Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
April-2023 Volume 25 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2023 Volume 25 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.xlsx
    • Supplementary_Data3.xlsx
Article Open Access

Farnesyl diphosphate synthase promotes cell proliferation by regulating gene expression and alternative splicing profiles in HeLa cells

  • Authors:
    • Lijuan Wang
    • Zhigang Chen
    • Dong Chen
    • Bo Kan
    • Yangfang He
    • Hanqing Cai
  • View Affiliations / Copyright

    Affiliations: Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, ABLife BioBigData Institute, Wuhan, Hubei 430075, P.R. China, Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 145
    |
    Published online on: February 28, 2023
       https://doi.org/10.3892/ol.2023.13731
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Farnesyl diphosphate synthase (FDPS), an essential enzyme involved in the mevalonate pathway, is implicated in various diseases, including multiple types of cancer. As an RNA‑binding protein (RBP), FDPS is also involved in transcriptional and post‑transcriptional regulation. However, to the best of our knowledge, transcriptome‑wide targets of FDPS still remain unknown. In the present study, FDPS expression patterns in pan‑cancer were analyzed. In addition, it was investigated how FDPS overexpression (FDPS‑OE) regulates the transcriptome in HeLa cells. FDPS‑OE increased the proliferation rate in HeLa cells by MTT assay. Using transcriptome‑wide high throughput sequencing and bioinformatics analysis, it was found that FDPS upregulated the expression levels of genes enriched in cell proliferation and extracellular matrix organization, including the laminin subunit γ2, interferon‑induced proteins with tetratricopeptide repeats 2 and matrix metallopeptidase 19 genes. According to alternative splicing (AS) analysis, FDPS modulated the splicing patterns of the bone morphogenic protein 1, semaphorin 4D, annexin A2 and sirtuin 2 genes, which are enriched in the cell cycle and DNA repair, and are related to cell proliferation. To corroborate the FDPS‑regulated transcriptome findings, FDPS was overexpressed in human osteosarcoma cells. Differentially expressed genes and regulated AS genes in the cells were both validated by reverse transcription‑quantitative PCR. The results suggested that, as an emerging RBP, FDPS may serve an important role in transcriptome profiles by altering gene expression and regulating AS. FDPS also affected the cell proliferation rate. These findings broaden the understanding of the molecular functions of FDPS, and the potential of FDPS as a target in therapy should be investigated.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Liang PH, Ko TP and Wang AHJ: Structure, mechanism and function of prenyltransferases. Eur J Biochem. 269:3339–3354. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Waller DD, Park J and Tsantrizos YS: Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol. 54:41–60. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Notarnicola M, Messa C, Cavallini A, Bifulco M, Tecce MF, Eletto D, Di Leo A, Montemurro S, Laezza C and Caruso MG: Higher farnesyl diphosphate synthase activity in human colorectal cancer inhibition of cellular apoptosis. Oncology. 67:351–358. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Bouterfa HL, Sattelmeyer V, Czub S, Vordermark D, Roosen K and Tonn JC: Inhibition of Ras farnesylation by lovastatin leads to downregulation of proliferation and migration in primary cultured human glioblastoma cells. Anticancer Res. 20:2761–2771. 2000.PubMed/NCBI

5 

Woo IS, Eun SY, Kim HJ, Kang ES, Kim HJ, Lee JH, Chang KC, Kim JH, Hong SC and Seo HG: Farnesyl diphosphate synthase attenuates paclitaxel-induced apoptotic cell death in human glioblastoma U87MG cells. Neurosci Lett. 474:115–120. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Marini F, Falchetti A, Silvestri S, Bagger Y, Luzi E, Tanini A, Christiansen C and Brandi ML: Modulatory effect of farnesyl pyrophosphate synthase (FDPS) rs2297480 polymorphism on the response to long-term amino-bisphosphonate treatment in postmenopausal osteoporosis. Curr Med Res Opin. 24:2609–2615. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Olmos JM, Zarrabeitia MT, Hernández JL, Sañudo C, González-Macías J and Riancho JA: Common allelic variants of the farnesyl diphosphate synthase gene influence the response of osteoporotic women to bisphosphonates. Pharmacogenomics J. 12:227–232. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Ciubean AD, Ungur RA, Irsay L, Ciortea VM, Borda IM, Dogaru GB, Trifa AP, Vesa SC and Buzoianu AD: Polymorphisms of FDPS, LRP5, SOST and VKORC1 genes and their relation with osteoporosis in postmenopausal Romanian women. PLoS One. 14:e02257762019. View Article : Google Scholar : PubMed/NCBI

9 

Wiemer A, Hohl R and Wiemer D: The intermediate enzymes of isoprenoid metabolism as anticancer targets. Anticancer Agents Med Chem. 9:526–542. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Dunford JE, Kwaasi AA, Rogers MJ, Barnett BL, Ebetino FH, Russell RG, Oppermann U and Kavanagh KL: Structure-activity relationships among the nitrogen containing bisphosphonates in clinical use and other analogues: Time-dependent inhibition of human farnesyl pyrophosphate synthase. J Med Chem. 51:2187–2195. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Yang J, Zhu HH, Chen GP, Ye Y, Zhao CZ, Mou Y and Hu SJ: Inhibition of farnesyl pyrophosphate synthase attenuates angiotensin II-induced cardiac hypertrophy and fibrosis in vivo. Int J Biochem Cell Biol. 45:657–666. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Fontalis A and Eastell R: The challenge of long-term adherence: The role of bone turnover markers in monitoring bisphosphonate treatment of osteoporosis. Bone. 136:1153362020. View Article : Google Scholar : PubMed/NCBI

13 

Kamimura M, Ikegami S, Mukaiyama K, Koiwai H, Nakamura Y, Taguchi A and Kato H: Additive effects of eldecalcitol in poorly responding long-term bisphosphonate treatment for osteoporosis. Osteoporos Sarcopenia. 5:57–61. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, Rogers MJ, Russell RG and Oppermann U: The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci USA. 103:7829–7834. 2006. View Article : Google Scholar : PubMed/NCBI

15 

LaFleur J, DuVall SL, Willson T, Ginter T, Patterson O, Cheng Y, Knippenberg K, Haroldsen C, Adler RA, Curtis JR, et al: Analysis of osteoporosis treatment patterns with bisphosphonates and outcomes among postmenopausal veterans. Bone. 78:174–185. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Coxon FP and Rogers MJ: The role of prenylated small GTP-binding proteins in the regulation of osteoclast function. Calcif Tissue Int. 72:80–84. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Russell RG, Watts NB, Ebetino FH and Rogers MJ: Mechanisms of action of bisphosphonates: Similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 19:733–759. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Jobke B, Milovanovic P, Amling M and Busse B: Bisphosphonate-osteoclasts: Changes in osteoclast morphology and function induced by antiresorptive nitrogen-containing bisphosphonate treatment in osteoporosis patients. Bone. 59:37–43. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Seshacharyulu P, Rachagani S, Muniyan S, Siddiqui JA, Cruz E, Sharma S, Krishnan R, Killips BJ, Sheinin Y, Lele SM, et al: FDPS cooperates with PTEN loss to promote prostate cancer progression through modulation of small GTPases/AKT axis. Oncogene. 38:5265–5280. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Castello A, Hentze MW and Preiss T: Metabolic enzymes enjoying new partnerships as RNA-binding proteins. Trends Endocrinol Metab. 26:746–757. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, et al: Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 149:1393–1406. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Li H, Xie S, Liu X, Wu H, Lin X, Gu J, Wang H and Duan Y: Matrine alters microRNA expression profiles in SGC-7901 human gastric cancer cells. Oncol Rep. 32:2118–2126. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Abate M, Laezza C, Pisanti S, Torelli G, Seneca V, Catapano G, Montella F, Ranieri R, Notarnicola M, Gazzerro P, et al: Deregulated expression and activity of farnesyl diphosphate synthase (FDPS) in glioblastoma. Sci Rep. 7:141232017. View Article : Google Scholar : PubMed/NCBI

24 

Chatrikhi R, Mallory MJ, Gazzara MR, Agosto LM, Zhu WS, Litterman AJ, Ansel KM and Lynch KW: RNA binding protein CELF2 regulates signal-induced alternative polyadenylation by competing with enhancers of the polyadenylation machinery. Cell Rep. 28:2795–2806.e3. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R and Chambers TJ: Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med. 178:1733–1744. 1993. View Article : Google Scholar : PubMed/NCBI

26 

Shinoda K, Suda A, Otonari K, Futaki S and Imanishi M: Programmable RNA methylation and demethylation using PUF RNA binding proteins. Chem Commun (Camb). 56:1365–1368. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Fagoonee S, Picco G, Orso F, Arrigoni A, Longo DL, Forni M, Scarfò I, Cassenti A, Piva R, Cassoni P, et al: The RNA-binding protein ESRP1 promotes human colorectal cancer progression. Oncotarget. 8:10007–10024. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Rauwel B, Degboé Y, Diallo K, Sayegh S, Baron M, Boyer JF, Constantin A, Cantagrel A and Davignon JL: Inhibition of osteoclastogenesis by the RNA-binding protein QKI5: A novel approach to protect from bone resorption. J Bone Miner Res. 35:753–765. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Kang MH, Jeong KJ, Kim WY, Lee HJ, Gong G, Suh N, Győrffy B, Kim S, Jeong SY, Mills GB and Park YY: Musashi RNA-binding protein 2 regulates estrogen receptor 1 function in breast cancer. Oncogene. 36:1745–1752. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Sherman EJ, Mitchell DC and Garner AL: The RNA-binding protein SART3 promotes miR-34a biogenesis and G1 cell cycle arrest in lung cancer cells. J Biol Chem. 294:17188–17196. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Wang E and Aifantis I: RNA splicing and cancer. Trends Cancer. 6:631–644. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Chen J and Weiss WA: Alternative splicing in cancer: Implications for biology and therapy. Oncogene. 34:1–14. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Sugiyama M, Kodama T, Konishi K, Abe K, Asami S and Oikawa S: Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells. Biochem Biophys Res Commun. 271:688–692. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Tu Y, Wu X, Yu F, Dang J, Wang J, Wei Y, Cai Z, Zhou Z, Liao W, Li L and Zhang Y: Tristetraprolin specifically regulates the expression and alternative splicing of immune response genes in HeLa cells. BMC Immunol. 20:132019. View Article : Google Scholar : PubMed/NCBI

35 

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R and Salzberg SL: TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14:R362013. View Article : Google Scholar : PubMed/NCBI

36 

Therneau T, Hart S and Kocher J: Calculating samplesSize estimates for RNA Seq studies. R package version 1.36.0. 2022.

37 

Robinson MD, McCarthy DJ and Smyth GK: edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26:139–140. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Xia H, Chen D, Wu Q, Wu G, Zhou Y, Zhang Y and Zhang L: CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells. Biochim Biophys Acta Gene Regul Mech. 1860:911–921. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

40 

Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY and Wei L: KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39((Web Server Issue)): W316–W322. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Tang Z, Kang B, Li C, Chen T and Zhang Z: GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47((W1)): W556–W560. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Nagy Á, Munkácsy G and Győrffy B: Pancancer survival analysis of cancer hallmark genes. Sci Rep. 11:60472021. View Article : Google Scholar : PubMed/NCBI

43 

Fujiwara T, Zhou J, Ye S and Zhao H: RNA-binding protein Musashi2 induced by RANKL is critical for osteoclast survival. Cell Death Dis. 7:e23002016. View Article : Google Scholar : PubMed/NCBI

44 

Li X, Ominsky MS, Villasenor KS, Niu QT, Asuncion FJ, Xia X, Grisanti M, Wronski TJ, Simonet WS and Ke HZ: Sclerostin antibody reverses bone loss by increasing bone formation and decreasing bone resorption in a rat model of male osteoporosis. Endocrinology. 159:260–271. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Dhar MK, Koul A and Kaul S: Farnesyl pyrophosphate synthase: A key enzyme in isoprenoid biosynthetic pathway and potential molecular target for drug development. N Biotechnol. 30:114–123. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Ishimoto K, Tachibana K, Hanano I, Yamasaki D, Nakamura H, Kawai M, Urano Y, Tanaka T, Hamakubo T, Sakai J, et al: Sterol-regulatory-element-binding protein 2 and nuclear factor Y control human farnesyl diphosphate synthase expression and affect cell proliferation in hepatoblastoma cells. Biochem J. 429:347–357. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Shen H, Zhan M, Zhang Y, Huang S, Xu S, Huang X, He M, Yao Y, Man M and Wang J: PLZF inhibits proliferation and metastasis of gallbladder cancer by regulating IFIT2. Cell Death Dis. 9:712018. View Article : Google Scholar : PubMed/NCBI

48 

Chen L, Zhai W, Zheng X, Xie Q, Zhou Q, Tao M, Zhu Y, Wu C and Jiang J: Decreased IFIT2 expression promotes gastric cancer progression and predicts poor prognosis of the patients. Cell Physiol Biochem. 45:15–25. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Ohsugi T, Yamaguchi K, Zhu C, Ikenoue T and Furukawa Y: Decreased expression of interferon-induced protein 2 (IFIT2) by Wnt/β-catenin signaling confers anti-apoptotic properties to colorectal cancer cells. Oncotarget. 8:100176–100186. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Su W, Xiao W, Chen L, Zhou Q, Zheng X, Ju J, Jiang J and Wang Z: Decreased IFIT2 expression in human non-small-cell lung cancer tissues is associated with cancer progression and poor survival of the patients. Onco Targets Ther. 12:8139–8149. 2019. View Article : Google Scholar : PubMed/NCBI

51 

Gao F, Xu F, Wu D, Cheng J and Xia P: Identification of novel genes associated with fracture healing in osteoporosis induced by Krm2 overexpression or Lrp5 deficiency. Mol Med Rep. 15:3969–3976. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Paiva KB and Granjeiro JM: Bone tissue remodeling and development: Focus on matrix metalloproteinase functions. Arch Biochem Biophys. 561:74–87. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Mazur CM, Woo JJ, Yee CS, Fields AJ, Acevedo C, Bailey KN, Kaya S, Fowler TW, Lotz JC, Dang A, et al: Osteocyte dysfunction promotes osteoarthritis through MMP13-dependent suppression of subchondral bone homeostasis. Bone Res. 7:342019. View Article : Google Scholar : PubMed/NCBI

54 

Jara P, Calyeca J, Romero Y, Plácido L, Yu G, Kaminski N, Maldonado V, Cisneros J, Selman M and Pardo A: Matrix metalloproteinase (MMP)-19-deficient fibroblasts display a profibrotic phenotype. Am J Physiol Lung Cell Mol Physiol. 308:L511–L522. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Garg M, Braunstein G and Koeffler HP: LAMC2 as a therapeutic target for cancers. Taylor & Francis; pp. 979–982. 2014, PubMed/NCBI

56 

Vuong CK, Black DL and Zheng S: The neurogenetics of alternative splicing. Nat Rev Neurosci. 17:265–281. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Raj T, Li YI, Wong G, Humphrey J, Wang M, Ramdhani S, Wang YC, Ng B, Gupta I, Haroutunian V, et al: Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer's disease susceptibility. Nat Genet. 50:1584–1592. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Climente-Gonzalez H, Porta-Pardo E, Godzik A and Eyras E: The functional impact of alternative splicing in cancer. Cell Rep. 20:2215–2226. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Fan X and Tang L: Aberrant and alternative splicing in skeletal system disease. Gene. 528:21–26. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Han Y, Wang D, Guo J, Xiong Q, Li P, Zhou YA and Zhao B: A novel splicing pathogenic variant in COL1A1 causing osteogenesis imperfecta (OI) type I in a Chinese family. Mol Genet Genomic Med. 8:e13662020. View Article : Google Scholar : PubMed/NCBI

61 

Kimura T, Lueck JD, Harvey PJ, Pace SM, Ikemoto N, Casarotto MG, Dirksen RT and Dulhunty AF: Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling. Cell Calcium. 45:264–274. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Grainger DJ, Percival J, Chiano M and Spector TD: The role of serum TGF-beta isoforms as potential markers of osteoporosis. Osteoporos Int. 9:398–404. 1999. View Article : Google Scholar : PubMed/NCBI

63 

Beaudreuil J, Taboulet J, Orcel P, Graulet AM, Denne MA, Baudoin C, Jullienne A and De Vernejoul MC: Calcitonin receptor mRNA in mononuclear leucocytes from postmenopausal women: Decrease during osteoporosis and link to bone markers with specific isoform involvement. Bone. 27:161–168. 2000. View Article : Google Scholar : PubMed/NCBI

64 

Janckila AJ, Takahashi K, Sun SZ and Yam LT: Tartrate-resistant acid phosphatase isoform 5b as serum marker for osteoclastic activity. Clin Chem. 47:74–80. 2001. View Article : Google Scholar : PubMed/NCBI

65 

Wang L, Park P, La Marca F, Than K, Rahman S and Lin CY: Bone formation induced by BMP-2 in human osteosarcoma cells. Int J Oncol. 43:1095–1102. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Anderson PH, Atkins GJ, Findlay DM, Oloughlin PD, Welldon K, Vincent C and Morris HA: RNAi-mediated silencing of CYP27B1 abolishes 1,25(OH)2D3 synthesis and reduces osteocalcin and CYP24 mRNA expression in human osteosarcoma (HOS) cells. J Steroid Biochem Mol Biol. 103:601–605. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Trost Z, Trebse R, Prezelj J, Komadina R, Logar DB and Marc J: A microarray based identification of osteoporosis-related genes in primary culture of human osteoblasts. Bone. 46:72–80. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Jing Y, Zhou Y, Zhou F, Wang X, Tao B, Sun L, Liu J and Zhao H: SIRT2 deficiency prevents age-related bone loss in rats by inhibiting osteoclastogenesis. Cell Mol Biol (Noisy-le-grand). 65:66–71. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH and Takayanagi H: Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 17:1473–1480. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Terpos E, Ntanasis-Stathopoulos I, Christoulas D, Bagratuni T, Bakogeorgos M, Gavriatopoulou M, Eleutherakis-Papaiakovou E, Kanellias N, Kastritis E and Dimopoulos MA: Semaphorin 4D correlates with increased bone resorption, hypercalcemia, and disease stage in newly diagnosed patients with multiple myeloma. Blood Cancer J. 8:422018. View Article : Google Scholar : PubMed/NCBI

71 

Asharani P, Keupp K, Semler O, Wang W, Li Y, Thiele H, Yigit G, Pohl E, Becker J, Frommolt P, et al: Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. Am J Hum Genet. 90:661–674. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Martínez-Glez V, Valencia M, Caparrós-Martín JA, Aglan M, Temtamy S, Tenorio J, Pulido V, Lindert U, Rohrbach M, Eyre D, et al: Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat. 33:343–350. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Grgurevic L, Macek B, Mercep M, Jelic M, Smoljanovic T, Erjavec I, Dumic-Cule I, Prgomet S, Durdevic D, Vnuk D, et al: Bone morphogenetic protein (BMP)1-3 enhances bone repair. Biochem Biophys Res Commun. 408:25–31. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang L, Chen Z, Chen D, Kan B, He Y and Cai H: Farnesyl diphosphate synthase promotes cell proliferation by regulating gene expression and alternative splicing profiles in HeLa cells. Oncol Lett 25: 145, 2023.
APA
Wang, L., Chen, Z., Chen, D., Kan, B., He, Y., & Cai, H. (2023). Farnesyl diphosphate synthase promotes cell proliferation by regulating gene expression and alternative splicing profiles in HeLa cells. Oncology Letters, 25, 145. https://doi.org/10.3892/ol.2023.13731
MLA
Wang, L., Chen, Z., Chen, D., Kan, B., He, Y., Cai, H."Farnesyl diphosphate synthase promotes cell proliferation by regulating gene expression and alternative splicing profiles in HeLa cells". Oncology Letters 25.4 (2023): 145.
Chicago
Wang, L., Chen, Z., Chen, D., Kan, B., He, Y., Cai, H."Farnesyl diphosphate synthase promotes cell proliferation by regulating gene expression and alternative splicing profiles in HeLa cells". Oncology Letters 25, no. 4 (2023): 145. https://doi.org/10.3892/ol.2023.13731
Copy and paste a formatted citation
x
Spandidos Publications style
Wang L, Chen Z, Chen D, Kan B, He Y and Cai H: Farnesyl diphosphate synthase promotes cell proliferation by regulating gene expression and alternative splicing profiles in HeLa cells. Oncol Lett 25: 145, 2023.
APA
Wang, L., Chen, Z., Chen, D., Kan, B., He, Y., & Cai, H. (2023). Farnesyl diphosphate synthase promotes cell proliferation by regulating gene expression and alternative splicing profiles in HeLa cells. Oncology Letters, 25, 145. https://doi.org/10.3892/ol.2023.13731
MLA
Wang, L., Chen, Z., Chen, D., Kan, B., He, Y., Cai, H."Farnesyl diphosphate synthase promotes cell proliferation by regulating gene expression and alternative splicing profiles in HeLa cells". Oncology Letters 25.4 (2023): 145.
Chicago
Wang, L., Chen, Z., Chen, D., Kan, B., He, Y., Cai, H."Farnesyl diphosphate synthase promotes cell proliferation by regulating gene expression and alternative splicing profiles in HeLa cells". Oncology Letters 25, no. 4 (2023): 145. https://doi.org/10.3892/ol.2023.13731
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team