1
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Pratilas CA and Solit DB: Therapeutic
strategies for targeting BRAF in human cancer. Rev Recent Clin
Trials. 2:121–134. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Suzuki K, Iwai H, Utsunomiya K, Kono Y,
Watabe T, Kobayashi Y, Bui DV, Sawada S, Yun Y, Mitani A, et al:
Efficacy of combination therapy with lenvatinib and radioactive
iodine in thyroid cancer preclinical model. Int J Mol Sci.
23:98722022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li M, Dal Maso L and Vaccarella S: Global
trends in thyroid cancer incidence and the impact of overdiagnosis.
Lancet Diabetes Endocrinol. 8:468–470. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Guttman M, Russell P, Ingolia NT, Weissman
JS and Lander ES: Ribosome profiling provides evidence that large
noncoding RNAs do not encode proteins. Cell. 154:240–251. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Ponting CP, Oliver PL and Reik W:
Evolution and functions of long noncoding RNAs. Cell. 136:629–641.
2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sun T: Long noncoding RNAs act as
regulators of autophagy in cancer. Pharmacol Res. 129:151–155.
2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sedaghati M and Kebebew E: Long noncoding
RNAs in thyroid cancer. Curr Opin Endocrinol Diabetes Obes.
26:275–281. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Javed Z, Ahmed Shah F, Rajabi S, Raza Q,
Iqbal Z, Ullah M, Ahmad T, Salehi B, Sharifi-Rad M, Pezzani R, et
al: LncRNAs as potential therapeutic targets in thyroid cancer.
Asian Pac J Cancer Prev. 21:281–287. 2020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cao J, Zhang M, Zhang L, Lou J, Zhou F and
Fang M: Non-coding RNA in thyroid cancer-Functions and mechanisms.
Cancer Lett. 496:117–126. 2021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Niknafs YS, Han S, Ma T, Speers C, Zhang
C, Wilder-Romans K, Iyer MK, Pitchiaya S, Malik R, Hosono Y, et al:
The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1
in breast cancer progression. Nat Commun. 7:127912016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Winkle M, El-Daly SM, Fabbri M and Calin
GA: Noncoding RNA therapeutics - challenges and potential
solutions. Nat Rev Drug Discov. 20:629–651. 2021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hill M and Tran N: miRNA interplay:
Mechanisms and consequences in cancer. Dis Model Mech.
14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li B, Cao Y, Sun M and Feng H: Expression,
regulation, and function of exosome-derived miRNAs in cancer
progression and therapy. FASEB J. 35:e219162021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ghafouri-Fard S, Shirvani-Farsani Z and
Taheri M: The role of microRNAs in the pathogenesis of thyroid
cancer. Noncoding RNA Res. 5:88–98. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Geropoulos G, Psarras K, Papaioannou M,
Giannis D, Meitanidou M, Kapriniotis K, Symeonidis N, Pavlidis ET,
Pavlidis TE, Sapalidis K, et al: Circulating microRNAs and
clinicopathological findings of papillary thyroid cancer: A
systematic review. In vivo. 36:1551–1569. 2022. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ji D, Hu G, Zhang X, Yu T and Yang J: Long
non-coding RNA DSCAM-AS1 accelerates the progression of
hepatocellular carcinoma via sponging miR-338-3p. Am J Transl Res.
11:4290–4302. 2019.PubMed/NCBI
|
18
|
Li Y, Hao J, Jiang YM, Liu Y and Zhang SH:
Long non-coding RNA DSCAM-AS1 indicates a poor prognosis and
modulates cell proliferation, migration and invasion in ovarian
cancer via upregulating SOX4. Eur Rev Med Pharmacol Sci.
24:109152020.PubMed/NCBI
|
19
|
Hua T and Luo Y: Circular RNA PVT1
promotes progression of thyroid cancer by competitively binding
miR-384. Exp Ther Med. 24:6292022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Huang X, Wang Z, Hou S, Yue C, Li Z, Hu W
and Lu H: Long non-coding RNA DSCAM-AS1 promotes pancreatic cancer
progression via regulating the miR-136-5p/PBX3 axis. Bioengineered.
13:4153–4165. 2022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liang J, Zhang S, Wang W, Xu Y, Kawuli A,
Lu J and Xiu X: Long non-coding RNA DSCAM-AS1 contributes to the
tumorigenesis of cervical cancer by targeting miR-877-5p/ATXN7L3
axis. Biosci Reps. 40:BSR201920612020. View Article : Google Scholar
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta DeltaC(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang C, Yan G, Zhang Y, Jia X and Bu P:
Long non-coding RNA MEG3 suppresses migration and invasion of
thyroid carcinoma by targeting of Rac1. Neoplasma. 62:541–549.
2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu H, Deng H, Zhao Y, Li C and Liang Y:
LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor
growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin
Cancer Res. 37:2792018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Guo K, Qian K, Shi Y, Sun T and Wang Z:
LncRNA-MIAT promotes thyroid cancer progression and function as
ceRNA to target EZH2 by sponging miR-150-5p. Cell Death Dis.
12:10972021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Qi X, Zhang DH, Wu N, Xiao JH, Wang X and
Ma W: ceRNA in cancer: Possible functions and clinical
implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Salmena L, Poliseno L, Tay Y, Kats L and
Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA
language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ma Y, Bu D, Long J, Chai W and Dong J:
LncRNA DSCAM-AS1 acts as a sponge of miR-137 to enhance Tamoxifen
resistance in breast cancer. J Cell Physiol. 234:2880–2894. 2019.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Liang WH, Li N, Yuan ZQ, Qian XL and Wang
ZH: DSCAM-AS1 promotes tumor growth of breast cancer by reducing
miR-204-5p and up-regulating RRM2. Mol Carcinog. 58:461–473. 2019.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang L, Shen YF, Shi ZM, Shang XJ, Jin DL
and Xi F: Overexpression miR-211-5p hinders the proliferation,
migration, and invasion of thyroid tumor cells by downregulating
SOX11. J Clin Lab Anal. 32:e222932018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liang M, Jia J, Chen L, Wei B, Guan Q,
Ding Z, Yu J, Pang R and He G: LncRNA MCM3AP-AS1 promotes
proliferation and invasion through regulating miR-211-5p/SPARC axis
in papillary thyroid cancer. Endocrine. 65:318–326. 2019.
View Article : Google Scholar : PubMed/NCBI
|