|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Christiansen P, Carstensen SL, Ejlertsen
B, Kroman N, Offersen B, Bodilsen A and Jensen MB: Breast
conserving surgery versus mastectomy: Overall and relative
survival-a population based study by the Danish breast cancer
cooperative group (DBCG). Acta Oncol. 57:19–25. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Corradini S, Reitz D, Pazos M, Schönecker
S, Braun M, Harbeck N, Matuschek C, Bölke E, Ganswindt U, Alongi F,
et al: Mastectomy or breast-conserving therapy for early breast
cancer in real-life clinical practice: Outcome comparison of 7565
cases. Cancers (Basel). 11:1602019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
van Maaren MC, de Munck L, de Bock GH,
Jobsen JJ, van Dalen T, Linn SC, Poortmans P, Strobbe LJA and
Siesling S: 10 Year survival after breast-conserving surgery plus
radiotherapy compared with mastectomy in early breast cancer in the
Netherlands: A population-based study. Lancet Oncol. 17:1158–1170.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Darby SC, Ewertz M, McGale P, Bennet AM,
Blom-Goldman U, Brønnum D, Correa C, Cutter D, Gagliardi G, Gigante
B, et al: Risk of ischemic heart disease in women after
radiotherapy for breast cancer. N Engl J Med. 368:987–998. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Brownlee Z, Garg R, Listo M, Zavitsanos P,
Wazer DE and Huber KE: Late complications of radiation therapy for
breast cancer: Evolution in techniques and risk over time. Gland
Surg. 7:371–378. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Poortmans PM, Weltens C, Fortpied C,
Kirkove C, Peignaux-Casasnovas K, Budach V, van der Leij F, Vonk E,
Weidner N, Rivera S, et al: Internal mammary and medial
supraclavicular lymph node chain irradiation in stage I–III breast
cancer (EORTC 22922/10925): 15-Year results of a randomised, phase
3 trial. Lancet Oncol. 21:1602–1610. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Thorsen LB, Offersen BV, Danø H, Berg M,
Jensen I, Pedersen AN, Zimmermann SJ, Brodersen HJ, Overgaard M and
Overgaard J: DBCG-IMN: A population-based cohort study on the
effect of internal mammary node irradiation in early node-positive
breast cancer. J Clin Oncol. 34:314–320. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang X, Luo J, Jin K, Chen X, Zhang L,
Meng J, Zhang X, Zhang Z, Shao Z, Bazan JG, et al: Internal mammary
node irradiation improves 8-year survival in breast cancer
patients: Results from a retrospective cohort study in real-world
setting. Breast Cancer. 27:252–260. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Vinod SK, Jameson MG, Min M and Holloway
LC: Uncertainties in volume delineation in radiation oncology: A
systematic review and recommendations for future studies. Radiother
Oncol. 121:169–179. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li XA, Tai A, Arthur DW, Buchholz TA,
Macdonald S, Marks LB, Moran JM, Pierce LJ, Rabinovitch R, Taghian
A, et al: Variability of target and normal structure delineation
for breast cancer radiotherapy: An RTOG multi-institutional and
multiobserver study. Int J Radiat Oncol Biol Phys. 73:944–951.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lim JY and Leech M: Use of
auto-segmentation in the delineation of target volumes and organs
at risk in head and neck. Acta Oncol. 55:799–806. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Reed VK, Woodward WA, Zhang L, Strom EA,
Perkins GH, Tereffe W, Oh JL, Yu TK, Bedrosian I, Whitman GJ, et
al: Automatic segmentation of whole breast using atlas approach and
deformable image registration. Int J Radiat Oncol Biol Phys.
73:1493–1500. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Fontanilla HP, Woodward WA, Lindberg ME,
Zhang L, Sharp HJ, Strom EA, Salehpour M, Buchholz TA and Dong L:
Automating RTOG-defined target volumes for postmastectomy radiation
therapy. Pract Radiat Oncol. 1:97–104. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bell LR, Dowling JA, Pogson EM, Metcalfe P
and Holloway L: Atlas-based segmentation technique incorporating
inter-observer delineation uncertainty for whole breast. J Phys
Conf Ser. 777:0120022017. View Article : Google Scholar
|
|
16
|
Eldesoky AR, Yates ES, Nyeng TB, Thomsen
MS, Nielsen HM, Poortmans P, Kirkove C, Krause M, Kamby C, Mjaaland
I, et al: Internal and external validation of an ESTRO delineation
guideline-dependent automated segmentation tool for loco-regional
radiation therapy of early breast cancer. Radiother Oncol.
121:424–430. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Offersen BV, Boersma LJ, Kirkove C, Hol S,
Aznar MC, Biete Sola A, Kirova YM, Pignol JP, Remouchamps V,
Verhoeven K, et al: ESTRO consensus guideline on target volume
delineation for elective radiation therapy of early stage breast
cancer. Radiother Oncol. 114:3–10. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ciardo D, Gerardi MA, Vigorito S, Morra A,
Dell'acqua V, Diaz FJ, Cattani F, Zaffino P, Ricotti R, Spadea MF,
et al: Atlas-based segmentation in breast cancer radiotherapy:
Evaluation of specific and generic-purpose atlases. Breast.
32:44–52. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gao Y, Hou Y, Pan X, Wang L, Li L and Xia
YX: Research progress on the whole breast radiotherapy in prone
position after breast-conserving surgery for early breast cancer.
Chin J Radiol Health. 31:373–378. 3852022.
|
|
20
|
Dipasquale G, Wang X, Chatelain-Fontanella
V, Vinh-Hung V and Miralbell R: Automatic segmentation of breast in
prone position: Correlation of similarity indexes and breast
pendulousness with dose/volume parameters. Radiother Oncol.
120:124–127. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Stross WC, Herchko SM and Vallow LA: Atlas
based segmentation in prone breast cancer radiation therapy. Med
Dosim. 45:298–301. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang X, Miralbell R, Fargier-Bochaton O,
Bulling S, Vallée JP and Dipasquale G: Atlas sampling for prone
breast automatic segmentation of organs at risk: The importance of
patients' body mass index and breast cup size for an optimized
contouring of the heart and the coronary vessels. Technol Cancer
Res Treat. 19:15330338209206242020.PubMed/NCBI
|
|
23
|
Msika R, Tkatchenko N, Robilliard M,
Fourquet A and Kirova Y: Evaluation of a software for automatic
delineation of the mammary gland and organs at risk in patients
treated for breast cancer in lateral position. Cancer Radiother.
24:799–804. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Leonardi MC, Pepa M, Gugliandolo SG,
Luraschi R, Vigorito S, Rojas DP, La Porta MR, Cante D, Petrucci E,
Marino L, et al: Geometric contour variation in clinical target
volume of axillary lymph nodes in breast cancer radiotherapy: An
AIRO multi-institutional study. Br J Radiol. 94:202011772021.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Dong X, Lei Y, Wang T, Thomas M, Tang L,
Curran WJ, Liu T and Yang X: Automatic multiorgan segmentation in
thorax CT images using U-net-GAN. Med Phys. 46:2157–2168. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Fu Y, Lei Y, Wang T, Curran WJ, Liu T and
Yang X: A review of deep learning based methods for medical image
multi-organ segmentation. Phys Med. 85:107–122. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang T, Lei Y, Fu Y, Curran WJ, Liu T and
Yang X: Machine learning in quantitative PET imaging. arXiv
preprint arXiv. 2001.06597. 2020.
|
|
28
|
Sahiner B, Pezeshk A, Hadjiiski LM, Wang
X, Drukker K, Cha KH, Summers RM and Giger ML: Deep learning in
medical imaging and radiation therapyc. Med Phys. 46:e1–e36. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Szegedy C, Liu W, Jia Y, Sermanet P, Reed
S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A: Going Deeper
with Convolutions. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 1–9. 2015.
|
|
30
|
LeCun Y, Bengio Y and Hinton G: Deep
learning. Nature. 521:436–444. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ronneberger O, Fischer P and Brox T:
U-net: Convolutional networks for biomedical image segmentation.
International conference on medical image computing and
computer-assisted intervention. 234–241. 2015.
|
|
32
|
He K, Zhang X, Ren S and Sun J: Deep
residual learning for image recognition. Proceedings of the IEEE
conference on computer vision and pattern recognition. 770–778.
2016.PubMed/NCBI
|
|
33
|
Men K, Zhang T, Chen X, Chen B, Tang Y,
Wang S, Li Y and Dai J: Fully automatic and robust segmentation of
the clinical target volume for radiotherapy of breast cancer using
big data and deep learning. Phys Med. 50:13–19. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Men K, Dai J and Li Y: Automatic
segmentation of the clinical target volume and organs at risk in
the planning CT for rectal cancer using deep dilated convolutional
neural networks. Med Phys. 44:6377–6389. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Men K, Chen X, Zhang Y, Zhang T, Dai J, Yi
J and Li Y: Deep deconvolutional neural network for target
segmentation of nasopharyngeal cancer in planning computed
tomography images. Front Oncol. 7:3152017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhou T, Dong Y and Huo B: U-Net and its
applications in medical image segmentation: A review. J Image
Graph. 26:2058–2077. 2021.
|
|
37
|
Siddique N, Sidike P, Elkin CP and
Devabhaktuni V: U-net and its variants for medical image
segmentation: A review of theory and applications. IEEE Access.
9:82031–82057. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Liu Z, Liu F, Chen W, Tao Y, Liu X, Zhang
F, Shen J, Guan H, Zhen H, Wang S, et al: Automatic segmentation of
clinical target volume and organs-at-risk for breast conservative
radiotherapy using a convolutional neural network. Cancer Manag
Res. 13:8209–8217. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Schreier J, Attanasi F and Laaksonen H: A
full-image deep segmenter for CT images in breast cancer
radiotherapy treatment. Front Oncol. 9:6772019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Balagopal A, Kazemifar S, Nguyen D, Lin
MH, Hannan R, Owrangi A and Jiang S: Fully automated organ
segmentation in male pelvic CT images. Phys Med Biol.
63:2450152018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhou X, Yamada K, Kojima T, Takayama R,
Wang S, Zhou X, Hara T and Fujita H: Performance evaluation of 2D
and 3D deep learning approaches for automatic segmentation of
multiple organs on CT images. Medical Imaging 2018: Computer-Aided
Diagnosis. 10575:520–525. 2018.
|
|
42
|
Chung SY, Chang JS, Choi MS, Chang Y, Choi
BS, Chun J, Keum KC, Kim JS and Kim YB: Clinical feasibility of
deep learning-based auto-segmentation of target volumes and
organs-at-risk in breast cancer patients after breast-conserving
surgery. Radiat Oncol. 16:442021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Byun HK, Chang JS, Choi MS, Chun J, Jung
J, Jeong C, Kim JS, Chang Y, Chung SY, Lee S and Kim YB: Evaluation
of deep learning-based autosegmentation in breast cancer
radiotherapy. Radiat Oncol. 16:2032021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Oya M, Sugimoto S, Sasai K and Yokoyama K:
Investigation of clinical target volume segmentation for whole
breast irradiation using three-dimensional convolutional neural
networks with gradient-weighted class activation mapping. Radiol
Phys Technol. 14:238–247. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Almberg SS, Lervåg C, Frengen J, Eidem M,
Abramova TM, Nordstrand CS, Alsaker MD, Tøndel H, Raj SX and
Wanderås AD: Training, validation, and clinical implementation of a
deep-learning segmentation model for radiotherapy of loco-regional
breast cancer. Radiother Oncol. 173:62–68. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liu Z, Liu F, Chen W, Liu X, Hou X, Shen
J, Guan H, Zhen H, Wang S, Chen Q, et al: Automatic segmentation of
clinical target volumes for post-modified radical mastectomy
radiotherapy using convolutional neural networks. Front Oncol.
10:5813472021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hu Y, Guo Y, Wang Y, Yu J, Li J, Zhou S
and Chang C: Automatic tumor segmentation in breast ultrasound
images using a dilated fully convolutional network combined with an
active contour model. Med Phys. 46:215–228. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Qi X, Hu J, Zhang L, Bai S and Yi Z:
Automated segmentation of the clinical target volume in the
planning CT for breast cancer using deep neural networks. IEEE
Trans Cybern. 52:3446–3456. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sherer MV, Lin D, Elguindi S, Duke S, Tan
LT, Cacicedo J, Dahele M and Gillespie EF: Metrics to evaluate the
performance of auto-segmentation for radiation treatment planning:
A critical review. Radiother Oncol. 160:185–191. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Simões R, Wortel G, Wiersma TG, Janssen
TM, van der Heide UA and Remeijer P: Geometrical and dosimetric
evaluation of breast target volume auto-contouring. Phys Imaging
Radiat Oncol. 12:38–43. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
van den Bogaard VA, Ta BD, van der Schaaf
A, Bouma AB, Middag AM, Bantema-Joppe EJ, van Dijk LV, van
Dijk-Peters FB, Marteijn LA, de Bock GH, et al: Validation and
modification of a prediction model for acute cardiac events in
patients with breast cancer treated with radiotherapy based on
three-dimensional dose distributions to cardiac substructures. J
Clin Oncol. 35:1171–1178. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Jacobse JN, Duane FK, Boekel NB,
Schaapveld M, Hauptmann M, Hooning MJ, Seynaeve CM, Baaijens MHA,
Gietema JA, Darby SC, et al: Radiation dose-response for risk of
myocardial infarction in breast cancer survivors. Int J Radiat
Oncol Biol Phys. 103:595–604. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wennstig AK, Garmo H, Isacsson U,
Gagliardi G, Rintelä N, Lagerqvist B, Holmberg L, Blomqvist C, Sund
M and Nilsson G: The relationship between radiation doses to
coronary arteries and location of coronary stenosis requiring
intervention in breast cancer survivors. Radiat Oncol. 14:402019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Piroth MD, Baumann R, Budach W, Dunst J,
Feyer P, Fietkau R, Haase W, Harms W, Hehr T, Krug D, et al: Heart
toxicity from breast cancer radiotherapy: Current findings,
assessment, and prevention. Strahlenther Onkol. 195:1–12. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Jacob S, Camilleri J, Derreumaux S, Walker
V, Lairez O, Lapeyre M, Bruguière E, Pathak A, Bernier MO, Laurier
D, et al: Is mean heart dose a relevant surrogate parameter of left
ventricle and coronary arteries exposure during breast cancer
radiotherapy: A dosimetric evaluation based on
individually-determined radiation dose (BACCARAT study). Radiat
Oncol. 14:292019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Taylor C, McGale P, Brønnum D, Correa C,
Cutter D, Duane FK, Gigante B, Jensen MB, Lorenzen E, Rahimi K, et
al: Cardiac structure injury after radiotherapy for breast cancer:
Cross-sectional study with individual patient data. J Clin Oncol.
36:2288–2296. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Naimi Z, Moujahed R, Neji H, Yahyaoui J,
Hamdoun A, Bohli M and Kochbati L: Cardiac substructures exposure
in left-sided breast cancer radiotherapy: Is the mean heart dose a
reliable predictor of cardiac toxicity? Cancer Radiother.
25:229–236. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Munshi A, Khataniar N, Sarkar B, Bera ML
and Mohanti BK: Spatial orientation of coronary arteries and its
implication for breast and thoracic radiotherapy-proposing
‘coronary strip’ as a new organ at risk. Strahlenther Onkol.
194:711–718. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
van den Bogaard VAB, van Dijk LV,
Vliegenthart R, Sijtsema NM, Langendijk JA, Maduro JH and Crijns
APG: Development and evaluation of an auto-segmentation tool for
the left anterior descending coronary artery of breast cancer
patients based on anatomical landmarks. Radiother Oncol. 136:15–20.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kaderka R, Gillespie EF, Mundt RC, Bryant
AK, Sanudo-Thomas CB, Harrison AL, Wouters EL, Moiseenko V, Moore
KL, Atwood TF and Murphy JD: Geometric and dosimetric evaluation of
atlas based auto-segmentation of cardiac structures in breast
cancer patients. Radiother Oncol. 131:215–220. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Jung JW and Lee C, Mosher EG, Mille MM,
Yeom YS, Jones EC, Choi M and Lee C: Automatic segmentation of
cardiac structures for breast cancer radiotherapy. Phys Imaging
Radiat Oncol. 12:44–48. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Bekelman JE, Lu H, Pugh S, Baker K, Berg
CD, Berrington de González A, Braunstein LZ, Bosch W, Chauhan C,
Ellenberg S, et al: Pragmatic randomised clinical trial of proton
versus photon therapy for patients with non-metastatic breast
cancer: The radiotherapy comparative effectiveness (RadComp)
consortium trial protocol. BMJ Open. 9:e0255562019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jung JW, Mille MM, Ky B, Kenworthy W, Lee
C, Yeom YS, Kwag A, Bosch W, MacDonald S, Cahlon O, et al:
Application of an automatic segmentation method for evaluating
cardiac structure doses received by breast radiotherapy patients.
Phys Imaging Radiat Oncol. 19:138–144. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Milo MLH, Nyeng TB, Lorenzen EL, Hoffmann
L, Møller DS and Offersen BV: Atlas-based auto-segmentation for
delineating the heart and cardiac substructures in breast cancer
radiation therapy. Acta Oncol. 61:247–254. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tan W, Liu D, Xue C, Xu J, Li B, Chen Z,
Hu D and Wang X: Anterior myocardial territory may replace the
heart as organ at risk in intensity-modulated radiotherapy for
left-sided breast cancer. Int J Radiat Oncol Biol Phys.
82:1689–1697. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Stockinger M, Karle H, Rennau H, Sebb S,
Wolf U, Remmele J, Bührdel S, Bartkowiak D, Blettner M,
Schmidberger H and Wollschläger D: Heart atlas for retrospective
cardiac dosimetry: a multi-institutional study on interobserver
contouring variations and their dosimetric impact. Radiat Oncol.
16:2412021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Loap P, Tkatchenko N, Nicolas E, Fourquet
A and Kirova Y: Optimization and auto-segmentation of a high risk
cardiac zone for heart sparing in breast cancer radiotherapy.
Radiother Oncol. 153:146–154. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Loap P, De Marzi L, Kirov K, Servois V,
Fourquet A, Khoubeyb A and Kirova Y: Development of simplified
auto-segmentable functional cardiac atlas. Pract Radiat Oncol.
12:533–538. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Choi MS, Choi BS, Chung SY, Kim N, Chun J,
Kim YB, Chang JS and Kim JS: Clinical evaluation of atlas- and deep
learning-based automatic segmentation of multiple organs and
clinical target volumes for breast cancer. Radiother Oncol.
153:139–145. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
van den Oever LB, Spoor DS, Crijns APG,
Vliegenthart R, Oudkerk M, Veldhuis RNJ, de Bock GH and van Ooijen
PMA: Automatic cardiac structure contouring for small datasets with
cascaded deep learning models. J Med Syst. 46:222022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jin X, Thomas MA, Dise J, Kavanaugh J,
Hilliard J, Zoberi I, Robinson CG and Hugo GD: Robustness of deep
learning segmentation of cardiac substructures in noncontrast
computed tomography for breast cancer radiotherapy. Med Phys.
48:7172–7188. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Harms J, Lei Y, Tian S, McCall NS, Higgins
KA, Bradley JD, Curran WJ, Liu T and Yang X: Automatic delineation
of cardiac substructures using a region-based fully convolutional
network. Med Phys. 48:2867–2876. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Momin S, Lei Y, McCall NS, Zhang J, Roper
J, Harms J, Tian S, Lloyd MS, Liu T, Bradley JD, et al: Mutual
enhancing learning-based automatic segmentation of CT cardiac
substructure. Phys Med Biol. 67:10.1088/1361–6560/ac692d. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Morris ED, Ghanem AI, Dong M, Pantelic MV,
Walker EM and Glide-Hurst CK: Cardiac substructure segmentation
with deep learning for improved cardiac sparing. Med Phys.
47:576–586. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Bruns S, Wolterink JM, Takx RAP, van
Hamersvelt RW, Suchá D, Viergever MA, Leiner T and Išgum I: Deep
learning from dual-energy information for whole-heart segmentation
in dual-energy and single-energy non-contrast-enhanced cardiac CT.
Med Phys. 47:5048–5060. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
van Velzen SGM, Bruns S, Wolterink JM,
Leiner T, Viergever MA, Verkooijen HM and Išgum I: AI-based
quantification of planned radiation therapy dose to cardiac
structures and coronary arteries in patients with breast cancer.
Int J Radiat Oncol Biol Phys. 112:611–620. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chun J, Chang JS, Oh C, Park I, Choi MS,
Hong CS, Kim H, Yang G, Moon JY, Chung SY, et al: Synthetic
contrast-enhanced computed tomography generation using a deep
convolutional neural network for cardiac substructure delineation
in breast cancer radiation therapy: A feasibility study. Radiat
Oncol. 17:832022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shen J, Zhang F, Di M, Shen J, Wang S,
Chen Q, Chen Y, Liu Z, Lian X, Ma J, et al: Clinical target volume
automatic segmentation based on lymph node stations for lung cancer
with bulky lump lymph nodes. Thorac Cancer. 13:2897–2903. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cardenas CE, Beadle BM, Garden AS, Skinner
HD, Yang J, Rhee DJ, McCarroll RE, Netherton TJ, Gay SS, Zhang L
and Court LE: Generating high-quality lymph node clinical target
volumes for head and neck cancer radiation therapy using a fully
automated deep learning-based approach. Int J Radiat Oncol Biol
Phys. 109:801–812. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Jin D, Guo D, Ge J, Ye X and Lu L: Towards
automated organs at risk and target volumes contouring: Defining
precision radiation therapy in the modern era. J Natl Cancer Cent.
2:306–313. 2022. View Article : Google Scholar
|
|
81
|
Xu H, Arsene Henry A, Robillard M, Amessis
M and Kirova YM: The use of new delineation tool ‘MIRADA’ at the
level of regional lymph nodes, step-by-step development and first
results for early-stage breast cancer patients. Br J Radiol.
91:201800952018. View Article : Google Scholar : PubMed/NCBI
|