Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
April-2023 Volume 25 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2023 Volume 25 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Prostate cancer bone metastases biology and clinical management (Review)

  • Authors:
    • Emily Archer Goode
    • Ning Wang
    • Jennifer Munkley
  • View Affiliations / Copyright

    Affiliations: Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, International Centre for Life, Newcastle NE1 3BZ, UK, The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2RX, UK, Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, International Centre for Life, Newcastle NE1 3BZ, UK
    Copyright: © Archer Goode et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 163
    |
    Published online on: March 8, 2023
       https://doi.org/10.3892/ol.2023.13749
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Prostate cancer (PCa) is one of the most prominent causes of cancer‑related mortality in the male population. A highly impactful prognostic factor for patients diagnosed with PCa is the presence or absence of bone metastases. The formation of secondary tumours at the bone is the most commonly observed site for the establishment of PCa metastases and is associated with reduced survival of patients in addition to a cohort of life‑debilitating symptoms, including mobility issues and chronic pain. Despite the prevalence of this disease presentation and the high medical relevance of bone metastases, the mechanisms underlying the formation of metastases to the bone and the understanding of what drives the osteotropism exhibited by prostate tumours remain to be fully elucidated. This lack of in‑depth understanding manifests in limited effective treatment options for patients with advanced metastatic PCa and culminates in the low rate of survival observed for this sub‑set of patients. The present review aims to summarise the most recent promising advances in the understanding of how and why prostate tumours metastasise to the bone, with the ultimate aim of highlighting novel treatment and prognostic targets, which may provide the opportunity to improve the diagnosis and treatment of patients with PCa with bone metastases.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Rawla P: Epidemiology of prostate cancer. World J Oncol. 10:63–89. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Pernar CH, Ebot EM, Wilson KM and Mucci LA: The epidemiology of prostate cancer. Cold Spring Harb Perspect Med. 8:a0303612018. View Article : Google Scholar : PubMed/NCBI

3 

Vietri MT, D'Elia G, Caliendo G, Resse M, Casamassimi A, Passariello L, Albanese L, Cioffi M and Molinari AM: Hereditary prostate cancer: Genes related, target therapy and prevention. Int J Mol Sci. 22:37532021. View Article : Google Scholar : PubMed/NCBI

4 

Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, Collaco-Moraes Y, Ward K, Hindley RG, Freeman A, et al: Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet. 389:815–822. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Descotes JL: Diagnosis of prostate cancer. Asian J Urol. 6:129–136. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Wadosky KM and Koochekpour S: Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget. 7:64447–64470. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Chi K, Hotte SJ, Joshua AM, North S, Wyatt AW, Collins LL and Saad F: Treatment of mCRPC in the AR-axis-targeted therapy-resistant state. Ann Oncol. 26:2044–2056. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Shah H and Vaishampayan U: Therapy of advanced prostate cancer: Targeting the androgen receptor axis in earlier lines of treatment. Target Oncol. 13:679–689. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, Mason M, Matveev V, Wiegel T, Zattoni F, et al: EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol. 65:467–479. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Antonov P, Raycheva G and Popov V: Unexpected long-term survival in an adult patient with metastatic prostate cancer. Urol Case Rep. 37:1016342021. View Article : Google Scholar : PubMed/NCBI

11 

Bubendorf L, Schöpfer A, Wagner U, Sauter G, Moch H, Willi N, Gasser TC and Mihatsch MJ: Metastatic patterns of prostate cancer: An autopsy study of 1,589 patients. Hum Pathol. 31:578–583. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Liu D, Kuai Y, Zhu R, Zhou C, Tao Y, Han W and Chen Q: Prognosis of prostate cancer and bone metastasis pattern of patients: A SEER-based study and a local hospital based study from China. Sci Rep. 10:91042020. View Article : Google Scholar : PubMed/NCBI

13 

Nieder C, Haukland E, Pawinski A and Dalhaug A: Pathologic fracture and metastatic spinal cord compression in patients with prostate cancer and bone metastases. BMC Urol. 10:232010. View Article : Google Scholar : PubMed/NCBI

14 

Veldurthy V, Wei R, Oz L, Dhawan P, Jeon YH and Christakos S: Vitamin D, calcium homeostasis and aging. Bone Res. 4:160412016. View Article : Google Scholar : PubMed/NCBI

15 

Chen X, Wang Z, Duan N, Zhu G, Schwarz EM and Xie C: Osteoblast-osteoclast interactions. Connect Tissue Res. 59:99–107. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Suva LJ, Washam C, Nicholas RW and Griffin RJ: Bone metastasis: Mechanisms and therapeutic opportunities. Nat Rev Endocrinol. 7:208–218. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Nordstrand A, Bovinder Ylitalo E, Thysell E, Jernberg E, Crnalic S, Widmark A, Bergh A, Lerner UH and Wikström P: Bone cell activity in clinical prostate cancer bone metastasis and its inverse relation to tumor cell androgen receptor activity. Int J Mol Sci. 19:12232018. View Article : Google Scholar : PubMed/NCBI

18 

Wong SK, Mohamad NV, Giaze TR, Chin KY, Mohamed N and Ima-Nirwana S: Prostate cancer and bone metastases: The underlying mechanisms. Int J Mol Sci. 20:25872019. View Article : Google Scholar : PubMed/NCBI

19 

Fares J, Fares MY, Khachfe HH, Salhab HA and Fares Y: Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther. 5:282020. View Article : Google Scholar : PubMed/NCBI

20 

Paget S: The distribution of secondary growths in cancer of the breast. Lancet. 133:571–573. 1889. View Article : Google Scholar

21 

Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L and Goncalves F: Bone metastases: An overview. Oncol Rev. 11:3212017.PubMed/NCBI

22 

Mundy GR: Metastasis to bone: Causes, consequences and therapeutic opportunities. Nat Rev Cancer. 2:584–593. 2002. View Article : Google Scholar : PubMed/NCBI

23 

Conti G, La Torre G, Cicalese V, Micheletti G, Ludovico MG, Vestita GD, Cottonaro G, Introini C and Cecchi M: Prostate cancer metastases to bone: Observational study for the evaluation of clinical presentation, course and treatment patterns. Presentation of the METAURO protocol and of patient baseline features. Arch Ital Urol Androl. 80:59–64. 2008.PubMed/NCBI

24 

Kitajima K, Yamamoto S, Kawanaka Y, Komoto H, Shimatani K, Hanasaki T, Taguchi M, Nagasawa S, Yamada Y, Kanematsu A and Yamakado K: Assessment of the viability and treatment response of bone metastases in patients with metastatic castration-resistant prostate cancer using choline PET/CT. Medicine (Baltimore). 100:e262062021. View Article : Google Scholar : PubMed/NCBI

25 

Lin SC, Yu-Lee LY and Lin SH: Osteoblastic factors in prostate cancer bone metastasis. Curr Osteoporos Rep. 16:642–647. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Roudier MP, Morrissey C, True LD, Higano CS, Vessella RL and Ott SM: Histopathological assessment of prostate cancer bone osteoblastic metastases. J Urol. 180:1154–1160. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Garnero P, Buchs N, Zekri J, Rizzoli R, Coleman RE and Delmas PD: Markers of bone turnover for the management of patients with bone metastases from prostate cancer. Br J Cancer. 82:858–864. 2000. View Article : Google Scholar : PubMed/NCBI

28 

Khan MA and Partin AW: Bisphosphonates in metastatic prostate cancer. Rev Urol. 5:204–206. 2003.PubMed/NCBI

29 

Kim JM, Lin C, Stavre Z, Greenblatt MB and Shim JH: Osteoblast-osteoclast communication and bone homeostasis. Cells. 9:20732020. View Article : Google Scholar : PubMed/NCBI

30 

Cheville JC, Tindall D, Boelter C, Jenkins R, Lohse CM, Pankratz VS, Sebo TJ, Davis B and Blute ML: Metastatic prostate carcinoma to bone: Clinical and pathologic features associated with cancer-specific survival. Cancer. 95:1028–1036. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Ribelli G, Simonetti S, Iuliani M, Rossi E, Vincenzi B, Tonini G, Pantano F and Santini D: Osteoblasts promote prostate cancer cell proliferation through androgen receptor independent mechanisms. Front Oncol. 11:7898852021. View Article : Google Scholar : PubMed/NCBI

32 

Kirschenbaum A, Liu XH, Yao S, Leiter A and Levine AC: Prostatic acid phosphatase is expressed in human prostate cancer bone metastases and promotes osteoblast differentiation. Ann N Y Acad Sci. 1237:64–70. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Kirschenbaum A, Izadmehr S, Yao S, O'Connor-Chapman KL, Huang A, Gregoriades EM, Yakar S and Levine AC: Prostatic acid phosphatase alters the RANKL/OPG system and induces osteoblastic prostate cancer bone metastases. Endocrinology. 157:4526–4533. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Chen G, Sircar K, Aprikian A, Potti A, Goltzman D and Rabbani SA: Expression of RANKL/RANK/OPG in primary and metastatic human prostate cancer as markers of disease stage and functional regulation. Cancer. 107:289–298. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y, Shinki T, Gillespie MT, Martin TJ, Higashio K and Suda T: Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology. 141:3478–3484. 2000. View Article : Google Scholar : PubMed/NCBI

36 

Corey E, Brown LG, Kiefer JA, Quinn JE, Pitts TE, Blair JM and Vessella RL: Osteoprotegerin in prostate cancer bone metastasis. Cancer Res. 65:1710–1718. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Brown JM, Corey E, Lee ZD, True LD, Yun TJ, Tondravi M and Vessella RL: Osteoprotegerin and rank ligand expression in prostate cancer. Urology. 57:611–616. 2001. View Article : Google Scholar : PubMed/NCBI

38 

Holen I, Croucher PI, Hamdy FC and Eaton CL: Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res. 62:1619–1623. 2002.PubMed/NCBI

39 

Chiao JW, Moonga BS, Yang YM, Kancherla R, Mittelman A, Wu-Wong JR and Ahmed T: Endothelin-1 from prostate cancer cells is enhanced by bone contact which blocks osteoclastic bone resorption. Br J Cancer. 83:360–365. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Fizazi K, Yang J, Peleg S, Sikes CR, Kreimann EL, Daliani D, Olive M, Raymond KA, Janus TJ, Logothetis CJ, et al: Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Clin Cancer Res. 9:2587–2597. 2003.PubMed/NCBI

41 

Yin JJ, Mohammad KS, Käkönen SM, Harris S, Wu-Wong JR, Wessale JL, Padley RJ, Garrett IR, Chirgwin JM and Guise TA: A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA. 100:10954–10959. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Valta MP, Tuomela J, Bjartell A, Valve E, Väänänen HK and Härkönen P: FGF-8 is involved in bone metastasis of prostate cancer. Int J Cancer. 123:22–31. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Quiroz-Munoz M, Izadmehr S, Arumugam D, Wong B, Kirschenbaum A and Levine AC: Mechanisms of osteoblastic bone metastasis in prostate cancer: Role of prostatic acid phosphatase. J Endocr Soc. 3:655–664. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Ikuerowo SO, Omisanjo OA, Bioku MJ, Ajala MO, Mordi VP and Esho JO: Prevalence and characteristics of prostate cancer among participants of a community-based screening in Nigeria using serum prostate specific antigen and digital rectal examination. Pan Afr Med J. 15:1292013. View Article : Google Scholar : PubMed/NCBI

45 

Idowu BM: Prostate carcinoma presenting with diffuse osteolytic metastases and supraclavicular lymphadenopathy mimicking multiple myeloma. Clin Case Rep. 6:253–257. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Maharaj B, Kalideen JM, Leary WP and Pudifin DJ: Carcinoma of the prostate with multiple osteolytic metastases simulating multiple myeloma. A case report. S Afr Med J. 70:227–228. 1986.PubMed/NCBI

47 

Fukuoka H, Ishibashi Y, Masuda M, Gotoh A, Murai T and Kitamura H: A case of prostatic carcinoma with osteolytic bone metastases. Hinyokika Kiyo. 34:1805–1809. 1988.(In Japanese). PubMed/NCBI

48 

Migita T, Maeda K and Ogata N: A case of prostate cancer associated with osteolytic bone metastases. Hinyokika Kiyo. 45:371–374. 1999.(In Japanese). PubMed/NCBI

49 

Rajendiran G, Green L and Chhabra G: A rare presentation of prostate cancer with diffuse osteolytic metastases and PSA of 7242 ng/ml. Int J Case Rep Image. 2:16–20. 2011. View Article : Google Scholar

50 

Segamwenge IL, Mgori NK, Abdallahyussuf S, Mukulu CN, Nakangombe P, Ngalyuka PK and Kidaaga F: Cancer of the prostate presenting with diffuse osteolytic metastatic bone lesions: A case report. J Med Case Rep. 6:4252012. View Article : Google Scholar : PubMed/NCBI

51 

Sharma P, Karunanithi S, Singh Dhull V, Jain S, Bal C and Kumar R: Prostate cancer with lytic bone metastases: 18F-fluorodeoxyglucose positron emission tomography-computed tomography for diagnosis and monitoring response to medical castration therapy. Indian J Nucl Med. 28:178–179. 2013. View Article : Google Scholar : PubMed/NCBI

52 

Bird VY, Domino PM, Sutkowski R, Stillings SA and Trejo-Lopez JA: Prostate cancer with metastatic lytic bone lesions: Positive bone scan post docetaxel chemotherapy in the setting of clinically successful treatment. Urol Case Rep. 6:12–14. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Rummel K, Benson J and Roller L: Prostate adenocarcinoma with osteolytic metastases: Case report and review of the literature. Radiol Case Rep. 16:3565–3568. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Bryden AAG, Hoyland JA, Freemont AJ, Clarke NW and George NJR: Parathyroid hormone related peptide and receptor expression in paired primary prostate cancer and bone metastases. Br J Cancer. 86:322–325. 2002. View Article : Google Scholar : PubMed/NCBI

55 

Huang JC, Sakata T, Pfleger LL, Bencsik M, Halloran BP, Bikle DD and Nissenson RA: PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res. 19:235–244. 2004. View Article : Google Scholar : PubMed/NCBI

56 

Ongkeko WM, Burton D, Kiang A, Abhold E, Kuo SZ, Rahimy E, Yang M, Hoffman RM, Wang-Rodriguez J and Deftos LJ: Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer. PLoS One. 9:e858032014. View Article : Google Scholar : PubMed/NCBI

57 

Chen X, Zhi X, Wang J and Su J: RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 6:342018. View Article : Google Scholar : PubMed/NCBI

58 

Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, Kariya Y, Kato G, Tabata Y, Penninger JM, et al: Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 561:195–200. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Wang M, Xia F, Wei Y and Wei X: Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res. 8:302020. View Article : Google Scholar : PubMed/NCBI

60 

Feng J, Xu X, Li B, Brown E, Farris AB, Sun SY and Yang JJ: Prostate cancer metastatic to bone has higher expression of the calcium-sensing receptor (CaSR) than primary prostate cancer. Receptors Clin Investig. 1:e2702014.PubMed/NCBI

61 

Kuchimaru T, Hoshino T, Aikawa T, Yasuda H, Kobayashi T, Kadonosono T and Kizaka-Kondoh S: Bone resorption facilitates osteoblastic bone metastatic colonization by cooperation of insulin-like growth factor and hypoxia. Cancer Sci. 105:553–559. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Russo S, Scotto di Carlo F and Gianfrancesco F: The osteoclast traces the route to bone tumors and metastases. Front Cell Dev Biol. 10:8863052022. View Article : Google Scholar : PubMed/NCBI

63 

Hadjidakis DJ and Androulakis II: Bone remodeling. Ann N Y Acad Sci. 1092:385–396. 2006. View Article : Google Scholar : PubMed/NCBI

64 

Schwartz MA, Schaller MD and Ginsberg MH: Integrins: Emerging paradigms of signal transduction. Annu Rev Cell Dev Biol. 11:549–599. 1995. View Article : Google Scholar : PubMed/NCBI

65 

Schneider JG, Amend SR and Weilbaecher KN: Integrins and bone metastasis: Integrating tumor cell and stromal cell interactions. Bone. 48:54–65. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Singh R, Kapur N, Mir H, Singh N, Lillard JW Jr and Singh S: CXCR6-CXCL16 axis promotes prostate cancer by mediating cytoskeleton rearrangement via Ezrin activation and αvβ3 integrin clustering. Oncotarget. 7:7343–7353. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Lu J, Doyle AD, Shinsato Y, Wang S, Bodendorfer MA, Zheng M and Yamada KM: Basement membrane regulates fibronectin organization using sliding focal adhesions driven by a contractile winch. Dev Cell. 52:631–646.e4. 2020. View Article : Google Scholar : PubMed/NCBI

68 

He Y, Liu XD, Chen ZY, Zhu J, Xiong Y, Li K, Dong JH and Li X: Interaction between cancer cells and stromal fibroblasts is required for activation of the uPAR-uPA-MMP-2 cascade in pancreatic cancer metastasis. Clin Cancer Res. 13:3115–3124. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Sun LC, Luo J, Mackey LV, Fuselier JA and Coy DH: A conjugate of camptothecin and a somatostatin analog against prostate cancer cell invasion via a possible signaling pathway involving PI3K/Akt, alphaVbeta3/alphaVbeta5 and MMP-2/-9. Cancer Lett. 246:157–166. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Somanath PR, Malinin NL and Byzova TV: Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis. 12:177–185. 2009. View Article : Google Scholar : PubMed/NCBI

71 

Dong Y, Xie X, Wang Z, Hu C, Zheng Q, Wang Y, Chen R, Xue T, Chen J, Gao D, et al: Increasing matrix stiffness upregulates vascular endothelial growth factor expression in hepatocellular carcinoma cells mediated by integrin β1. Biochem Biophys Res Commun. 444:427–432. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Tang L, Xu M, Zhang L, Qu L and Liu X: Role of αVβ3 in prostate cancer: Metastasis initiator and important therapeutic target. Onco Targets Ther. 13:7411–7422. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Brown NF and Marshall JF: Integrin-mediated TGFβ activation modulates the tumour microenvironment. Cancers (Basel). 11:12212019. View Article : Google Scholar : PubMed/NCBI

74 

Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y and Johnson KR: Cadherin switching. J Cell Sci. 121:727–735. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Hussain M, Le Moulec S, Gimmi C, Bruns R, Straub J and Miller K; PERSEUS Study Group, : Differential effect on bone lesions of targeting integrins: Randomized phase II trial of abituzumab in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res. 22:3192–3200. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Gheldof A and Berx G: Cadherins and epithelial-to-mesenchymal transition. Prog Mol Biol Transl Sci. 116:317–336. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Bryden AAG, Hoyland JA, Freemont AJ, Clarke NW, Schembri Wismayer D and George NJR: E-cadherin and beta-catenin are down-regulated in prostatic bone metastases. BJU Int. 89:400–403. 2002. View Article : Google Scholar : PubMed/NCBI

78 

Jennbacken K, Tesan T, Wang W, Gustavsson H, Damber JE and Welén K: N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocr Relat Cancer. 17:469–479. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Cui Y and Yamada S: N-cadherin dependent collective cell invasion of prostate cancer cells is regulated by the N-terminus of α-catenin. PLoS One. 8:e550692013. View Article : Google Scholar : PubMed/NCBI

80 

Sun Y, Jing J, Xu H, Xu L, Hu H, Tang C, Liu S, Wei Q, Duan R, Guo J and Yang L: N-cadherin inhibitor creates a microenvironment that protect TILs from immune checkpoints and Treg cells. J Immunother Cancer. 9:e0021382021. View Article : Google Scholar : PubMed/NCBI

81 

Tanaka H, Kono E, Tran CP, Miyazaki H, Yamashiro J, Shimomura T, Fazli L, Wada R, Huang J, Vessella RL, et al: Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med. 16:1414–1420. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Reily C, Stewart TJ, Renfrow MB and Novak J: Glycosylation in health and disease. Nat Rev Nephrol. 15:346–366. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Garnham R, Scott E, Livermore KE and Munkley J: ST6GAL1: A key player in cancer. Oncol Lett. 18:983–989. 2019.PubMed/NCBI

84 

Bindeman WE and Fingleton B: Glycosylation as a regulator of site-specific metastasis. Cancer Metastasis Rev. 41:107–129. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Sottnik JL, Daignault-Newton S, Zhang X, Morrissey C, Hussain MH, Keller ET and Hall CL: Integrin alpha2beta 1 (α2β1) promotes prostate cancer skeletal metastasis. Clin Exp Metastasis. 30:569–578. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Van Slambrouck S, Groux-Degroote S, Krzewinski-Recchi MA, Cazet A, Delannoy P and Steelant WF: Carbohydrate-to-carbohydrate interactions between α2,3-linked sialic acids on α2 integrin subunits and asialo-GM1 underlie the bone metastatic behaviour of LNCAP-derivative C4-2B prostate cancer cells. Biosci Rep. 34:e001382014. View Article : Google Scholar : PubMed/NCBI

87 

Julien S, Ivetic A, Grigoriadis A, QiZe D, Burford B, Sproviero D, Picco G, Gillett C, Papp SL, Schaffer L, et al: Selectin ligand sialyl-Lewis × antigen drives metastasis of hormone-dependent breast cancers. Cancer Res. 71:7683–7693. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Barthel SR, Gavino JD, Wiese GK, Jaynes JM, Siddiqui J and Dimitroff CJ: Analysis of glycosyltransferase expression in metastatic prostate cancer cells capable of rolling activity on microvascular endothelial (E)-selectin. Glycobiology. 18:806–817. 2008. View Article : Google Scholar : PubMed/NCBI

89 

Gao J, Li T, Mo Z, Hu Y, Yi Q, He R, Zhu X, Zhou X, She S and Chen Y: Overexpression of the galectin-3 during tumor progression in prostate cancer and its clinical implications. Int J Clin Exp Pathol. 11:839–846. 2018.PubMed/NCBI

90 

Nakajima K, Kho DH, Yanagawa T, Harazono Y, Hogan V, Chen W, Ali-Fehmi R, Mehra R and Raz A: Galectin-3 cleavage alters bone remodeling: different outcomes in breast and prostate cancer skeletal metastasis. Cancer Res. 76:1391–1402. 2016. View Article : Google Scholar : PubMed/NCBI

91 

van Zijl F, Krupitza G and Mikulits W: Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat Res. 728:23–34. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Pouliot N, Pearson HB and Burrows A: Investigating metastasis using in vitro platforms. Madame Curie Bioscience Database [Internet] Austin (TX): Landes Bioscience; 2013

93 

Hao J, Madigan MC, Khatri A, Power CA, Hung TT, Beretov J, Chang L, Xiao W, Cozzi PJ, Graham PH, et al: In vitro and in vivo prostate cancer metastasis and chemoresistance can be modulated by expression of either CD44 or CD147. PLoS One. 7:e407162012. View Article : Google Scholar : PubMed/NCBI

94 

Li W, Qian L, Lin J, Huang G, Hao N, Wei X, Wang W and Liang J: CD44 regulates prostate cancer proliferation, invasion and migration via PDK1 and PFKFB4. Oncotarget. 8:65143–65151. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Fang F, Li Q, Wu M, Nie C, Xu H and Wang L: CD147 promotes epithelial-mesenchymal transition of prostate cancer cells via the Wnt/β-catenin pathway. Exp Ther Med. 20:3154–3160. 2020.PubMed/NCBI

96 

Joyce JA and Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 9:239–252. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Guo S and Deng CX: Effect of stromal cells in tumor microenvironment on metastasis initiation. Int J Biol Sci. 14:2083–2093. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Jasuja H, Kar S, Katti DR and Katti KS: Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed. Biofabrication. 13:2021. View Article : Google Scholar : PubMed/NCBI

99 

Fong ELS, Wan X, Yang J, Morgado M, Mikos AG, Harrington DA, Navone NM and Farach-Carson MC: A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials. 77:164–172. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Hepburn AC, Curry EL, Moad M, Steele RE, Franco OE, Wilson L, Singh P, Buskin A, Crawford SE, Gaughan L, et al: Propagation of human prostate tissue from induced pluripotent stem cells. Stem Cells Transl Med. 9:734–745. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Fitzgerald KA, Guo J, Tierney EG, Curtin CM, Malhotra M, Darcy R, O'Brien FJ and O'Driscoll CM: The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials. 66:53–66. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Katti KS, Jasuja H, Kar S and Katti DR: Nanostructured biomaterials for in vitro models of bone metastasis cancer. Curr Opin Biomed Eng. 17:1002542021. View Article : Google Scholar : PubMed/NCBI

103 

Cruz-Neves S, Ribeiro N, Graça I, Jerónimo C, Sousa SR and Monteiro FJ: Behavior of prostate cancer cells in a nanohydroxyapatite/collagen bone scaffold. J Biomed Mater Res A. 105:2035–2046. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Parker C, Castro E, Fizazi K, Heidenreich A, Ost P, Procopio G, Tombal B and Gillessen S; ESMO Guidelines Committee. Electronic address, : simpleclinicalguidelines@esmo.org: Prostate cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 31:1119–1134. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Kuppen MCP, Westgeest HM, van den Eertwegh AJM, van Moorselaar RJA, van Oort IM, Tascilar M, Mehra N, Lavalaye J, Somford DM, Aben KKH, et al: Symptomatic skeletal events and the use of bone health agents in a real-world treated metastatic castration resistant prostate cancer population: Results from the CAPRI-study in the netherlands. Clin Genitourin Cancer. 20:43–52. 2022. View Article : Google Scholar : PubMed/NCBI

106 

Benford HL, McGowan NW, Helfrich MH, Nuttall ME and Rogers MJ: Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone. 28:465–473. 2001. View Article : Google Scholar : PubMed/NCBI

107 

Gralow J and Tripathy D: Managing metastatic bone pain: The role of bisphosphonates. J Pain Symptom Manage. 33:462–472. 2007. View Article : Google Scholar : PubMed/NCBI

108 

Percival RC, Urwin GH, Harris S, Yates AJ, Williams JL, Beneton M and Kanis JA: Biochemical and histological evidence that carcinoma of the prostate is associated with increased bone resorption. Eur J Surg Oncol. 13:41–49. 1987.PubMed/NCBI

109 

Clarke NW, McClure J and George NJ: Morphometric evidence for bone resorption and replacement in prostate cancer. Br J Urol. 68:74–80. 1991. View Article : Google Scholar : PubMed/NCBI

110 

Berruti A, Dogliotti L, Tucci M, Tarabuzzi R, Fontana D and Angeli A: Metabolic bone disease induced by prostate cancer: Rationale for the use of bisphosphonates. J Urol. 166:2023–2031. 2001. View Article : Google Scholar : PubMed/NCBI

111 

Small EJ, Smith MR, Seaman JJ, Petrone S and Kowalski MO: Combined analysis of two multicenter, randomized, placebo-controlled studies of pamidronate disodium for the palliation of bone pain in men with metastatic prostate cancer. J Clin Oncol. 21:4277–4284. 2003. View Article : Google Scholar : PubMed/NCBI

112 

Liu J, Zhao C, Liu B, Liu H and Wang L: Analgesia and curative effect of pamidronate disodium combined with chemotherapy on elderly patients with advanced metastatic bone cancer. Oncol Lett. 18:771–775. 2019.PubMed/NCBI

113 

Widler L, Jaeggi KA, Glatt M, Müller K, Bachmann R, Bisping M, Born AR, Cortesi R, Guiglia G, Jeker H, et al: Highly potent geminal bisphosphonates. From pamidronate disodium (Aredia) to zoledronic acid (Zometa). J Med Chem. 45:3721–3738. 2002. View Article : Google Scholar : PubMed/NCBI

114 

Finianos A and Aragon-Ching JB: Zoledronic acid for the treatment of prostate cancer. Expert Opin Pharmacother. 20:657–666. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Kamba T, Kamoto T, Maruo S, Kikuchi T, Shimizu Y, Namiki S, Fujimoto K, Kawanishi H, Sato F, Narita S, et al: A phase III multicenter, randomized, controlled study of combined androgen blockade with versus without zoledronic acid in prostate cancer patients with metastatic bone disease: Results of the ZAPCA trial. Int J Clin Oncol. 22:166–173. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Weinfurt KP, Anstrom KJ, Castel LD, Schulman KA and Saad F: Effect of zoledronic acid on pain associated with bone metastasis in patients with prostate cancer. Ann Oncol. 17:986–989. 2006. View Article : Google Scholar : PubMed/NCBI

117 

NICE. Prostate cancer, . Diagnosis and management. 2019.15/12/2021 [cited 2022 21/11/2022]; Available from:. https://www.nice.org.uk/guidance/ng131/chapter/Recommendations

118 

Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, Milecki P, Shore N, Rader M, Wang H, et al: Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: A randomised, double-blind study. Lancet. 377:813–822. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Xie J, Namjoshi M, Wu EQ, Parikh K, Diener M, Yu AP, Guo A and Culver KW: Economic evaluation of denosumab compared with zoledronic acid in hormone-refractory prostate cancer patients with bone metastases. J Manag Care Pharm. 17:621–643. 2011.PubMed/NCBI

120 

NICE, . Denosumab is not recommended for preventing skeletal-related events in adults with bone metastases from prostate cancer. 2012.Available from. https://www.nice.org.uk/donotdo/denosumab-is-not-recommended-for-preventing-skeletalrelated-events-inadults-with-bone-metastases-from-prostate-cancer

121 

Smart JG: The use of P32 in the treatment of severe pain from bone metastases of carcinoma of the prostate1. Br J Urol. 37:139–147. 1965. View Article : Google Scholar : PubMed/NCBI

122 

Porter AT, McEwan AJ, Powe JE, Reid R, McGowan DG, Lukka H, Sathyanarayana JR, Yakemchuk VN, Thomas GM, Erlich LE, et al: Results of a randomized phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys. 25:805–813. 1993. View Article : Google Scholar : PubMed/NCBI

123 

Serafini AN, Houston SJ, Resche I, Quick DP, Grund FM, Ell PJ, Bertrand A, Ahmann FR, Orihuela E, Reid RH, et al: Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: A double-blind placebo-controlled clinical trial. J Clin Oncol. 16:1574–1581. 1998. View Article : Google Scholar : PubMed/NCBI

124 

Sartor O, Reid RH, Hoskin PJ, Quick DP, Ell PJ, Coleman RE, Kotler JA, Freeman LM and Olivier P; Quadramet 424Sm10/11 Study Group, : Samarium-153-lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology. 63:940–945. 2004. View Article : Google Scholar : PubMed/NCBI

125 

Powers E, Karachaliou GS, Kao C, Harrison MR, Hoimes CJ, George DJ, Armstrong AJ and Zhang T: Novel therapies are changing treatment paradigms in metastatic prostate cancer. J Hematol Oncol. 13:1442020. View Article : Google Scholar : PubMed/NCBI

126 

Terrisse S, Karamouza E, Parker CC, Sartor AO, James ND, Pirrie S, Collette L, Tombal BF, Chahoud J, Smeland S, et al: Overall survival in men with bone metastases from castration-resistant prostate cancer treated with bone-targeting radioisotopes: A meta-analysis of individual patient data from randomized clinical trials. JAMA Oncol. 6:206–216. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Den RB, George D, Pieczonka C and McNamara M: Ra-223 treatment for bone metastases in castrate-resistant prostate cancer: Practical management issues for patient selection. Am J Clin Oncol. 42:399–406. 2019. View Article : Google Scholar : PubMed/NCBI

128 

Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fosså SD, Chodacki A, Wiechno P, Logue J, Seke M, et al: Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 369:213–223. 2013. View Article : Google Scholar : PubMed/NCBI

129 

Nilsson S, Cislo P, Sartor O, Vogelzang NJ, Coleman RE, O'Sullivan JM, Reuning-Scherer J, Shan M, Zhan L and Parker C: Patient-reported quality-of-life analysis of radium-223 dichloride from the phase III ALSYMPCA study. Ann Oncol. 27:868–874. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Gutman EB, Sproul EE and Gutman AB: Significance of increased phosphatase activity of bone at the site of osteoplastic metastases secondary to carcinoma of the prostate gland. Am J Cancer. 28:485–495. 1936. View Article : Google Scholar

131 

Ozu C, Nakashima J, Horiguchi Y, Oya M, Ohigashi T and Murai M: Prediction of bone metastases by combination of tartrate-resistant acid phosphatase, alkaline phosphatase and prostate specific antigen in patients with prostate cancer. Int J Urol. 15:419–422. 2008. View Article : Google Scholar : PubMed/NCBI

132 

Larson SR, Chin J, Zhang X, Brown LG, Coleman IM, Lakely B, Tenniswood M, Corey E, Nelson PS, Vessella RL and Morrissey C: Prostate cancer derived prostatic acid phosphatase promotes an osteoblastic response in the bone microenvironment. Clin Exp Metastasis. 31:247–256. 2014. View Article : Google Scholar : PubMed/NCBI

133 

Cheever MA and Higano CS: PROVENGE (Sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 17:3520–3526. 2011. View Article : Google Scholar : PubMed/NCBI

134 

Wargowski E, Johnson LE, Eickhoff JC, Delmastro L, Staab MJ, Liu G and McNeel DG: Prime-boost vaccination targeting prostatic acid phosphatase (PAP) in patients with metastatic castration-resistant prostate cancer (mCRPC) using sipuleucel-T and a DNA vaccine. J Immunother Cancer. 6:212018. View Article : Google Scholar : PubMed/NCBI

135 

Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Provost N and Frohlich MW: Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 115:3670–3679. 2009. View Article : Google Scholar : PubMed/NCBI

136 

Marshall CH, Fu W, Wang H, Park JC, DeWeese TL, Tran PT, Song DY, King S, Afful M, Hurrelbrink J, et al: Randomized phase II trial of sipuleucel-T with or without radium-223 in men with bone-metastatic castration-resistant prostate cancer. Clin Cancer Res. 27:1623–1630. 2021. View Article : Google Scholar : PubMed/NCBI

137 

Kasperk CH, Börcsök I, Schairer HU, Schneider U, Nawroth PP, Niethard FU and Ziegler R: Endothelin-1 is a potent regulator of human bone cell metabolism in vitro. Calcif Tissue Int. 60:368–374. 1997. View Article : Google Scholar : PubMed/NCBI

138 

Montironi R, Mazzucchelli R, Barbisan F, Stramazzotti D, Santinelli A, Lòpez Beltran A, Cheng L, Montorsi F and Scarpelli M: Immunohistochemical expression of endothelin-1 and endothelin-A and endothelin-B receptors in high-grade prostatic intraepithelial neoplasia and prostate cancer. Eur Urol. 52:1682–1690. 2007. View Article : Google Scholar : PubMed/NCBI

139 

Vogelzang NJ, Nelson JB, Schulman CC, Dearnaley DP, Saad F, Sleep DJ, Isaacson D and Carducci MA: Meta-analysis of clinical trials of atrasentan 10 mg in metastatic hormone-refractory prostate cancer. J Clin Oncol. 23 (Suppl 16):S45632005. View Article : Google Scholar : PubMed/NCBI

140 

Carducci MA, Saad F, Abrahamsson PA, Dearnaley DP, Schulman CC, North SA, Sleep DJ, Isaacson JD and Nelson JB; Atrasentan Phase III Study Group Institutions, : A phase 3 randomized controlled trial of the efficacy and safety of atrasentan in men with metastatic hormone-refractory prostate cancer. Cancer. 110:1959–1966. 2007. View Article : Google Scholar : PubMed/NCBI

141 

Drake JM, Danke JR and Henry MD: Bone-specific growth inhibition of prostate cancer metastasis by atrasentan. Cancer Biol Ther. 9:607–614. 2010. View Article : Google Scholar : PubMed/NCBI

142 

Quinn DI, Tangen CM, Hussain M, Lara PN Jr, Goldkorn A, Moinpour CM, Garzotto MG, Mack PC, Carducci MA, Monk JP, et al: Docetaxel and atrasentan versus docetaxel and placebo for men with advanced castration-resistant prostate cancer (SWOG S0421): A randomised phase 3 trial. Lancet Oncol. 14:893–900. 2013. View Article : Google Scholar : PubMed/NCBI

143 

Teo MY, Rathkopf DE and Kantoff P: Treatment of advanced prostate cancer. Annu Rev Med. 70:479–499. 2019. View Article : Google Scholar : PubMed/NCBI

144 

Selvaggi G and Scagliotti GV: Management of bone metastases in cancer: A review. Crit Rev Oncol Hematol. 56:365–378. 2005. View Article : Google Scholar : PubMed/NCBI

145 

Keller ET and Brown J: Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem. 91:718–729. 2004. View Article : Google Scholar : PubMed/NCBI

146 

Li D, Lv H, Hao X, Hu B and Song Y: Prognostic value of serum alkaline phosphatase in the survival of prostate cancer: Evidence from a meta-analysis. Cancer Manag Res. 10:3125–3139. 2018. View Article : Google Scholar : PubMed/NCBI

147 

Karhade AV, Thio QCBS, Kuverji M, Ogink PT, Ferrone ML and Schwab JH: Prognostic value of serum alkaline phosphatase in spinal metastatic disease. Br J Cancer. 120:640–646. 2019. View Article : Google Scholar : PubMed/NCBI

148 

Tucci M, Mosca A, Lamanna G, Porpiglia F, Terzolo M, Vana F, Cracco C, Russo L, Gorzegno G, Tampellini M, et al: Prognostic significance of disordered calcium metabolism in hormone-refractory prostate cancer patients with metastatic bone disease. Prostate Cancer Prostatic Dis. 12:94–99. 2009. View Article : Google Scholar : PubMed/NCBI

149 

Skinner HG and Schwartz GG: Serum calcium and incident and fatal prostate cancer in the national health and nutrition examination survey. Cancer Epidemiol Biomarkers Prev. 17:2302–3205. 2008. View Article : Google Scholar : PubMed/NCBI

150 

Francini G, Petrioli R, Gonnelli S, Correale P, Pozzessere D, Marsili S, Montagnani A, Lucani B, Rossi S, Monaco R, et al: Urinary calcium excretion in the monitoring of bone metastases from prostatic carcinoma. Cancer. 92:1468–1474. 2001. View Article : Google Scholar : PubMed/NCBI

151 

Jung K, Lein M, Stephan C, Von Hösslin K, Semjonow A, Sinha P, Loening SA and Schnorr D: Comparison of 10 serum bone turnover markers in prostate carcinoma patients with bone metastatic spread: Diagnostic and prognostic implications. Int J Cancer. 111:783–791. 2004. View Article : Google Scholar : PubMed/NCBI

152 

Cooper EH, Whelan P and Purves D: Bone alkaline phosphatase and prostate-specific antigen in the monitoring of prostate cancer. Prostate. 25:236–242. 1994. View Article : Google Scholar : PubMed/NCBI

153 

Kylmälä T, Tammela TL, Risteli L, Risteli J, Kontturi M and Elomaa I: Type I collagen degradation product (ICTP) gives information about the nature of bone metastases and has prognostic value in prostate cancer. Br J Cancer. 71:1061–1064. 1995. View Article : Google Scholar : PubMed/NCBI

154 

Maeda H, Koizumi M, Yoshimura K, Yamauchi T, Kawai T and Ogata E: Correlation between bone metabolic markers and bone scan in prostatic cancer. J Urol. 157:539–543. 1997. View Article : Google Scholar : PubMed/NCBI

155 

Klepzig M, Jonas D and Oremek GM: Procollagen type 1 amino-terminal propeptide: A marker for bone metastases in prostate carcinoma. Anticancer Res. 29:671–673. 2009.PubMed/NCBI

156 

Sundling KE and Lowe AC: Circulating tumor cells: Overview and opportunities in cytology. Adv Anat Pathol. 26:56–63. 2019. View Article : Google Scholar : PubMed/NCBI

157 

Helo P, Cronin AM, Danila DC, Wenske S, Gonzalez-Espinoza R, Anand A, Koscuiszka M, Väänänen RM, Pettersson K, Chun FK, et al: Circulating prostate tumor cells detected by reverse transcription-PCR in men with localized or castration-refractory prostate cancer: Concordance with CellSearch assay and association with bone metastases and with survival. Clin Chem. 55:765–773. 2009. View Article : Google Scholar : PubMed/NCBI

158 

Josefsson A, Larsson K, Månsson M, Björkman J, Rohlova E, Åhs D, Brisby H, Damber JE and Welén K: Circulating tumor cells mirror bone metastatic phenotype in prostate cancer. Oncotarget. 9:29403–29413. 2018. View Article : Google Scholar : PubMed/NCBI

159 

Saxby H, Mikropoulos C and Boussios S: An update on the prognostic and predictive serum biomarkers in metastatic prostate cancer. Diagnostics (Basel). 10:5492020. View Article : Google Scholar : PubMed/NCBI

160 

Zhang HL, Yang LF, Zhu Y, Yao XD, Zhang SL, Dai B, Zhu YP, Shen YJ, Shi GH and Ye DW: Serum miRNA-21: Elevated levels in patients with metastatic hormone-refractory prostate cancer and potential predictive factor for the efficacy of docetaxel-based chemotherapy. Prostate. 71:326–331. 2011. View Article : Google Scholar : PubMed/NCBI

161 

Bhagirath D, Yang TL, Bucay N, Sekhon K, Majid S, Shahryari V, Dahiya R, Tanaka Y and Saini S: microRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Res. 78:1833–1844. 2018. View Article : Google Scholar : PubMed/NCBI

162 

Tinay I, Tan M, Gui B, Werner L, Kibel AS and Jia L: Functional roles and potential clinical application of miRNA-345-5p in prostate cancer. Prostate. 78:927–937. 2018. View Article : Google Scholar : PubMed/NCBI

163 

Roest HP, IJzermans JNM and van der Laan LJW: Evaluation of RNA isolation methods for microRNA quantification in a range of clinical biofluids. BMC Biotechnol. 21:482021. View Article : Google Scholar : PubMed/NCBI

164 

Guo X, Han T, Hu P, Guo X, Zhu C, Wang Y and Chang S: Five microRNAs in serum as potential biomarkers for prostate cancer risk assessment and therapeutic intervention. Int Urol Nephrol. 50:2193–2200. 2018. View Article : Google Scholar : PubMed/NCBI

165 

Yamada Y, Nishikawa R, Kato M, Okato A, Arai T, Kojima S, Yamazaki K, Naya Y, Ichikawa T and Seki N: Regulation of HMGB3 by antitumor miR-205-5p inhibits cancer cell aggressiveness and is involved in prostate cancer pathogenesis. J Hum Genet. 63:195–205. 2018. View Article : Google Scholar : PubMed/NCBI

166 

Casanova-Salas I, Rubio-Briones J, Fernández-Serra A and López-Guerrero JA: miRNAs as biomarkers in prostate cancer. Clin Transl Oncol. 14:803–811. 2012. View Article : Google Scholar : PubMed/NCBI

167 

Zhang HL, Qin XJ, Cao DL, Zhu Y, Yao XD, Zhang SL, Dai B and Ye DW: An elevated serum miR-141 level in patients with bone-metastatic prostate cancer is correlated with more bone lesions. Asian J Androl. 15:231–235. 2013. View Article : Google Scholar : PubMed/NCBI

168 

Nordby Y, Richardsen E, Ness N, Donnem T, Patel HRH, Busund LT, Bremnes RM and Andersen S: High miR-205 expression in normal epithelium is associated with biochemical failure-an argument for epithelial crosstalk in prostate cancer? Sci Rep. 7:163082017. View Article : Google Scholar : PubMed/NCBI

169 

Haflidadóttir BS, Larne O, Martin M, Persson M, Edsjö A, Bjartell A and Ceder Y: Upregulation of miR-96 enhances cellular proliferation of prostate cancer cells through FOXO1. PLoS One. 8:e724002013. View Article : Google Scholar : PubMed/NCBI

170 

Ma Y, Yang HZ, Dong BJ, Zou HB, Zhou Y, Kong XM and Huang YR: Biphasic regulation of autophagy by miR-96 in prostate cancer cells under hypoxia. Oncotarget. 5:9169–9182. 2014. View Article : Google Scholar : PubMed/NCBI

171 

Bonci D, Coppola V, Patrizii M, Addario A, Cannistraci A, Francescangeli F, Pecci R, Muto G, Collura D, Bedini R, et al: A microRNA code for prostate cancer metastasis. Oncogene. 35:1180–1192. 2016. View Article : Google Scholar : PubMed/NCBI

172 

Tang Y, Wu B, Huang S, Peng X, Li X, Huang X, Zhou W, Xie P and He P: Downregulation of miR-505-3p predicts poor bone metastasis-free survival in prostate cancer. Oncol Rep. 41:57–66. 2019.PubMed/NCBI

173 

Olivan M, Garcia M, Suárez L, Guiu M, Gros L, Méndez O, Rigau M, Reventós J, Segura MF, de Torres I, et al: Loss of microRNA-135b enhances bone metastasis in prostate cancer and predicts aggressiveness in human prostate samples. Cancers (Basel). 13:62022021. View Article : Google Scholar : PubMed/NCBI

174 

Aigner A and Fischer D: Nanoparticle-mediated delivery of small RNA molecules in tumor therapy. Pharmazie. 71:27–34. 2016.PubMed/NCBI

175 

Oh-Hohenhorst SJ and Lange T: Role of metastasis-related microRNAs in prostate cancer progression and treatment. Cancers (Basel). 13:44922021. View Article : Google Scholar : PubMed/NCBI

176 

Abramovic I, Ulamec M, Katusic Bojanac A, Bulic-Jakus F, Jezek D and Sincic N: miRNA in prostate cancer: Challenges toward translation. Epigenomics. 12:543–558. 2020. View Article : Google Scholar : PubMed/NCBI

177 

Locati MD, Terpstra I, de Leeuw WC, Kuzak M, Rauwerda H, Ensink WA, van Leeuwen S, Nehrdich U, Spaink HP, Jonker MJ, et al: Improving small RNA-seq by using a synthetic spike-in set for size-range quality control together with a set for data normalization. Nucleic Acids Res. 43:e892015. View Article : Google Scholar : PubMed/NCBI

178 

Zhang W, Zang J, Jing X, Sun Z, Yan W, Yang D, Shen B and Guo F: Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. J Transl Med. 12:662014. View Article : Google Scholar : PubMed/NCBI

179 

Pashaei E, Pashaei E, Ahmady M, Ozen M and Aydin N: Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy. PLoS One. 12:e01795432017. View Article : Google Scholar : PubMed/NCBI

180 

Sottnik JL and Keller ET: Understanding and targeting osteoclastic activity in prostate cancer bone metastases. Curr Mol Med. 13:626–639. 2013. View Article : Google Scholar : PubMed/NCBI

181 

Macherey S, Monsef I, Jahn F, Jordan K, Yuen KK, Heidenreich A and Skoetz N: Bisphosphonates for advanced prostate cancer. Cochrane Database Syst Rev. 12:Cd0062502017.PubMed/NCBI

182 

Elomaa I, Kylmälä T, Tammela T, Viitanen J, Ottelin J, Ruutu M, Jauhiainen K, Ala-Opas M, Roos L, Seppänen J, et al: Effect of oral clodronate on bone pain. A controlled study in patients with metastic prostatic cancer. Int Urol Nephrol. 24:159–166. 1992. View Article : Google Scholar : PubMed/NCBI

183 

Vorreuther R, Klotz T and Engelking R: Clodronate in the palliative therapy of bone-metastasized prostatic carcinoma. Urologe A. 31:63–66. 1992.(In German). PubMed/NCBI

184 

Adami S and Mian M: Clodronate therapy of metastatic bone disease in patients with prostatic carcinoma. Recent Results Cancer Res. 116:67–72. 1989. View Article : Google Scholar : PubMed/NCBI

185 

Strang P, Nilsson S, Brändstedt S, Sehlin J, Borghede G, Varenhorst E, Bandman U, Borck L, Englund G and Selin L: The analgesic efficacy of clodronate compared with placebo in patients with painful bone metastases from prostatic cancer. Anticancer Res. 17:4717–4721. 1997.PubMed/NCBI

186 

Kylmälä T, Taube T, Tammela TL, Risteli L, Risteli J and Elomaa I: Concomitant i.v. and oral clodronate in the relief of bone pain-a double-blind placebo-controlled study in patients with prostate cancer. Br J Cancer. 76:939–942. 1997. View Article : Google Scholar : PubMed/NCBI

187 

Ernst DS, Tannock IF, Winquist EW, Venner PM, Reyno L, Moore MJ, Chi K, Ding K, Elliott C and Parulekar W: Randomized, double-blind, controlled trial of mitoxantrone/prednisone and clodronate versus mitoxantrone/prednisone and placebo in patients with hormone-refractory prostate cancer and pain. J Clin Oncol. 21:3335–3342. 2003. View Article : Google Scholar : PubMed/NCBI

188 

Mason MD, Sydes MR, Glaholm J, Langley RE, Huddart RA, Sokal M, Stott M, Robinson AC, James ND, Parmar MK, et al: Oral sodium clodronate for nonmetastatic prostate cancer-results of a randomized double-blind placebo-controlled trial: Medical research council PR04 (ISRCTN61384873). J Natl Cancer Inst. 99:765–776. 2007. View Article : Google Scholar : PubMed/NCBI

189 

Dearnaley DP, Sydes MR, Mason MD, Stott M, Powell CS, Robinson AC, Thompson PM, Moffat LE, Naylor SL and Parmar MK; Mrc Pr05 Collaborators, : A double-blind, placebo-controlled, randomized trial of oral sodium clodronate for metastatic prostate cancer (MRC PR05 trial). J Natl Cancer Inst. 95:1300–1311. 2003. View Article : Google Scholar : PubMed/NCBI

190 

Dearnaley DP, Mason MD, Parmar MK, Sanders K and Sydes MR: Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: Long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials. Lancet Oncol. 10:872–876. 2009. View Article : Google Scholar : PubMed/NCBI

191 

Lipton A, Glover D, Harvey H, Grabelsky S, Zelenakas K, Macerata R and Seaman J: Pamidronate in the treatment of bone metastases: Results of 2 dose-ranging trials in patients with breast or prostate cancer. Ann Oncol. 5 (Suppl 7):S31–S35. 1994.PubMed/NCBI

192 

Figg WD, Liu Y, Arlen P, Gulley J, Steinberg SM, Liewehr DJ, Cox MC, Zhai S, Cremers S, Parr A, et al: A randomized, phase II trial of ketoconazole plus alendronate versus ketoconazole alone in patients with androgen independent prostate cancer and bone metastases. J Urol. 173:790–796. 2005. View Article : Google Scholar : PubMed/NCBI

193 

Sweeney C, Dugan WM II, Dreicer R, Chu F, Parks G, Baker K, Reed D, Jansz K, Zadra J and Yiannoutsos CT: A randomized placebo-controlled trial of daily high-dose oral risedronate in men with metastatic prostate cancer commencing androgen deprivation therapy (ADT). J Clin Oncol. 28 (15 Suppl):e150002010. View Article : Google Scholar

194 

Meulenbeld HJ, van Werkhoven ED, Coenen JL, Creemers GJ, Loosveld OJ, de Jong PC, Ten Tije AJ, Fosså SD, Polee M, Gerritsen W, et al: Randomised phase II/III study of docetaxel with or without risedronate in patients with metastatic castration resistant prostate cancer (CRPC), the Netherlands prostate study (NePro). Eur J Cancer. 48:2993–3000. 2012. View Article : Google Scholar : PubMed/NCBI

195 

Hahn NM, Yiannoutsos CT, Kirkpatrick K, Sharma J and Sweeney CJ: Failure to suppress markers of bone turnover on first-line hormone therapy for metastatic prostate cancer is associated with shorter time to skeletal-related event. Clin Genitourin Cancer. 12:33–40.e4. 2014. View Article : Google Scholar : PubMed/NCBI

196 

Hoskin P, Sundar S, Reczko K, Forsyth S, Mithal N, Sizer B, Bloomfield D, Upadhyay S, Wilson P, Kirkwood A, et al: A multicenter randomized trial of ibandronate compared with single-dose radiotherapy for localized metastatic bone pain in prostate cancer. J Natl Cancer Inst. 107:djv1972015. View Article : Google Scholar : PubMed/NCBI

197 

Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA and Chen B; Zoledronic Acid Prostate Cancer Study Group, : A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst. 94:1458–1468. 2002. View Article : Google Scholar : PubMed/NCBI

198 

Abetz L, Barghout V, Arbuckle R, Bosch V, Shirina N and Saad F: Impact of zoledronic acid (Z) on pain in prostate cancer patients with bone metastases in a randomised placebo-control trial. J Clin Oncol. 24 (Suppl 18):S46382006. View Article : Google Scholar

199 

Leto G, Badalamenti G, Arcara C, Crescimanno M, Flandina C, Tumminello FM, Incorvaia L, Gebbia N and Fulfaro F: Effects of zoledronic acid on proteinase plasma levels in patients with bone metastases. Anticancer Res. 26:23–26. 2006.PubMed/NCBI

200 

Cózar Olmo JM, Carballido Rodriguez J, Luque Galvez P, Tabernero Gómez AG, Barreiro Mouro A, Sánchez Sánchez E, González Enguita C, Alcover García J, Garcia-Galisteo E, Abascal García JM, et al: Effectiveness and tolerability of zoledronic acid in the treatment of metastatic prostate cancer. Actas Urol Esp. 32:492–501. 2008.(In Spanish). View Article : Google Scholar : PubMed/NCBI

201 

Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA and Zheng M; Zoledronic Acid Prostate Cancer Study Group, : Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst. 96:879–882. 2004. View Article : Google Scholar : PubMed/NCBI

202 

Fulfaro F, Leto G, Badalamenti G, Arcara C, Cicero G, Valerio MR, Di Fede G, Russo A, Vitale A, Rini GB, et al: The use of zoledronic acid in patients with bone metastases from prostate carcinoma: Effect on analgesic response and bone metabolism biomarkers. J Chemother. 17:555–559. 2005. View Article : Google Scholar : PubMed/NCBI

203 

Saad F: Clinical benefit of zoledronic acid for the prevention of skeletal complications in advanced prostate cancer. Clin Prostate Cancer. 4:31–37. 2005. View Article : Google Scholar : PubMed/NCBI

204 

Saad F, Chen YM, Gleason DM and Chin J: Continuing benefit of zoledronic acid in preventing skeletal complications in patients with bone metastases. Clin Genitourin Cancer. 5:390–396. 2007. View Article : Google Scholar : PubMed/NCBI

205 

Saad F and Eastham J: Zoledronic acid improves clinical outcomes when administered before onset of bone pain in patients with prostate cancer. Urology. 76:1175–1181. 2010. View Article : Google Scholar : PubMed/NCBI

206 

Paparella S, Finkelberg E, Varisco D, Tondelli E and Rocco F: Use of zoledronic acid in patients with prostate cancer bone metastases: Control of pain and musculoskeletal complications. Urologia. 78:300–304. 2011.(In Italian). View Article : Google Scholar : PubMed/NCBI

207 

Uemura H, Yanagisawa M, Ikeda I, Fujinami K, Iwasaki A, Noguchi S, Noguchi K and Kubota Y; Yokohama Bone Metastasis Study Group, : Possible anti-tumor activity of initial treatment with zoledronic acid with hormonal therapy for bone-metastatic prostate cancer in multicenter clinical trial. Int J Clin Oncol. 18:472–477. 2013. View Article : Google Scholar : PubMed/NCBI

208 

Wang F, Chen W, Chen H, Mo L, Jin H, Yu Z, Li C, Liu Q, Duan F and Weng Z: Comparison between zoledronic acid and clodronate in the treatment of prostate cancer patients with bone metastases. Med Oncol. 30:6572013. View Article : Google Scholar : PubMed/NCBI

209 

Ueno S, Mizokami A, Fukagai T, Fujimoto N, Oh-Oka H, Kondo Y, Arai G, Ide H, Horie S, Ueki O, et al: Efficacy of combined androgen blockade with zoledronic acid treatment in prostate cancer with bone metastasis: The ZABTON-PC (zoledronic acid/androgen blockade trial on prostate cancer) study. Anticancer Res. 33:3837–3844. 2013.PubMed/NCBI

210 

Chiang PH, Wang HC, Lai YL, Chen SC, Yen-Hwa W, Kok CK, Ou YC, Huang JS, Huang TC and Chao TY: Zoledronic acid treatment for cancerous bone metastases: A phase IV study in Taiwan. J Cancer Res Ther. 9:653–659. 2013. View Article : Google Scholar : PubMed/NCBI

211 

Pan Y, Jin H, Chen W, Yu Z, Ye T, Zheng Y, Weng Z and Wang F: Docetaxel with or without zoledronic acid for castration-resistant prostate cancer. Int Urol Nephrol. 46:2319–2326. 2014. View Article : Google Scholar : PubMed/NCBI

212 

Smith MR, Halabi S, Ryan CJ, Hussain A, Vogelzang N, Stadler W, Hauke RJ, Monk JP, Saylor P, Bhoopalam N, et al: Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: Results of CALGB 90202 (alliance). J Clin Oncol. 32:1143–1150. 2014. View Article : Google Scholar : PubMed/NCBI

213 

Wirth M, Tammela T, Cicalese V, Gomez Veiga F, Delaere K, Miller K, Tubaro A, Schulze M, Debruyne F, Huland H, et al: Prevention of bone metastases in patients with high-risk nonmetastatic prostate cancer treated with zoledronic acid: Efficacy and safety results of the Zometa European Study (ZEUS). Eur Urol. 67:482–491. 2015. View Article : Google Scholar : PubMed/NCBI

214 

James ND, Pirrie SJ, Pope AM, Barton D, Andronis L, Goranitis I, Collins S, Daunton A, McLaren D, O'Sullivan J, et al: Clinical outcomes and survival following treatment of metastatic castrate-refractory prostate cancer with docetaxel alone or with strontium-89, zoledronic acid, or both: The TRAPEZE randomized clinical trial. JAMA Oncol. 2:493–499. 2016. View Article : Google Scholar : PubMed/NCBI

215 

Denham JW, Wilcox C, Joseph D, Spry NA, Lamb DS, Tai KH, Matthews J, Atkinson C, Turner S, Christie D, et al: Quality of life in men with locally advanced prostate cancer treated with leuprorelin and radiotherapy with or without zoledronic acid (TROG 03.04 RADAR): Secondary endpoints from a randomised phase 3 factorial trial. Lancet Oncol. 13:1260–1270. 2012. View Article : Google Scholar : PubMed/NCBI

216 

Denham JW, Joseph D, Lamb DS, Spry NA, Duchesne G, Matthews J, Atkinson C, Tai KH, Christie D, Kenny L, et al: Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): An open-label, randomised, phase 3 factorial trial. Lancet Oncol. 15:1076–1089. 2014. View Article : Google Scholar : PubMed/NCBI

217 

Denham JW, Joseph D, Lamb DS, Spry NA, Duchesne G, Matthews J, Atkinson C, Tai KH, Christie D, Kenny L, et al: Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): 10-Year results from a randomised, phase 3, factorial trial. Lancet Oncol. 20:267–281. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Archer Goode E, Wang N and Munkley J: Prostate cancer bone metastases biology and clinical management (Review). Oncol Lett 25: 163, 2023.
APA
Archer Goode, E., Wang, N., & Munkley, J. (2023). Prostate cancer bone metastases biology and clinical management (Review). Oncology Letters, 25, 163. https://doi.org/10.3892/ol.2023.13749
MLA
Archer Goode, E., Wang, N., Munkley, J."Prostate cancer bone metastases biology and clinical management (Review)". Oncology Letters 25.4 (2023): 163.
Chicago
Archer Goode, E., Wang, N., Munkley, J."Prostate cancer bone metastases biology and clinical management (Review)". Oncology Letters 25, no. 4 (2023): 163. https://doi.org/10.3892/ol.2023.13749
Copy and paste a formatted citation
x
Spandidos Publications style
Archer Goode E, Wang N and Munkley J: Prostate cancer bone metastases biology and clinical management (Review). Oncol Lett 25: 163, 2023.
APA
Archer Goode, E., Wang, N., & Munkley, J. (2023). Prostate cancer bone metastases biology and clinical management (Review). Oncology Letters, 25, 163. https://doi.org/10.3892/ol.2023.13749
MLA
Archer Goode, E., Wang, N., Munkley, J."Prostate cancer bone metastases biology and clinical management (Review)". Oncology Letters 25.4 (2023): 163.
Chicago
Archer Goode, E., Wang, N., Munkley, J."Prostate cancer bone metastases biology and clinical management (Review)". Oncology Letters 25, no. 4 (2023): 163. https://doi.org/10.3892/ol.2023.13749
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team