|
1
|
Warburg O and Minami S: Versuche an
überlebendem carcinom-gewebe. Klin Wochenschr. 2:776–777. 1923.
View Article : Google Scholar
|
|
2
|
Warburg O: Über den stoffwechsel der
carcinomzelle. Naturwissenschaften. 12:1131–1137. 1924. View Article : Google Scholar
|
|
3
|
Hoppe-Seyler K, Bossler F, Braun JA,
Herrmann AL and Hoppe-Seyler F: The HPV E6/E7 oncogenes: Key
factors for viral carcinogenesis and therapeutic targets. Trends
Microbiol. 26:158–168. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hitosugi T, Kang S, Vander Heiden MG,
Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, et
al: Tyrosine phosphorylation inhibits PKM2 to promote the Warburg
effect and tumor growth. Sci Signal. 2:ra732009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zahra K, Dey T, Ashish, Mishra SP and
Pandey U: Pyruvate kinase M2 and cancer: The role of PKM2 in
promoting tumorigenesis. Front Oncol. 10:1592020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhang Z: PKM2, function and expression and
regulation. Cell Biosci. 9:522019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Malla R and Kamal MA: E6 and E7
oncoproteins: Potential targets of cervical cancer. Curr Med Chem.
28:8163–8181. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lü S, Deng J, Liu H, Liu B, Yang J, Miao
Y, Li J, Wang N, Jiang C, Xu Q, et al: PKM2-dependent metabolic
reprogramming in CD4+ T cells is crucial for
hyperhomocysteinemia-accelerated atherosclerosis. J Mol Med (Berl).
96:585–600. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mazurek S, Boschek CB, Hugo F and
Eigenbrodt E: Pyruvate kinase type M2 and its role in tumor growth
and spreading. Semin Cancer Biol. 15:300–308. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nandi S, Razzaghi M, Srivastava D and Dey
M: Structural basis for allosteric regulation of pyruvate kinase M2
by phosphorylation and acetylation. J Biol Chem. 295:17425–17440.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Miyake-Stoner SJ and O'Shea CC: Metabolism
goes viral. Cell Metab. 19:549–550. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pant A, Dsouza L and Yang Z: Alteration in
cellular signaling and metabolic reprogramming during viral
infection. mBio. 12:e00635212021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Thaker SK, Ch'ng J and Christofk HR: Viral
hijacking of cellular metabolism. BMC Biol. 17:592019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kori M and Arga KY: Pathways involved in
viral oncogenesis: New perspectives from virus-host protein
interactomics. Biochim Biophys Acta Mol Basis Dis. 1866:1658852020.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
French D, Belleudi F, Mauro MV, Mazzetta
F, Raffa S, Fabiano V, Frega A and Torrisi MR: Expression of HPV16
E5 down-modulates the TGFbeta signaling pathway. Mol Cancer.
12:382013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Martínez-Ramírez I, Carrillo-García A,
Contreras-Paredes A, Ortiz-Sánchez E, Cruz-Gregorio A and Lizano M:
Regulation of cellular metabolism by high-risk human
papillomaviruses. Int J Mol Sci. 19:18392018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kim H, Jang H, Kim TW, Kang BH, Lee SE,
Jeon YK, Chung DH, Choi J, Shin J, Cho EJ and Youn HD: Core
pluripotency factors directly regulate metabolism in embryonic stem
cell to maintain pluripotency. Stem Cells. 33:2699–2711. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hou PP, Luo LJ, Chen HZ, Chen QT, Bian XL,
Wu SF, Zhou JX, Zhao WX, Liu JM, Wang XM, et al: Ectosomal PKM2
promotes HCC by inducing macrophage differentiation and remodeling
the tumor microenvironment. Mol Cell. 78:1192–1206.e10. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mazurek S, Zwerschke W, Jansen-Dürr P and
Eigenbrodt E: Metabolic cooperation between different oncogenes
during cell transformation: Interaction between activated ras and
HPV-16 E7. Oncogene. 20:6891–6898. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mazurek S, Zwerschke W, Jansen-Dürr P and
Eigenbrodt E: Effects of the human papilloma virus HPV-16 E7
oncoprotein on glycolysis and glutaminolysis: Role of pyruvate
kinase type M2 and the glycolytic-enzyme complex. Biochem J.
356:247–256. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lee SA, Ho C, Troxler M, Lin CY and Chung
SH: Non-metabolic functions of PKM2 contribute to cervical cancer
cell proliferation induced by the HPV16 E7 oncoprotein. Viruses.
13:4332021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Abudula A, Rouzi N, Xu L, Yang Y and
Hasimu A: Tissue-based metabolomics reveals potential biomarkers
for cervical carcinoma and HPV infection. Bosn J Basic Med Sci.
20:78–87. 2020.PubMed/NCBI
|
|
23
|
Wang R, Pan W, Jin L, Huang W, Li Y, Wu D,
Gao C, Ma D and Liao S: Human papillomavirus vaccine against
cervical cancer: Opportunity and challenge. Cancer Lett.
471:88–102. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Doorbar J, Quint W, Banks L, Bravo IG,
Stoler M, Broker TR and Stanley MA: The biology and life-cycle of
human papillomaviruses. Vaccine. 30 (Suppl 5):F55–F70. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
No authors listed. Human papillomavirus
vaccines: WHO position paper, May 2017. Wkly Epidemiol Rec.
92:241–268. 2017.(In English, French). PubMed/NCBI
|
|
27
|
Schwarz E, Freese UK, Gissmann L, Mayer W,
Roggenbuck B, Stremlau A and zur Hausen H: Structure and
transcription of human papillomavirus sequences in cervical
carcinoma cells. Nature. 314:111–114. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Münger K, Basile JR, Duensing S, Eichten
A, Gonzalez SL, Grace M and Zacny VL: Biological activities and
molecular targets of the human papillomavirus E7 oncoprotein.
Oncogene. 20:7888–7898. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Scarth JA, Patterson MR, Morgan EL and
Macdonald A: The human papillomavirus oncoproteins: A review of the
host pathways targeted on the road to transformation. J Gen Virol.
102:0015402021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zwerschke W, Mazurek S, Massimi P, Banks
L, Eigenbrodt E and Jansen-Dürr P: Modulation of type M2 pyruvate
kinase activity by the human papillomavirus type 16 E7 oncoprotein.
Proc Natl Acad Sci USA. 96:1291–1296. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Israelsen WJ, Dayton TL, Davidson SM,
Fiske BP, Hosios AM, Bellinger G, Li J, Yu Y, Sasaki M, Horner JW,
et al: PKM2 isoform-specific deletion reveals a differential
requirement for pyruvate kinase in tumor cells. Cell. 155:397–409.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Takenaka M, Noguchi T, Sadahiro S, Hirai
H, Yamada K, Matsuda T, Imai E and Tanaka T: Isolation and
characterization of the human pyruvate kinase M gene. Eur J
Biochem. 198:101–106. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mazurek S: Pyruvate kinase type M2: A key
regulator of the metabolic budget system in tumor cells. Int J
Biochem Cell Biol. 43:969–980. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Alquraishi M, Puckett DL, Alani DS,
Humidat AS, Frankel VD, Donohoe DR, Whelan J and Bettaieb A:
Pyruvate kinase M2: A simple molecule with complex functions. Free
Radic Biol Med. 143:176–192. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Dombrauckas JD, Santarsiero BD and Mesecar
AD: Structural basis for tumor pyruvate kinase M2 allosteric
regulation and catalysis. Biochemistry. 44:9417–9429. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wang P, Sun C, Zhu T and Xu Y: Structural
insight into mechanisms for dynamic regulation of PKM2. Protein
Cell. 6:275–287. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Otto AM: Warburg effect(s)-a biographical
sketch of Otto Warburg and his impacts on tumor metabolism. Cancer
Metab. 4:52016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang W and Lu Z: Nuclear PKM2 regulates
the Warburg effect. Cell Cycle. 12:3154–3158. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang R, Shen M, Wu C, Chen Y, Lu J, Li J,
Zhao L, Meng H, Zhou X, Huang G, et al: HDAC8-dependent
deacetylation of PKM2 directs nuclear localization and glycolysis
to promote proliferation in hepatocellular carcinoma. Cell Death
Dis. 11:10362020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hua Q, Mi B, Xu F, Wen J, Zhao L, Liu J
and Huang G: Hypoxia-induced lncRNA-AC020978 promotes proliferation
and glycolytic metabolism of non-small cell lung cancer by
regulating PKM2/HIF-1α axis. Theranostics. 10:4762–4778. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Onodera Y, Nam JM and Bissell MJ:
Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and
O-GlcNAc pathways. J Clin Invest. 124:367–384. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lv L, Xu YP, Zhao D, Li FL, Wang W, Sasaki
N, Jiang Y, Zhou X, Li TT, Guan KL, et al: Mitogenic and oncogenic
stimulation of K433 acetylation promotes PKM2 protein kinase
activity and nuclear localization. Mol Cell. 52:340–352. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tirpe AA, Gulei D, Ciortea SM, Crivii C
and Berindan-Neagoe I: Hypoxia: Overview on hypoxia-mediated
mechanisms with a focus on the role of HIF genes. Int J Mol Sci.
20:61402019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Magaway C, Kim E and Jacinto E: Targeting
mTOR and metabolism in cancer: Lessons and innovations. Cells.
8:15842019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Reyes-González JM and Vivas-Mejía PE:
c-MYC and epithelial ovarian cancer. Front Oncol. 11:6015122021.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Azoitei N, Becher A, Steinestel K, Rouhi
A, Diepold K, Genze F, Simmet T and Seufferlein T: PKM2 promotes
tumor angiogenesis by regulating HIF-1α through NF-κB activation.
Mol Cancer. 15:32016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Feng J, Dai W, Mao Y, Wu L, Li J, Chen K,
Yu Q, Kong R, Li S, Zhang J, et al: Simvastatin re-sensitizes
hepatocellular carcinoma cells to sorafenib by inhibiting
HIF-1α/PPAR-γ/PKM2-mediated glycolysis. J Exp Clin Cancer Res.
39:242020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Noguchi T, Yamada K, Inoue H, Matsuda T
and Tanaka T: The L- and R-type isozymes of rat pyruvate kinase are
produced from a single gene by use of different promoters. J Biol
Chem. 262:14366–14371. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Schäfer D, Hamm-Künzelmann B and Brand K:
Glucose regulates the promoter activity of aldolase A and pyruvate
kinase M2 via dephosphorylation of Sp1. FEBS Lett. 417:325–328.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tang JY, Li DY, He L, Qiu XS, Wang EH and
Wu GP: HPV 16 E6/E7 promote the glucose uptake of GLUT1 in lung
cancer through downregulation of TXNIP due to inhibition of PTEN
phosphorylation. Front Oncol. 10:5595432020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Netzker R, Weigert C and Brand K: Role of
the stimulatory proteins Sp1 and Sp3 in the regulation of
transcription of the rat pyruvate kinase M gene. Eur J Biochem.
245:174–181. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yang JH, Wu MZ, Wang XB, Wang S, Qiu XS,
Wang EH and Wu GP: HPV16 E6/E7 upregulate hTERC mRNA and gene
amplification levels by relieving the effect of LKB1 on Sp1
phosphorylation in lung cancer cells. Ther Adv Med Oncol.
12:17588359209175622020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhu H, Wu J, Zhang W, Luo H, Shen Z, Cheng
H and Zhu X: PKM2 enhances chemosensitivity to cisplatin through
interaction with the mTOR pathway in cervical cancer. Sci Rep.
6:307882016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bodily JM, Mehta KP and Laimins LA: Human
papillomavirus E7 enhances hypoxia-inducible factor 1-mediated
transcription by inhibiting binding of histone deacetylases. Cancer
Res. 71:1187–1195. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gu J, Li X, Zhao L, Yang Y, Xue C, Gao Y,
Li J, Han Q, Sun Z, Bai C and Zhao RC: The role of PKM2 nuclear
translocation in the constant activation of the NF-κB signaling
pathway in cancer-associated fibroblasts. Cell Death Dis.
12:2912021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang N, Zhan T, Ke T, Huang X, Ke D, Wang
Q and Li H: Increased expression of RRM2 by human papillomavirus E7
oncoprotein promotes angiogenesis in cervical cancer. Br J Cancer.
110:1034–1044. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
David CJ, Chen M, Assanah M, Canoll P and
Manley JL: HnRNP proteins controlled by c-Myc deregulate pyruvate
kinase mRNA splicing in cancer. Nature. 463:364–368. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Luo W, Hu H, Chang R, Zhong J, Knabel M,
O'Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is
a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell.
145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Horn D, Hess J, Freier K, Hoffmann J and
Freudlsperger C: Targeting EGFR-PI3K-AKT-mTOR signaling enhances
radiosensitivity in head and neck squamous cell carcinoma. Expert
Opin Ther Targets. 19:795–805. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Freudlsperger C, Burnett JR, Friedman JA,
Kannabiran VR, Chen Z and Van Waes C: EGFR-PI3K-AKT-mTOR signaling
in head and neck squamous cell carcinomas: Attractive targets for
molecular-oriented therapy. Expert Opin Ther Targets. 15:63–74.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chiou TT, Chau YY, Chen JB, Hsu HH, Hung
SP and Lee WC: Rapamycin attenuates PLA2R activation-mediated
podocyte apoptosis via the PI3K/AKT/mTOR pathway. Biomed
Pharmacother. 144:1123492021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Bossler F, Hoppe-Seyler K and Hoppe-Seyler
F: PI3K/AKT/mTOR signaling regulates the virus/host cell crosstalk
in HPV-positive cervical cancer cells. Int J Mol Sci. 20:21882019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Strickland SW and Vande Pol S: The human
papillomavirus 16 E7 oncoprotein attenuates AKT signaling to
promote internal ribosome entry site-dependent translation and
expression of c-MYC. J Virol. 90:5611–5621. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bossler F, Kuhn BJ, Günther T, Kraemer SJ,
Khalkar P, Adrian S, Lohrey C, Holzer A, Shimobayashi M, Dürst M,
et al: Repression of human papillomavirus oncogene expression under
hypoxia is mediated by PI3K/mTORC2/AKT signaling. mBio.
10:e02323–18. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wang M, Qiao X, Cooper T, Pan W, Liu L,
Hayball J, Lin J, Cui X, Zhou Y, Zhang S, et al: HPV E7-mediated
NCAPH ectopic expression regulates the carcinogenesis of cervical
carcinoma via PI3K/AKT/SGK pathway. Cell Death Dis. 11:10492020.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Menges CW, Baglia LA, Lapoint R and
McCance DJ: Human papillomavirus type 16 E7 up-regulates AKT
activity through the retinoblastoma protein. Cancer Res.
66:5555–5559. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang
L, You MJ, Koh MY, Cote G, Aldape K, et al: EGFR-induced and PKCε
monoubiquitylation-dependent NF-κB activation upregulates PKM2
expression and promotes tumorigenesis. Mol Cell. 48:771–784. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hu G, Liu W, Mendelsohn J, Ellis LM,
Radinsky R, Andreeff M and Deisseroth AB: Expression of epidermal
growth factor receptor and human papillomavirus E6/E7 proteins in
cervical carcinoma cells. J Natl Cancer Inst. 89:1271–1276. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hoesel B and Schmid JA: The complexity of
NF-κB signaling in inflammation and cancer. Mol Cancer. 12:862013.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang Q, Lenardo MJ and Baltimore D: 30
Years of NF-κB: A blossoming of relevance to human pathobiology.
Cell. 168:37–57. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Havard L, Delvenne P, Fraré P, Boniver J
and Giannini SL: Differential production of cytokines and
activation of NF-kappaB in HPV-transformed keratinocytes. Virology.
298:271–285. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Senba M and Mori N: Mechanisms of virus
immune evasion lead to development from chronic inflammation to
cancer formation associated with human papillomavirus infection.
Oncol Rev. 6:e172012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Senba M, Buziba N, Mori N, Fujita S,
Morimoto K, Wada A and Toriyama K: Human papillomavirus infection
induces NF-κB activation in cervical cancer: A comparison with
penile cancer. Oncol Lett. 2:65–68. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tontonoz P and Spiegelman BM: Fat and
beyond: The diverse biology of PPARgamma. Annu Rev Biochem.
77:289–312. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Panasyuk G, Espeillac C, Chauvin C,
Pradelli LA, Horie Y, Suzuki A, Annicotte JS, Fajas L, Foretz M,
Verdeguer F, et al: PPARγ contributes to PKM2 and HK2 expression in
fatty liver. Nat Commun. 3:6722012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang S, Liu F, Mao X, Huang J, Yang J,
Yin X, Wu L, Zheng L and Wang Q: Elevation of miR-27b by HPV16 E7
inhibits PPARγ expression and promotes proliferation and invasion
in cervical carcinoma cells. Int J Oncol. 47:1759–1766. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen M, Zhang J and Manley JL: Turning on
a fuel switch of cancer: hnRNP proteins regulate alternative
splicing of pyruvate kinase mRNA. Cancer Res. 70:8977–8980. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Rampias T, Boutati E, Pectasides E, Sasaki
C, Kountourakis P, Weinberger P and Psyrri A: Activation of Wnt
signaling pathway by human papillomavirus E6 and E7 oncogenes in
HPV16-positive oropharyngeal squamous carcinoma cells. Mol Cancer
Res. 8:433–443. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Hu Z, Müller S, Qian G, Xu J, Kim S, Chen
Z, Jiang N, Wang D, Zhang H, Saba NF, et al: Human papillomavirus
16 oncoprotein regulates the translocation of β-catenin via the
activation of epidermal growth factor receptor. Cancer.
121:214–225. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang YW, Chang HS, Lin CH and Yu WC:
HPV-18 E7 conjugates to c-Myc and mediates its transcriptional
activity. Int J Biochem Cell Biol. 39:402–412. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lu Z and Hunter T: Degradation of
activated protein kinases by ubiquitination. Annu Rev Biochem.
78:435–475. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Christofk HR, Vander Heiden MG, Wu N,
Asara JM and Cantley LC: Pyruvate kinase M2 is a
phosphotyrosine-binding protein. Nature. 452:181–186. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhou Z, Li M, Zhang L, Zhao H, Şahin Ö,
Chen J, Zhao JJ, Songyang Z and Yu D: Oncogenic kinase-induced PKM2
tyrosine 105 phosphorylation converts nononcogenic PKM2 to a tumor
promoter and induces cancer stem-like cells. Cancer Res.
78:2248–2261. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Lin Y, Zhai H, Ouyang Y, Lu Z, Chu C, He Q
and Cao X: Knockdown of PKM2 enhances radiosensitivity of cervical
cancer cells. Cancer Cell Int. 19:1292019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang C, Li Y, Yan S, Wang H, Shao X, Xiao
M, Yang B, Qin G, Kong R, Chen R and Zhang N: Interactome analysis
reveals that lncRNA HULC promotes aerobic glycolysis through LDHA
and PKM2. Nat Commun. 11:31622020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo
F, Lyssiotis CA, Aldape K, Cantley LC and Lu Z: ERK1/2-dependent
phosphorylation and nuclear translocation of PKM2 promotes the
Warburg effect. Nat Cell Biol. 14:1295–1304. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wellen KE and Thompson CB: Cellular
metabolic stress: Considering how cells respond to nutrient excess.
Mol Cell. 40:323–332. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Anastasiou D, Poulogiannis G, Asara JM,
Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW,
Auld DS, et al: Inhibition of pyruvate kinase M2 by reactive oxygen
species contributes to cellular antioxidant responses. Science.
334:1278–1283. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Liu Y, Guo JZ, Liu Y, Wang K, Ding W, Wang
H, Liu X, Zhou S, Lu XC, Yang HB, et al: Nuclear lactate
dehydrogenase A senses ROS to produce α-hydroxybutyrate for
HPV-induced cervical tumor growth. Nat Commun. 9:44292018.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang Y, Liu J, Jin X, Zhang D, Li D, Hao
F, Feng Y, Gu S, Meng F, Tian M, et al: O-GlcNAcylation
destabilizes the active tetrameric PKM2 to promote the Warburg
effect. Proc Natl Acad Sci USA. 114:13732–13737. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zeng Q, Zhao RX, Chen J, Li Y, Li XD, Liu
XL, Zhang WM, Quan CS, Wang YS, Zhai YX, et al: O-linked
GlcNAcylation elevated by HPV E6 mediates viral oncogenesis. Proc
Natl Acad Sci USA. 113:9333–9338. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li L, Peng G, Liu X, Zhang Y, Han H and
Liu ZR: Pyruvate kinase M2 coordinates metabolism switch between
glycolysis and glutaminolysis in cancer cells. iScience.
23:1016842020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Reinstein E, Scheffner M, Oren M,
Ciechanover A and Schwartz A: Degradation of the E7 human
papillomavirus oncoprotein by the ubiquitin-proteasome system:
Targeting via ubiquitination of the N-terminal residue. Oncogene.
19:5944–5950. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Alani RM and Münger K: Human
papillomaviruses and associated malignancies. J Clin Oncol.
16:330–337. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Yang W, Xia Y, Ji H, Zheng Y, Liang J,
Huang W, Gao X, Aldape K and Lu Z: Nuclear PKM2 regulates β-catenin
transactivation upon EGFR activation. Nature. 480:118–122. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Gao X, Wang H, Yang JJ, Liu X and Liu ZR:
Pyruvate kinase M2 regulates gene transcription by acting as a
protein kinase. Mol Cell. 45:598–609. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yue G, Tang J, Zhang L, Niu H, Li H and
Luo S: CD276 suppresses CAR-T cell function by promoting tumor cell
glycolysis in esophageal squamous cell carcinoma. J Gastrointest
Oncol. 12:38–51. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xiao M, Xie J, Wu Y, Wang G, Qi X, Liu Z,
Wang Y, Wang X, Hoque A, Oakhill J, et al: The eEF2 kinase-induced
STAT3 inactivation inhibits lung cancer cell proliferation by
phosphorylation of PKM2. Cell Commun Signal. 18:252020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Shukla S, Mahata S, Shishodia G, Pandey A,
Tyagi A, Vishnoi K, Basir SF, Das BC and Bharti AC: Functional
regulatory role of STAT3 in HPV16-mediated cervical carcinogenesis.
PLoS One. 8:e678492013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang W, Wu X, Hu L, Ma Y, Xiu Z, Huang B,
Feng Y and Tang X: Overexpression of human papillomavirus type 16
oncoproteins enhances epithelial-mesenchymal transition via STAT3
signaling pathway in non-small cell lung cancer cells. Oncol Res.
25:843–852. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Morgan EL and Macdonald A: Manipulation of
JAK/STAT signalling by high-risk HPVs: Potential therapeutic
targets for HPV-associated malignancies. Viruses. 12:9772020.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Christensen DR, Calder PC and Houghton FD:
GLUT3 and PKM2 regulate OCT4 expression and support the hypoxic
culture of human embryonic stem cells. Sci Rep. 5:175002015.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lee J, Kim HK, Han YM and Kim J: Pyruvate
kinase isozyme type M2 (PKM2) interacts and cooperates with Oct-4
in regulating transcription. Int J Biochem Cell Biol. 40:1043–1054.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Brehm A, Ohbo K, Zwerschke W, Botquin V,
Jansen-Dürr P and Schöler HR: Synergism with germ line
transcription factor Oct-4: Viral oncoproteins share the ability to
mimic a stem cell-specific activity. Mol Cell Biol. 19:2635–2643.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Park EG, Pyo SJ, Cui Y, Yoon SH and Nam
JW: Tumor immune microenvironment lncRNAs. Brief Bioinform.
23:bbab5042022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Hinshaw DC and Shevde LA: The tumor
microenvironment innately modulates cancer progression. Cancer Res.
79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Adem S, Comakli V and Uzun N: Pyruvate
kinase activators as a therapy target: A patent review 2011–2017.
Expert Opin Ther Pat. 28:61–68. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Wang T, Marquardt C and Foker J: Aerobic
glycolysis during lymphocyte proliferation. Nature. 261:702–705.
1976. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang R, Dillon CP, Shi LZ, Milasta S,
Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger
J and Green DR: The transcription factor Myc controls metabolic
reprogramming upon T lymphocyte activation. Immunity. 35:871–882.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Boxer MB, Jiang JK, Vander Heiden MG, Shen
M, Skoumbourdis AP, Southall N, Veith H, Leister W, Austin CP, Park
HW, et al: Evaluation of substituted N,N'-diarylsulfonamides as
activators of the tumor cell specific M2 isoform of pyruvate
kinase. J Med Chem. 53:1048–1055. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Jiang JK, Boxer MB, Vander Heiden MG, Shen
M, Skoumbourdis AP, Southall N, Veith H, Leister W, Austin CP, Park
HW, et al: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones
as activators of the tumor cell specific M2 isoform of pyruvate
kinase. Bioorg Med Chem Lett. 20:3387–3393. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Angiari S, Runtsch MC, Sutton CE,
Palsson-McDermott EM, Kelly B, Rana N, Kane H, Papadopoulou G,
Pearce EL, Mills KHG and O'Neill LAJ: Pharmacological activation of
pyruvate kinase M2 inhibits CD4+ T cell pathogenicity
and suppresses autoimmunity. Cell Metab. 31:391–405.e8. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Damasceno LEA, Prado DS, Veras FP, Fonseca
MM, Toller-Kawahisa JE, Rosa MH, Públio GA, Martins TV, Ramalho FS,
Waisman A, et al: PKM2 promotes Th17 cell differentiation and
autoimmune inflammation by fine-tuning STAT3 activation. J Exp Med.
217:e201906132020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Deng J, Lü S, Liu H, Liu B, Jiang C, Xu Q,
Feng J and Wang X: Homocysteine activates B cells via regulating
PKM2-dependent metabolic reprogramming. J Immunol. 198:170–183.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Yang L, Xie M, Yang M, Yu Y, Zhu S, Hou W,
Kang R, Lotze MT, Billiar TR, Wang H, et al: PKM2 regulates the
Warburg effect and promotes HMGB1 release in sepsis. Nat Commun.
5:44362014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Shirai T, Nazarewicz RR, Wallis BB, Yanes
RE, Watanabe R, Hilhorst M, Tian L, Harrison DG, Giacomini JC,
Assimes TL, et al: The glycolytic enzyme PKM2 bridges metabolic and
inflammatory dysfunction in coronary artery disease. J Exp Med.
213:337–354. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Palsson-McDermott EM, Curtis AM, Goel G,
Lauterbach MAR, Sheedy FJ, Gleeson LE, van den Bosch MWM, Quinn SR,
Domingo-Fernandez R, Johnston DGW, et al: Pyruvate kinase M2
regulates Hif-1α activity and IL-1β induction and is a critical
determinant of the Warburg effect in LPS-activated macrophages.
Cell Metab. 21:3472015. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wang L, Deng Z, Sun Y, Zhao Y, Li Y, Yang
M, Yuan R, Liu Y, Qian Z, Zhou F and Kang H: The study on the
regulation of Th cells by mesenchymal stem cells through the
JAK-STAT signaling pathway to protect naturally aged sepsis model
rats. Front Immunol. 13:8206852022. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lochmatter C, Fischer R, Charles PD, Yu Z,
Powrie F and Kessler BM: Integrative phosphoproteomics links IL-23R
signaling with metabolic adaptation in lymphocytes. Sci Rep.
6:244912016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Deng W, Zhu S, Zeng L, Liu J, Kang R, Yang
M, Cao L, Wang H, Billiar TR, Jiang J, et al: The circadian clock
controls immune checkpoint pathway in sepsis. Cell Rep. 24:366–378.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Park YS, Kim DJ, Koo H, Jang SH, You YM,
Cho JH, Yang SJ, Yu ES, Jung Y, Lee DC, et al: AKT-induced PKM2
phosphorylation signals for IGF-1-stimulated cancer cell growth.
Oncotarget. 7:48155–48167. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Long L, Zhao C, Ozarina M, Zhao X, Yang J
and Chen H: Targeting immune checkpoints in lung cancer: Current
landscape and future prospects. Clin Drug Investig. 39:341–353.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Palsson-McDermott EM, Dyck L, Zasłona Z,
Menon D, McGettrick AF, Mills KHG and O'Neill LA: Pyruvate kinase
M2 is required for the expression of the immune checkpoint PD-L1 in
immune cells and tumors. Front Immunol. 8:13002017. View Article : Google Scholar : PubMed/NCBI
|