LA: Different gene regulation strategies revealed by analysis of binding motifs. Trends Genet. 25:434–440. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kuroyanagi H: Fox-1 family of RNA-binding proteins. Cell Mol Life Sci. 66:3895–3907. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Morgunova E and Taipale J: Structural perspective of cooperative transcription factor binding. Curr Opin Struct Biol. 47:1–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Klemm SL, Shipony Z and Greenleaf WJ: Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 20:207–220. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Iwafuchi-Doi M and Zaret KS: Pioneer transcription factors in cell reprogramming. Genes Dev. 28:2679–2692. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Soufi A, Garcia MF, Jaroszewicz A, Osman N, Pellegrini M and Zaret KS: Pioneer transcription factors target partial DNA motifs on nucleosomes to initiate reprogramming. Cell. 161:555–568. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Swinstead EE, Miranda TB, Paakinaho V, Baek S, Goldstein I, Hawkins M, Karpova TS, Ball D, Mazza D, Lavis LD, et al: Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell. 165:593–605. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hughes AL, Jin Y, Rando OJ and Struhl K: A functional evolutionary approach to identify determinants of nucleosome positioning: A unifying model for establishing the genome-wide pattern. Mol Cell. 48:5–15. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Struhl K and Segal E: Determinants of nucleosome positioning. Nat Struct Mol Biol. 20:267–273. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Swinstead EE, Paakinaho V, Presman DM and Hager GL: Pioneer factors and ATP-dependent chromatin remodeling factors interact dynamically: A new perspective: Multiple transcription factors can effect chromatin pioneer functions through dynamic interactions with ATP-dependent chromatin remodeling factors. Bioessays. 38:1150–1157. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu F, Farnung L, Kaasinen E, Sahu B, Yin Y, Wei B, Dodonova SO, Nitta KR, Morgunova E, Taipale M, et al: The interaction landscape between transcription factors and the nucleosome. Nature. 562:76–81. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Iwafuchi-Doi M and Zaret KS: Cell fate control by pioneer transcription factors. Development. 143:1833–1837. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Allis CD and Jenuwein T: The molecular hallmarks of epigenetic control. Nat Rev Genet. 17:487–500. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Dann GP, Liszczak GP, Bagert JD, Müller MM, Nguyen UTT, Wojcik F, Brown ZZ, Bos J, Panchenko T, Pihl R, et al: ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature. 548:607–611. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Iwafuchi-Doi M, Donahue G, Kakumanu A, Watts JA, Mahony S, Pugh BF, Lee D, Kaestner KH and Zaret KS: The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol Cell. 62:79–91. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Iwafuchi M, Cuesta I, Donahue G, Takenaka N, Osipovich AB, Magnuson MA, Roder H, Seeholzer SH, Santisteban P and Zaret KS: Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones. Nat Genet. 52:418–427. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M and Zaret KS: Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell. 9:279–289. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Shim EY, Woodcock C and Zaret KS: Nucleosome positioning by the winged helix transcription factor HNF3. Genes Dev. 12:5–10. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Zhang Z, Li L, Chen BC, Revyakin A, Hajj B, Legant W, Dahan M, Lionnet T, Betzig E, et al: Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell. 156:1274–1285. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Gebhardt JC, Suter DM, Roy R, Zhao ZW, Chapman AR, Basu S, Maniatis T and Xie XS: Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods. 10:421–426. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mazza D, Abernathy A, Golob N, Morisaki T and McNally JG: A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40:e1192012. View Article : Google Scholar : PubMed/NCBI | |
|
Morisaki T, Müller WG, Golob N, Mazza D and McNally JG: Single-molecule analysis of transcription factor binding at transcription sites in live cells. Nat Commun. 5:44562014. View Article : Google Scholar : PubMed/NCBI | |
|
Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V, Meyer C and Krapp A: Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants. Nat Commun. 4:17132013. View Article : Google Scholar : PubMed/NCBI | |
|
Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M and Naef F: Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9:e10005952011. View Article : Google Scholar : PubMed/NCBI | |
|
Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N and Stratton MR: A census of human cancer genes. Nat Rev Cancer. 4:177–183. 2004. View Article : Google Scholar : PubMed/NCBI |