Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
January-2023 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 25 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Functions and modulation of PKM2 activity by human papillomavirus E7 oncoprotein (Review)

  • Authors:
    • Chengzhi Gui
    • Mingyu Ji
    • Yiying Song
    • Jing Wang
    • Yunying Zhou
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Laboratory Diagnosis, Shandong First Medical University, Jinan, Shandong 250012, P.R. China, Medical Research and Laboratory Diagnostic Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, P.R. China, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
    Copyright: © Gui et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 7
    |
    Published online on: November 14, 2022
       https://doi.org/10.3892/ol.2022.13593
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Most tumor cells still exhibit active glucose uptake and glycolysis under aerobic conditions, a phenomenon known as the Warburg effect or aerobic glycolysis. Pyruvate kinase, one of the key enzymes in the cell glycolysis pathway, can promote the conversion of glucose to pyruvate and produce energy. Pyruvate kinase M2 (PKM2), a competitive PK subtype, is an important regulator of the aerobic glycolysis pathway in tumor cells and plays a direct role in gene expression and cell cycle regulation. Human papillomavirus (HPV) persistence is the main risk factor for cervical cancer. In recent years, it has been discovered that HPV plays an important role in malignant anal tumors and oral cancer. HPV oncoprotein E7 can promote the Warburg effect and produce a large amount of ATP, which may meet the energy requirements of cancer cell division. There appears to be a regulatory relationship between HPV E7 and PKM2, but the specific mechanism is mostly unknown. The present review article discusses the role of HPV E7 in transcriptional regulation, enzyme activity regulation, protein kinase activity regulation, post‑translational modification and the immune microenvironment of PKM2 in the occurrence and development of cervical cancer.
View Figures

Figure 1

Figure 2

View References

1 

Warburg O and Minami S: Versuche an überlebendem carcinom-gewebe. Klin Wochenschr. 2:776–777. 1923. View Article : Google Scholar

2 

Warburg O: Über den stoffwechsel der carcinomzelle. Naturwissenschaften. 12:1131–1137. 1924. View Article : Google Scholar

3 

Hoppe-Seyler K, Bossler F, Braun JA, Herrmann AL and Hoppe-Seyler F: The HPV E6/E7 oncogenes: Key factors for viral carcinogenesis and therapeutic targets. Trends Microbiol. 26:158–168. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, et al: Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal. 2:ra732009. View Article : Google Scholar : PubMed/NCBI

5 

Zahra K, Dey T, Ashish, Mishra SP and Pandey U: Pyruvate kinase M2 and cancer: The role of PKM2 in promoting tumorigenesis. Front Oncol. 10:1592020. View Article : Google Scholar : PubMed/NCBI

6 

Zhang Z: PKM2, function and expression and regulation. Cell Biosci. 9:522019. View Article : Google Scholar : PubMed/NCBI

7 

Malla R and Kamal MA: E6 and E7 oncoproteins: Potential targets of cervical cancer. Curr Med Chem. 28:8163–8181. 2021. View Article : Google Scholar : PubMed/NCBI

8 

Lü S, Deng J, Liu H, Liu B, Yang J, Miao Y, Li J, Wang N, Jiang C, Xu Q, et al: PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med (Berl). 96:585–600. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Mazurek S, Boschek CB, Hugo F and Eigenbrodt E: Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 15:300–308. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Nandi S, Razzaghi M, Srivastava D and Dey M: Structural basis for allosteric regulation of pyruvate kinase M2 by phosphorylation and acetylation. J Biol Chem. 295:17425–17440. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Miyake-Stoner SJ and O'Shea CC: Metabolism goes viral. Cell Metab. 19:549–550. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Pant A, Dsouza L and Yang Z: Alteration in cellular signaling and metabolic reprogramming during viral infection. mBio. 12:e00635212021. View Article : Google Scholar : PubMed/NCBI

13 

Thaker SK, Ch'ng J and Christofk HR: Viral hijacking of cellular metabolism. BMC Biol. 17:592019. View Article : Google Scholar : PubMed/NCBI

14 

Kori M and Arga KY: Pathways involved in viral oncogenesis: New perspectives from virus-host protein interactomics. Biochim Biophys Acta Mol Basis Dis. 1866:1658852020. View Article : Google Scholar : PubMed/NCBI

15 

French D, Belleudi F, Mauro MV, Mazzetta F, Raffa S, Fabiano V, Frega A and Torrisi MR: Expression of HPV16 E5 down-modulates the TGFbeta signaling pathway. Mol Cancer. 12:382013. View Article : Google Scholar : PubMed/NCBI

16 

Martínez-Ramírez I, Carrillo-García A, Contreras-Paredes A, Ortiz-Sánchez E, Cruz-Gregorio A and Lizano M: Regulation of cellular metabolism by high-risk human papillomaviruses. Int J Mol Sci. 19:18392018. View Article : Google Scholar : PubMed/NCBI

17 

Kim H, Jang H, Kim TW, Kang BH, Lee SE, Jeon YK, Chung DH, Choi J, Shin J, Cho EJ and Youn HD: Core pluripotency factors directly regulate metabolism in embryonic stem cell to maintain pluripotency. Stem Cells. 33:2699–2711. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Hou PP, Luo LJ, Chen HZ, Chen QT, Bian XL, Wu SF, Zhou JX, Zhao WX, Liu JM, Wang XM, et al: Ectosomal PKM2 promotes HCC by inducing macrophage differentiation and remodeling the tumor microenvironment. Mol Cell. 78:1192–1206.e10. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Mazurek S, Zwerschke W, Jansen-Dürr P and Eigenbrodt E: Metabolic cooperation between different oncogenes during cell transformation: Interaction between activated ras and HPV-16 E7. Oncogene. 20:6891–6898. 2001. View Article : Google Scholar : PubMed/NCBI

20 

Mazurek S, Zwerschke W, Jansen-Dürr P and Eigenbrodt E: Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: Role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochem J. 356:247–256. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Lee SA, Ho C, Troxler M, Lin CY and Chung SH: Non-metabolic functions of PKM2 contribute to cervical cancer cell proliferation induced by the HPV16 E7 oncoprotein. Viruses. 13:4332021. View Article : Google Scholar : PubMed/NCBI

22 

Abudula A, Rouzi N, Xu L, Yang Y and Hasimu A: Tissue-based metabolomics reveals potential biomarkers for cervical carcinoma and HPV infection. Bosn J Basic Med Sci. 20:78–87. 2020.PubMed/NCBI

23 

Wang R, Pan W, Jin L, Huang W, Li Y, Wu D, Gao C, Ma D and Liao S: Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Lett. 471:88–102. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR and Stanley MA: The biology and life-cycle of human papillomaviruses. Vaccine. 30 (Suppl 5):F55–F70. 2012. View Article : Google Scholar : PubMed/NCBI

26 

No authors listed. Human papillomavirus vaccines: WHO position paper, May 2017. Wkly Epidemiol Rec. 92:241–268. 2017.(In English, French). PubMed/NCBI

27 

Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A and zur Hausen H: Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 314:111–114. 1985. View Article : Google Scholar : PubMed/NCBI

28 

Münger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M and Zacny VL: Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene. 20:7888–7898. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Scarth JA, Patterson MR, Morgan EL and Macdonald A: The human papillomavirus oncoproteins: A review of the host pathways targeted on the road to transformation. J Gen Virol. 102:0015402021. View Article : Google Scholar : PubMed/NCBI

30 

Zwerschke W, Mazurek S, Massimi P, Banks L, Eigenbrodt E and Jansen-Dürr P: Modulation of type M2 pyruvate kinase activity by the human papillomavirus type 16 E7 oncoprotein. Proc Natl Acad Sci USA. 96:1291–1296. 1999. View Article : Google Scholar : PubMed/NCBI

31 

Israelsen WJ, Dayton TL, Davidson SM, Fiske BP, Hosios AM, Bellinger G, Li J, Yu Y, Sasaki M, Horner JW, et al: PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell. 155:397–409. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Takenaka M, Noguchi T, Sadahiro S, Hirai H, Yamada K, Matsuda T, Imai E and Tanaka T: Isolation and characterization of the human pyruvate kinase M gene. Eur J Biochem. 198:101–106. 1991. View Article : Google Scholar : PubMed/NCBI

33 

Mazurek S: Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 43:969–980. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Alquraishi M, Puckett DL, Alani DS, Humidat AS, Frankel VD, Donohoe DR, Whelan J and Bettaieb A: Pyruvate kinase M2: A simple molecule with complex functions. Free Radic Biol Med. 143:176–192. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Dombrauckas JD, Santarsiero BD and Mesecar AD: Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry. 44:9417–9429. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Wang P, Sun C, Zhu T and Xu Y: Structural insight into mechanisms for dynamic regulation of PKM2. Protein Cell. 6:275–287. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Otto AM: Warburg effect(s)-a biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer Metab. 4:52016. View Article : Google Scholar : PubMed/NCBI

38 

Yang W and Lu Z: Nuclear PKM2 regulates the Warburg effect. Cell Cycle. 12:3154–3158. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Zhang R, Shen M, Wu C, Chen Y, Lu J, Li J, Zhao L, Meng H, Zhou X, Huang G, et al: HDAC8-dependent deacetylation of PKM2 directs nuclear localization and glycolysis to promote proliferation in hepatocellular carcinoma. Cell Death Dis. 11:10362020. View Article : Google Scholar : PubMed/NCBI

40 

Hua Q, Mi B, Xu F, Wen J, Zhao L, Liu J and Huang G: Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis. Theranostics. 10:4762–4778. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Onodera Y, Nam JM and Bissell MJ: Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways. J Clin Invest. 124:367–384. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki N, Jiang Y, Zhou X, Li TT, Guan KL, et al: Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell. 52:340–352. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Tirpe AA, Gulei D, Ciortea SM, Crivii C and Berindan-Neagoe I: Hypoxia: Overview on hypoxia-mediated mechanisms with a focus on the role of HIF genes. Int J Mol Sci. 20:61402019. View Article : Google Scholar : PubMed/NCBI

44 

Magaway C, Kim E and Jacinto E: Targeting mTOR and metabolism in cancer: Lessons and innovations. Cells. 8:15842019. View Article : Google Scholar : PubMed/NCBI

45 

Reyes-González JM and Vivas-Mejía PE: c-MYC and epithelial ovarian cancer. Front Oncol. 11:6015122021. View Article : Google Scholar : PubMed/NCBI

46 

Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, Simmet T and Seufferlein T: PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 15:32016. View Article : Google Scholar : PubMed/NCBI

47 

Feng J, Dai W, Mao Y, Wu L, Li J, Chen K, Yu Q, Kong R, Li S, Zhang J, et al: Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res. 39:242020. View Article : Google Scholar : PubMed/NCBI

48 

Noguchi T, Yamada K, Inoue H, Matsuda T and Tanaka T: The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem. 262:14366–14371. 1987. View Article : Google Scholar : PubMed/NCBI

49 

Schäfer D, Hamm-Künzelmann B and Brand K: Glucose regulates the promoter activity of aldolase A and pyruvate kinase M2 via dephosphorylation of Sp1. FEBS Lett. 417:325–328. 1997. View Article : Google Scholar : PubMed/NCBI

50 

Tang JY, Li DY, He L, Qiu XS, Wang EH and Wu GP: HPV 16 E6/E7 promote the glucose uptake of GLUT1 in lung cancer through downregulation of TXNIP due to inhibition of PTEN phosphorylation. Front Oncol. 10:5595432020. View Article : Google Scholar : PubMed/NCBI

51 

Netzker R, Weigert C and Brand K: Role of the stimulatory proteins Sp1 and Sp3 in the regulation of transcription of the rat pyruvate kinase M gene. Eur J Biochem. 245:174–181. 1997. View Article : Google Scholar : PubMed/NCBI

52 

Yang JH, Wu MZ, Wang XB, Wang S, Qiu XS, Wang EH and Wu GP: HPV16 E6/E7 upregulate hTERC mRNA and gene amplification levels by relieving the effect of LKB1 on Sp1 phosphorylation in lung cancer cells. Ther Adv Med Oncol. 12:17588359209175622020. View Article : Google Scholar : PubMed/NCBI

53 

Zhu H, Wu J, Zhang W, Luo H, Shen Z, Cheng H and Zhu X: PKM2 enhances chemosensitivity to cisplatin through interaction with the mTOR pathway in cervical cancer. Sci Rep. 6:307882016. View Article : Google Scholar : PubMed/NCBI

54 

Bodily JM, Mehta KP and Laimins LA: Human papillomavirus E7 enhances hypoxia-inducible factor 1-mediated transcription by inhibiting binding of histone deacetylases. Cancer Res. 71:1187–1195. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Gu J, Li X, Zhao L, Yang Y, Xue C, Gao Y, Li J, Han Q, Sun Z, Bai C and Zhao RC: The role of PKM2 nuclear translocation in the constant activation of the NF-κB signaling pathway in cancer-associated fibroblasts. Cell Death Dis. 12:2912021. View Article : Google Scholar : PubMed/NCBI

56 

Wang N, Zhan T, Ke T, Huang X, Ke D, Wang Q and Li H: Increased expression of RRM2 by human papillomavirus E7 oncoprotein promotes angiogenesis in cervical cancer. Br J Cancer. 110:1034–1044. 2014. View Article : Google Scholar : PubMed/NCBI

57 

David CJ, Chen M, Assanah M, Canoll P and Manley JL: HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature. 463:364–368. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Horn D, Hess J, Freier K, Hoffmann J and Freudlsperger C: Targeting EGFR-PI3K-AKT-mTOR signaling enhances radiosensitivity in head and neck squamous cell carcinoma. Expert Opin Ther Targets. 19:795–805. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Freudlsperger C, Burnett JR, Friedman JA, Kannabiran VR, Chen Z and Van Waes C: EGFR-PI3K-AKT-mTOR signaling in head and neck squamous cell carcinomas: Attractive targets for molecular-oriented therapy. Expert Opin Ther Targets. 15:63–74. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Chiou TT, Chau YY, Chen JB, Hsu HH, Hung SP and Lee WC: Rapamycin attenuates PLA2R activation-mediated podocyte apoptosis via the PI3K/AKT/mTOR pathway. Biomed Pharmacother. 144:1123492021. View Article : Google Scholar : PubMed/NCBI

62 

Bossler F, Hoppe-Seyler K and Hoppe-Seyler F: PI3K/AKT/mTOR signaling regulates the virus/host cell crosstalk in HPV-positive cervical cancer cells. Int J Mol Sci. 20:21882019. View Article : Google Scholar : PubMed/NCBI

63 

Strickland SW and Vande Pol S: The human papillomavirus 16 E7 oncoprotein attenuates AKT signaling to promote internal ribosome entry site-dependent translation and expression of c-MYC. J Virol. 90:5611–5621. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Bossler F, Kuhn BJ, Günther T, Kraemer SJ, Khalkar P, Adrian S, Lohrey C, Holzer A, Shimobayashi M, Dürst M, et al: Repression of human papillomavirus oncogene expression under hypoxia is mediated by PI3K/mTORC2/AKT signaling. mBio. 10:e02323–18. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Wang M, Qiao X, Cooper T, Pan W, Liu L, Hayball J, Lin J, Cui X, Zhou Y, Zhang S, et al: HPV E7-mediated NCAPH ectopic expression regulates the carcinogenesis of cervical carcinoma via PI3K/AKT/SGK pathway. Cell Death Dis. 11:10492020. View Article : Google Scholar : PubMed/NCBI

66 

Menges CW, Baglia LA, Lapoint R and McCance DJ: Human papillomavirus type 16 E7 up-regulates AKT activity through the retinoblastoma protein. Cancer Res. 66:5555–5559. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L, You MJ, Koh MY, Cote G, Aldape K, et al: EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell. 48:771–784. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Hu G, Liu W, Mendelsohn J, Ellis LM, Radinsky R, Andreeff M and Deisseroth AB: Expression of epidermal growth factor receptor and human papillomavirus E6/E7 proteins in cervical carcinoma cells. J Natl Cancer Inst. 89:1271–1276. 1997. View Article : Google Scholar : PubMed/NCBI

69 

Hoesel B and Schmid JA: The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 12:862013. View Article : Google Scholar : PubMed/NCBI

70 

Zhang Q, Lenardo MJ and Baltimore D: 30 Years of NF-κB: A blossoming of relevance to human pathobiology. Cell. 168:37–57. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Havard L, Delvenne P, Fraré P, Boniver J and Giannini SL: Differential production of cytokines and activation of NF-kappaB in HPV-transformed keratinocytes. Virology. 298:271–285. 2002. View Article : Google Scholar : PubMed/NCBI

72 

Senba M and Mori N: Mechanisms of virus immune evasion lead to development from chronic inflammation to cancer formation associated with human papillomavirus infection. Oncol Rev. 6:e172012. View Article : Google Scholar : PubMed/NCBI

73 

Senba M, Buziba N, Mori N, Fujita S, Morimoto K, Wada A and Toriyama K: Human papillomavirus infection induces NF-κB activation in cervical cancer: A comparison with penile cancer. Oncol Lett. 2:65–68. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Tontonoz P and Spiegelman BM: Fat and beyond: The diverse biology of PPARgamma. Annu Rev Biochem. 77:289–312. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Panasyuk G, Espeillac C, Chauvin C, Pradelli LA, Horie Y, Suzuki A, Annicotte JS, Fajas L, Foretz M, Verdeguer F, et al: PPARγ contributes to PKM2 and HK2 expression in fatty liver. Nat Commun. 3:6722012. View Article : Google Scholar : PubMed/NCBI

76 

Zhang S, Liu F, Mao X, Huang J, Yang J, Yin X, Wu L, Zheng L and Wang Q: Elevation of miR-27b by HPV16 E7 inhibits PPARγ expression and promotes proliferation and invasion in cervical carcinoma cells. Int J Oncol. 47:1759–1766. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Chen M, Zhang J and Manley JL: Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res. 70:8977–8980. 2010. View Article : Google Scholar : PubMed/NCBI

78 

Rampias T, Boutati E, Pectasides E, Sasaki C, Kountourakis P, Weinberger P and Psyrri A: Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells. Mol Cancer Res. 8:433–443. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Hu Z, Müller S, Qian G, Xu J, Kim S, Chen Z, Jiang N, Wang D, Zhang H, Saba NF, et al: Human papillomavirus 16 oncoprotein regulates the translocation of β-catenin via the activation of epidermal growth factor receptor. Cancer. 121:214–225. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Wang YW, Chang HS, Lin CH and Yu WC: HPV-18 E7 conjugates to c-Myc and mediates its transcriptional activity. Int J Biochem Cell Biol. 39:402–412. 2007. View Article : Google Scholar : PubMed/NCBI

81 

Lu Z and Hunter T: Degradation of activated protein kinases by ubiquitination. Annu Rev Biochem. 78:435–475. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Christofk HR, Vander Heiden MG, Wu N, Asara JM and Cantley LC: Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature. 452:181–186. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Zhou Z, Li M, Zhang L, Zhao H, Şahin Ö, Chen J, Zhao JJ, Songyang Z and Yu D: Oncogenic kinase-induced PKM2 tyrosine 105 phosphorylation converts nononcogenic PKM2 to a tumor promoter and induces cancer stem-like cells. Cancer Res. 78:2248–2261. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Lin Y, Zhai H, Ouyang Y, Lu Z, Chu C, He Q and Cao X: Knockdown of PKM2 enhances radiosensitivity of cervical cancer cells. Cancer Cell Int. 19:1292019. View Article : Google Scholar : PubMed/NCBI

85 

Wang C, Li Y, Yan S, Wang H, Shao X, Xiao M, Yang B, Qin G, Kong R, Chen R and Zhang N: Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun. 11:31622020. View Article : Google Scholar : PubMed/NCBI

86 

Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC and Lu Z: ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 14:1295–1304. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Wellen KE and Thompson CB: Cellular metabolic stress: Considering how cells respond to nutrient excess. Mol Cell. 40:323–332. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, et al: Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 334:1278–1283. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Liu Y, Guo JZ, Liu Y, Wang K, Ding W, Wang H, Liu X, Zhou S, Lu XC, Yang HB, et al: Nuclear lactate dehydrogenase A senses ROS to produce α-hydroxybutyrate for HPV-induced cervical tumor growth. Nat Commun. 9:44292018. View Article : Google Scholar : PubMed/NCBI

90 

Wang Y, Liu J, Jin X, Zhang D, Li D, Hao F, Feng Y, Gu S, Meng F, Tian M, et al: O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. Proc Natl Acad Sci USA. 114:13732–13737. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Zeng Q, Zhao RX, Chen J, Li Y, Li XD, Liu XL, Zhang WM, Quan CS, Wang YS, Zhai YX, et al: O-linked GlcNAcylation elevated by HPV E6 mediates viral oncogenesis. Proc Natl Acad Sci USA. 113:9333–9338. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Li L, Peng G, Liu X, Zhang Y, Han H and Liu ZR: Pyruvate kinase M2 coordinates metabolism switch between glycolysis and glutaminolysis in cancer cells. iScience. 23:1016842020. View Article : Google Scholar : PubMed/NCBI

93 

Reinstein E, Scheffner M, Oren M, Ciechanover A and Schwartz A: Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: Targeting via ubiquitination of the N-terminal residue. Oncogene. 19:5944–5950. 2000. View Article : Google Scholar : PubMed/NCBI

94 

Alani RM and Münger K: Human papillomaviruses and associated malignancies. J Clin Oncol. 16:330–337. 1998. View Article : Google Scholar : PubMed/NCBI

95 

Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K and Lu Z: Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 480:118–122. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Gao X, Wang H, Yang JJ, Liu X and Liu ZR: Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell. 45:598–609. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Yue G, Tang J, Zhang L, Niu H, Li H and Luo S: CD276 suppresses CAR-T cell function by promoting tumor cell glycolysis in esophageal squamous cell carcinoma. J Gastrointest Oncol. 12:38–51. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Xiao M, Xie J, Wu Y, Wang G, Qi X, Liu Z, Wang Y, Wang X, Hoque A, Oakhill J, et al: The eEF2 kinase-induced STAT3 inactivation inhibits lung cancer cell proliferation by phosphorylation of PKM2. Cell Commun Signal. 18:252020. View Article : Google Scholar : PubMed/NCBI

99 

Shukla S, Mahata S, Shishodia G, Pandey A, Tyagi A, Vishnoi K, Basir SF, Das BC and Bharti AC: Functional regulatory role of STAT3 in HPV16-mediated cervical carcinogenesis. PLoS One. 8:e678492013. View Article : Google Scholar : PubMed/NCBI

100 

Zhang W, Wu X, Hu L, Ma Y, Xiu Z, Huang B, Feng Y and Tang X: Overexpression of human papillomavirus type 16 oncoproteins enhances epithelial-mesenchymal transition via STAT3 signaling pathway in non-small cell lung cancer cells. Oncol Res. 25:843–852. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Morgan EL and Macdonald A: Manipulation of JAK/STAT signalling by high-risk HPVs: Potential therapeutic targets for HPV-associated malignancies. Viruses. 12:9772020. View Article : Google Scholar : PubMed/NCBI

102 

Christensen DR, Calder PC and Houghton FD: GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic culture of human embryonic stem cells. Sci Rep. 5:175002015. View Article : Google Scholar : PubMed/NCBI

103 

Lee J, Kim HK, Han YM and Kim J: Pyruvate kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int J Biochem Cell Biol. 40:1043–1054. 2008. View Article : Google Scholar : PubMed/NCBI

104 

Brehm A, Ohbo K, Zwerschke W, Botquin V, Jansen-Dürr P and Schöler HR: Synergism with germ line transcription factor Oct-4: Viral oncoproteins share the ability to mimic a stem cell-specific activity. Mol Cell Biol. 19:2635–2643. 1999. View Article : Google Scholar : PubMed/NCBI

105 

Park EG, Pyo SJ, Cui Y, Yoon SH and Nam JW: Tumor immune microenvironment lncRNAs. Brief Bioinform. 23:bbab5042022. View Article : Google Scholar : PubMed/NCBI

106 

Hinshaw DC and Shevde LA: The tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI

107 

Adem S, Comakli V and Uzun N: Pyruvate kinase activators as a therapy target: A patent review 2011–2017. Expert Opin Ther Pat. 28:61–68. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Wang T, Marquardt C and Foker J: Aerobic glycolysis during lymphocyte proliferation. Nature. 261:702–705. 1976. View Article : Google Scholar : PubMed/NCBI

109 

Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J and Green DR: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity. 35:871–882. 2011. View Article : Google Scholar : PubMed/NCBI

110 

Boxer MB, Jiang JK, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, Veith H, Leister W, Austin CP, Park HW, et al: Evaluation of substituted N,N'-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J Med Chem. 53:1048–1055. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Jiang JK, Boxer MB, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, Veith H, Leister W, Austin CP, Park HW, et al: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med Chem Lett. 20:3387–3393. 2010. View Article : Google Scholar : PubMed/NCBI

112 

Angiari S, Runtsch MC, Sutton CE, Palsson-McDermott EM, Kelly B, Rana N, Kane H, Papadopoulou G, Pearce EL, Mills KHG and O'Neill LAJ: Pharmacological activation of pyruvate kinase M2 inhibits CD4+ T cell pathogenicity and suppresses autoimmunity. Cell Metab. 31:391–405.e8. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Damasceno LEA, Prado DS, Veras FP, Fonseca MM, Toller-Kawahisa JE, Rosa MH, Públio GA, Martins TV, Ramalho FS, Waisman A, et al: PKM2 promotes Th17 cell differentiation and autoimmune inflammation by fine-tuning STAT3 activation. J Exp Med. 217:e201906132020. View Article : Google Scholar : PubMed/NCBI

114 

Deng J, Lü S, Liu H, Liu B, Jiang C, Xu Q, Feng J and Wang X: Homocysteine activates B cells via regulating PKM2-dependent metabolic reprogramming. J Immunol. 198:170–183. 2017. View Article : Google Scholar : PubMed/NCBI

115 

Yang L, Xie M, Yang M, Yu Y, Zhu S, Hou W, Kang R, Lotze MT, Billiar TR, Wang H, et al: PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis. Nat Commun. 5:44362014. View Article : Google Scholar : PubMed/NCBI

116 

Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, Tian L, Harrison DG, Giacomini JC, Assimes TL, et al: The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 213:337–354. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE, van den Bosch MWM, Quinn SR, Domingo-Fernandez R, Johnston DGW, et al: Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21:3472015. View Article : Google Scholar : PubMed/NCBI

118 

Wang L, Deng Z, Sun Y, Zhao Y, Li Y, Yang M, Yuan R, Liu Y, Qian Z, Zhou F and Kang H: The study on the regulation of Th cells by mesenchymal stem cells through the JAK-STAT signaling pathway to protect naturally aged sepsis model rats. Front Immunol. 13:8206852022. View Article : Google Scholar : PubMed/NCBI

119 

Lochmatter C, Fischer R, Charles PD, Yu Z, Powrie F and Kessler BM: Integrative phosphoproteomics links IL-23R signaling with metabolic adaptation in lymphocytes. Sci Rep. 6:244912016. View Article : Google Scholar : PubMed/NCBI

120 

Deng W, Zhu S, Zeng L, Liu J, Kang R, Yang M, Cao L, Wang H, Billiar TR, Jiang J, et al: The circadian clock controls immune checkpoint pathway in sepsis. Cell Rep. 24:366–378. 2018. View Article : Google Scholar : PubMed/NCBI

121 

Park YS, Kim DJ, Koo H, Jang SH, You YM, Cho JH, Yang SJ, Yu ES, Jung Y, Lee DC, et al: AKT-induced PKM2 phosphorylation signals for IGF-1-stimulated cancer cell growth. Oncotarget. 7:48155–48167. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Long L, Zhao C, Ozarina M, Zhao X, Yang J and Chen H: Targeting immune checkpoints in lung cancer: Current landscape and future prospects. Clin Drug Investig. 39:341–353. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Palsson-McDermott EM, Dyck L, Zasłona Z, Menon D, McGettrick AF, Mills KHG and O'Neill LA: Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol. 8:13002017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gui C, Ji M, Song Y, Wang J and Zhou Y: Functions and modulation of PKM2 activity by human papillomavirus E7 oncoprotein (Review). Oncol Lett 25: 7, 2023.
APA
Gui, C., Ji, M., Song, Y., Wang, J., & Zhou, Y. (2023). Functions and modulation of PKM2 activity by human papillomavirus E7 oncoprotein (Review). Oncology Letters, 25, 7. https://doi.org/10.3892/ol.2022.13593
MLA
Gui, C., Ji, M., Song, Y., Wang, J., Zhou, Y."Functions and modulation of PKM2 activity by human papillomavirus E7 oncoprotein (Review)". Oncology Letters 25.1 (2023): 7.
Chicago
Gui, C., Ji, M., Song, Y., Wang, J., Zhou, Y."Functions and modulation of PKM2 activity by human papillomavirus E7 oncoprotein (Review)". Oncology Letters 25, no. 1 (2023): 7. https://doi.org/10.3892/ol.2022.13593
Copy and paste a formatted citation
x
Spandidos Publications style
Gui C, Ji M, Song Y, Wang J and Zhou Y: Functions and modulation of PKM2 activity by human papillomavirus E7 oncoprotein (Review). Oncol Lett 25: 7, 2023.
APA
Gui, C., Ji, M., Song, Y., Wang, J., & Zhou, Y. (2023). Functions and modulation of PKM2 activity by human papillomavirus E7 oncoprotein (Review). Oncology Letters, 25, 7. https://doi.org/10.3892/ol.2022.13593
MLA
Gui, C., Ji, M., Song, Y., Wang, J., Zhou, Y."Functions and modulation of PKM2 activity by human papillomavirus E7 oncoprotein (Review)". Oncology Letters 25.1 (2023): 7.
Chicago
Gui, C., Ji, M., Song, Y., Wang, J., Zhou, Y."Functions and modulation of PKM2 activity by human papillomavirus E7 oncoprotein (Review)". Oncology Letters 25, no. 1 (2023): 7. https://doi.org/10.3892/ol.2022.13593
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team