Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2023 Volume 25 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2023 Volume 25 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of RUNX2 in breast cancer development and drug resistance (Review)

  • Authors:
    • Wentao Si
    • Chen Kan
    • Leisheng Zhang
    • Feifei Li
  • View Affiliations / Copyright

    Affiliations: Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China, Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
    Copyright: © Si et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 176
    |
    Published online on: March 15, 2023
       https://doi.org/10.3892/ol.2023.13762
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Breast cancer is the most common malignancy and ranks second among the causes of tumor‑associated death in females. The recurrence and drug resistance of breast cancer are intractable due to the presence of breast cancer stem cells (BCSCs), which are adequate to initiate tumor formation and refractory to conventional remedies. Runt‑related transcription factor 2 (RUNX2), a pivotal transcription factor in mammary gland and bone development, has also been related to metastatic cancer and BCSCs. State‑of‑the‑art research has indicated the retention of RUNX2 expression in a more invasive subtype of breast cancer, and in particular, triple‑negative breast cancer development and drug resistance are associated with estrogen receptor signaling pathways. The present review mainly focused on the latest updates on RUNX2 in BCSCs and their roles in breast cancer progression and drug resistance, providing insight that may aid the development of RUNX2‑based diagnostics and treatments for breast cancer in clinical practice.
View Figures

Figure 1

View References

1 

Akram M, Iqbal M, Daniyal M and Khan AU: Awareness and current knowledge of breast cancer. Biol Res. 50:332017. View Article : Google Scholar : PubMed/NCBI

2 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Li X, Yang J, Peng L, Sahin AA, Huo L, Ward KC, O'Regan R, Torres MA and Meisel JL: Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res Treat. 161:279–287. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Gomathi K, Akshaya N, Srinaath N, Moorthi A and Selvamurugan N: Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sci. 245:1173892020. View Article : Google Scholar : PubMed/NCBI

5 

Liu DD, Zhang CY, Liu Y, Li J, Wang YX and Zheng SG: RUNX2 regulates osteoblast differentiation via the BMP4 signaling pathway. J Dent Res. 101:1227–1237. 2022. View Article : Google Scholar : PubMed/NCBI

6 

Komori T: Runx2, a multifunctional transcription factor in skeletal development. J Cell Biochem. 87:1–8. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Li Y, Ge C and Franceschi RT: Role of Runx2 in prostate development and stem cell function. Prostate. 81:231–241. 2021. View Article : Google Scholar : PubMed/NCBI

8 

Westendorf JJ: Transcriptional co-repressors of Runx2. J Cell Biochem. 98:54–64. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Zhang L, Wei Y, Chi Y, Liu D, Yang S, Han Z and Li Z: Two-step generation of mesenchymal stem/stromal cells from human pluripotent stem cells with reinforced efficacy upon osteoarthritis rabbits by HA hydrogel. Cell Biosci. 11:62021. View Article : Google Scholar : PubMed/NCBI

10 

Zhang L, Wang H, Liu C, Wu Q, Su P, Wu D, Guo J, Zhou W, Xu Y, Shi L and Zhou J: MSX2 initiates and accelerates mesenchymal stem/stromal cell specification of hPSCs by regulating TWIST1 and PRAME. Stem Cell Reports. 11:497–513. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Lu J and Zhang H, Pan J, Hu Z, Liu L, Liu Y, Yu X, Bai X, Cai D and Zhang H: Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res Ther. 23:1422021. View Article : Google Scholar : PubMed/NCBI

12 

Kim HJ, Kim WJ and Ryoo HM: Post-translational regulations of transcriptional activity of RUNX2. Mol Cells. 43:160–167. 2020.PubMed/NCBI

13 

Zhang Y and Duan X: A novel 90-kbp deletion of RUNX2 associated with cleidocranial dysplasia. Genes (Basel). 13:11282022. View Article : Google Scholar : PubMed/NCBI

14 

Ukkat J, Hoang-Vu C, Trojanowicz B and Rebelo A: Osteocalcin, osteopontin and RUNX2 expression in patients' leucocytes with arteriosclerosis. Diseases. 9:192021. View Article : Google Scholar : PubMed/NCBI

15 

Zhang X, Ren Z, Liu B and Wei S: RUNX2 mediates renal cell carcinoma invasion through calpain2. Biol Pharm Bull. 45:1653–1659. 2022. View Article : Google Scholar : PubMed/NCBI

16 

Wysokinski D, Blasiak J and Pawlowska E: Role of RUNX2 in breast carcinogenesis. Int J Mol Sci. 16:20969–20993. 2015. View Article : Google Scholar : PubMed/NCBI

17 

He F, Matsumoto Y, Asano Y, Yamamura Y, Katsuyama T, La Rose J, Tomonobu N, Komalasari NLGY, Sakaguchi M, Rottapel R and Wada J: RUNX2 phosphorylation by tyrosine kinase ABL promotes breast cancer invasion. Front Oncol. 11:6652732021. View Article : Google Scholar : PubMed/NCBI

18 

Song X, Liu J, Liu B, Piao C, Kong C and Li Z: RUNX2 interacts with SCD1 and activates Wnt/β-catenin signaling pathway to promote the progression of clear cell renal cell carcinoma. Cancer Med. Oct 6–2022.(Epub ahead of print).

19 

Guo Z, Zhou K, Wang Q, Huang Y, Ji J, Peng Y, Zhang X, Zheng T, Zhang Z, Chong D and Yang Z: The transcription factor RUNX2 fuels YAP1 signaling and gastric cancer tumorigenesis. Cancer Sci. 112:3533–3544. 2021. View Article : Google Scholar : PubMed/NCBI

20 

Li N, Luo D, Hu X, Luo W, Lei G, Wang Q, Zhu T, Gu J, Lu Y and Zheng Q: RUNX2 and osteosarcoma. Anticancer Agents Med Chem. 15:881–887. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Si W, Xu X, Wan L, Lv F, Wei W, Xu X, Li W, Huang D, Zhang L and Li F: RUNX2 facilitates aggressiveness and chemoresistance of triple negative breast cancer cells via activating MMP1. Front Oncol. 12:9960802022. View Article : Google Scholar : PubMed/NCBI

22 

Ferrari N, McDonald L, Morris JS, Cameron ER and Blyth K: RUNX2 in mammary gland development and breast cancer. J Cell Physiol. 228:1137–1142. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Zhang L, Liu L, Xu X, He X, Wang G, Fan C, Zheng Q and Li F: miR-205/RunX2 axis negatively regulates CD44+/CD24− breast cancer stem cell activity. Am J Cancer Res. 10:1871–1887. 2020.PubMed/NCBI

24 

Zhang P, Liu L, Zhang L, He X, Xu X, Lu Y and Li F: Runx2 is required for activity of CD44+/CD24−/low breast cancer stem cell in breast cancer development. Am J Transl Res. 12:2305–2318. 2020.PubMed/NCBI

25 

Kudela E, Samec M, Koklesova L, Liskova A, Kubatka P, Kozubik E, Rokos T, Pribulova T, Gabonova E, Smolar M and Biringer K: miRNA expression profiles in luminal A breast cancer-implications in biology, prognosis, and prediction of response to hormonal treatment. Int J Mol Sci. 21:76912020. View Article : Google Scholar : PubMed/NCBI

26 

Harbeck N and Gnant M: Breast cancer. Lancet. 389:1134–1150. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Ades F, Zardavas D, Bozovic-Spasojevic I, Pugliano L, Fumagalli D, de Azambuja E, Viale G, Sotiriou C and Piccart M: Luminal B breast cancer: Molecular characterization, clinical management, and future perspectives. J Clin Oncol. 32:2794–2803. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Loibl S and Gianni L: HER2-positive breast cancer. Lancet. 389:2415–2429. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Alexandrou S, George SM, Ormandy CJ, Lim E, Oakes SR and Caldon CE: The proliferative and apoptotic landscape of basal-like breast cancer. Int J Mol Sci. 20:6672019. View Article : Google Scholar : PubMed/NCBI

30 

Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, et al: Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline update. Arch Pathol Lab Med. 138:241–256. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Dagogo-Jack I and Shaw AT: Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 15:81–94. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, Zackrisson S and Senkus E; ESMO Guidelines Committee. Electronic address, : simpleclinicalguidelines@esmo.org: Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 30:1194–1220. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Tosello G, Torloni MR, Mota BS, Neeman T and Riera R: Breast surgery for metastatic breast cancer. Cochrane Database Syst Rev. 3:CD0112762018.PubMed/NCBI

35 

Maughan KL, Lutterbie MA and Ham PS: Treatment of breast cancer. Am Fam Physician. 81:1339–1346. 2010.PubMed/NCBI

36 

Pondé NF, Zardavas D and Piccart M: Progress in adjuvant systemic therapy for breast cancer. Nat Rev Clin Oncol. 16:27–44. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Waks AG and Winer EP: Breast cancer treatment: A review. JAMA. 321:288–300. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Abderrahman B and Jordan VC: Telling details of breast-cancer recurrence. Nature. 553:1552018. View Article : Google Scholar

39 

Miyoshi H, Shimizu K, Kozu T, Maseki N, Kaneko Y and Ohki M: t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci USA. 88:10431–10434. 1991. View Article : Google Scholar : PubMed/NCBI

40 

Schlegelberger B and Heller PG: RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM). Semin Hematol. 54:75–80. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Ito Y, Bae SC and Chuang LS: The RUNX family: developmental regulators in cancer. Nat Rev Cancer. 15:81–95. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Cecconi D, Brandi J, Manfredi M, Serena M, Dalle Carbonare L, Deiana M, Cheri S, Parolini F, Gandini A, Marchetto G, et al: Runx2 stimulates neoangiogenesis through the Runt domain in melanoma. Sci Rep. 9:80522019. View Article : Google Scholar : PubMed/NCBI

43 

Vitale E, Sauta E, Gugnoni M, Torricelli F, Manicardi V and Ciarrocchi A: A multimodal integrative approach to model transcriptional addiction of thyroid cancer on RUNX2. Cancer Commun (Lond). 42:892–896. 2022. View Article : Google Scholar : PubMed/NCBI

44 

Guan Y, Zhang Y, Hao L and Nie Z: CircRNA_102272 promotes cisplatin-resistance in hepatocellular carcinoma by decreasing MiR-326 targeting of RUNX2. Cancer Manag Res. 12:12527–12534. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Matthijssens F, Sharma ND, Nysus M, Nickl CK, Kang H, Perez DR, Lintermans B, Van Loocke W, Roels J, Peirs S, et al: RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia. J Clin Invest. 131:e1415662021. View Article : Google Scholar : PubMed/NCBI

46 

Ji Q, Cai G, Liu X, Zhang Y, Wang Y, Zhou L, Sui H and Li Q: MALAT1 regulates the transcriptional and translational levels of proto-oncogene RUNX2 in colorectal cancer metastasis. Cell Death Dis. 10:3782019. View Article : Google Scholar : PubMed/NCBI

47 

Zhang F, Su T and Xiao M: RUNX3-regulated circRNA METTL3 inhibits colorectal cancer proliferation and metastasis via miR-107/PER3 axis. Cell Death Dis. 13:5502022. View Article : Google Scholar : PubMed/NCBI

48 

Liu H, Xue Q, Cai H, Jiang X, Cao G, Chen T, Chen Y and Wang D: RUNX3-mediated circDYRK1A inhibits glutamine metabolism in gastric cancer by up-regulating microRNA-889-3p-dependent FBXO4. J Transl Med. 20:1202022. View Article : Google Scholar : PubMed/NCBI

49 

Wang L, Tang W, Yang S, He P, Wang J, Gaedcke J, Ströbel P, Azizian A, Ried T, Gaida MM, et al: NO•/RUNX3/kynurenine metabolic signaling enhances disease aggressiveness in pancreatic cancer. Int J Cancer. 146:3160–3169. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Mevel R, Draper JE, Lie-A-Ling M, Kouskoff V and Lacaud G: RUNX transcription factors: Orchestrators of development. Development. 146:dev1482962019. View Article : Google Scholar : PubMed/NCBI

51 

Komori T: Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci. 20:16942019. View Article : Google Scholar : PubMed/NCBI

52 

Nagata K, Hojo H, Chang SH, Okada H, Yano F, Chijimatsu R, Omata Y, Mori D, Makii Y, Kawata M, et al: Runx2 and Runx3 differentially regulate articular chondrocytes during surgically induced osteoarthritis development. Nat Commun. 13:61872022. View Article : Google Scholar : PubMed/NCBI

53 

Villanueva F, Araya H, Briceño P, Varela N, Stevenson A, Jerez S, Tempio F, Chnaiderman J, Perez C, Villarroel M, et al: The cancer-related transcription factor RUNX2 modulates expression and secretion of the matricellular protein osteopontin in osteosarcoma cells to promote adhesion to endothelial pulmonary cells and lung metastasis. J Cell Physiol. 234:13659–13679. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Senbanjo LT, AlJohani H, Majumdar S and Chellaiah MA: Characterization of CD44 intracellular domain interaction with RUNX2 in PC3 human prostate cancer cells. Cell Commun Signal. 17:802019. View Article : Google Scholar : PubMed/NCBI

55 

Yin X, Teng X, Ma T, Yang T, Zhang J, Huo M, Liu W, Yang Y, Yuan B, Yu H, et al: RUNX2 recruits the NuRD(MTA1)/CRL4B complex to promote breast cancer progression and bone metastasis. Cell Death Differ. 29:2203–2217. 2022. View Article : Google Scholar : PubMed/NCBI

56 

Chan WCW, Tan Z, To MKT and Chan D: Regulation and role of transcription factors in osteogenesis. Int J Mol Sci. 22:54452021. View Article : Google Scholar : PubMed/NCBI

57 

Coffman JA: Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biol Int. 27:315–324. 2003. View Article : Google Scholar : PubMed/NCBI

58 

Han X, Feng J, Guo T, Loh YE, Yuan Y, Ho TV, Cho CK, Li J, Jing J, Janeckova E, et al: Runx2-Twist1 interaction coordinates cranial neural crest guidance of soft palate myogenesis. Elife. 10:e623872021. View Article : Google Scholar : PubMed/NCBI

59 

Shu HS, Liu YL, Tang XT, Zhang XS, Zhou B, Zou W and Zhou BO: Tracing the skeletal progenitor transition during postnatal bone formation. Cell Stem Cell. 28:2122–2136.e3. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Liu TM and Lee EH: Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev. 19:254–263. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Qin X, Jiang Q, Nagano K, Moriishi T, Miyazaki T, Komori H, Ito K, Mark KV, Sakane C, Kaneko H and Komori T: Runx2 is essential for the transdifferentiation of chondrocytes into osteoblasts. PLoS Genet. 16:e10091692020. View Article : Google Scholar : PubMed/NCBI

62 

Owens TW, Rogers RL, Best S, Ledger A, Mooney AM, Ferguson A, Shore P, Swarbrick A, Ormandy CJ, Simpson PT, et al: Runx2 is a novel regulator of mammary epithelial cell fate in development and breast cancer. Cancer Res. 74:5277–5286. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Inman CK and Shore P: The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. J Biol Chem. 278:48684–48689. 2003. View Article : Google Scholar : PubMed/NCBI

64 

Sato M, Morii E, Komori T, Kawahata H, Sugimoto M, Terai K, Shimizu H, Yasui T, Ogihara H, Yasui N, et al: Transcriptional regulation of osteopontin gene in vivo by PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene. 17:1517–1525. 1998. View Article : Google Scholar : PubMed/NCBI

65 

Pratap J, Lian JB, Javed A, Barnes GL, van Wijnen AJ, Stein JL and Stein GS: Regulatory roles of Runx2 in metastatic tumor and cancer cell interactions with bone. Cancer Metastasis Rev. 25:589–600. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Kim B, Kim H, Jung S, Moon A, Noh DY, Lee ZH, Kim HJ and Kim HH: A CTGF-RUNX2-RANKL axis in breast and prostate cancer cells promotes tumor progression in bone. J Bone Miner Res. 35:155–166. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Ma F, Xie Y, Lei Y, Kuang Z and Liu X: The microRNA-130a-5p/RUNX2/STK32A network modulates tumor invasive and metastatic potential in non-small cell lung cancer. BMC Cancer. 20:5802020. View Article : Google Scholar : PubMed/NCBI

68 

Wu CY, Li L, Chen SL, Yang X, Zhang CZ and Cao Y: A Zic2/Runx2/NOLC1 signaling axis mediates tumor growth and metastasis in clear cell renal cell carcinoma. Cell Death Dis. 12:3192021. View Article : Google Scholar : PubMed/NCBI

69 

Cohen-Solal KA, Boregowda RK and Lasfar A: RUNX2 and the PI3K/AKT axis reciprocal activation as a driving force for tumor progression. Mol Cancer. 14:1372015. View Article : Google Scholar : PubMed/NCBI

70 

Tandon M, Gokul K, Ali SA, Chen Z, Lian J, Stein GS and Pratap J: Runx2 mediates epigenetic silencing of the bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells. Mol Cancer. 11:272012. View Article : Google Scholar : PubMed/NCBI

71 

Pranavkrishna S, Sanjeev G, Akshaya RL, Rohini M and Selvamurugan N: A computational approach on studying the regulation of TGF-β1-stimulated Runx2 expression by MicroRNAs in human breast cancer cells. Comput Biol Med. 137:1048232021. View Article : Google Scholar : PubMed/NCBI

72 

Vishal M, Swetha R, Thejaswini G, Arumugam B and Selvamurugan N: Role of Runx2 in breast cancer-mediated bone metastasis. Int J Biol Macromol. 99:608–614. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Fang Y, Xue Z, Zhao L, Yang X, Yang Y, Zhou X, Feng S and Chen K: Calycosin stimulates the osteogenic differentiation of rat calvarial osteoblasts by activating the IGF1R/PI3K/Akt signaling pathway. Cell Biol Int. 43:323–332. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Tandon M, Othman AH, Ashok V, Stein GS and Pratap J: The role of Runx2 in facilitating autophagy in metastatic breast cancer cells. J Cell Physiol. 233:559–571. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Schneider JG, Amend SR and Weilbaecher KN: Integrins and bone metastasis: Integrating tumor cell and stromal cell interactions. Bone. 48:54–65. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Li XQ, Lu JT, Tan CC, Wang QS and Feng YM: RUNX2 promotes breast cancer bone metastasis by increasing integrin α5-mediated colonization. Cancer Lett. 380:78–86. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Si W, Zhou J, Zhao Y, Zheng J and Cui L: SET7/9 promotes multiple malignant processes in breast cancer development via RUNX2 activation and is negatively regulated by TRIM21. Cell Death Dis. 11:1512020. View Article : Google Scholar : PubMed/NCBI

78 

Morikawa M, Derynck R and Miyazono K: TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 8:a0218732016. View Article : Google Scholar : PubMed/NCBI

79 

Larson C, Oronsky B, Carter CA, Oronsky A, Knox SJ, Sher D and Reid TR: TGF-beta: A master immune regulator. Expert Opin Ther Targets. 24:427–438. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Li XQ, Du X, Li DM, Kong PZ, Sun Y, Liu PF, Wang QS and Feng YM: ITGBL1 is a Runx2 transcriptional target and promotes breast cancer bone metastasis by activating the TGFβ signaling pathway. Cancer Res. 75:3302–3313. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Taipaleenmäki H, Browne G, Akech J, Zustin J, van Wijnen AJ, Stein JL, Hesse E, Stein GS and Lian JB: Targeting of Runx2 by miR-135 and miR-203 impairs progression of breast cancer and metastatic bone disease. Cancer Res. 75:1433–1444. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Croset M, Pantano F, Kan CWS, Bonnelye E, Descotes F, Alix-Panabières C, Lecellier CH, Bachelier R, Allioli N, Hong SS, et al: miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Res. 78:5259–5273. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Zhao P, Guan H, Dai Z, Ma Y, Zhao Y and Liu D: Long noncoding RNA DLX6-AS1 promotes breast cancer progression via miR-505-3p/RUNX2 axis. Eur J Pharmacol. 865:1727782019. View Article : Google Scholar : PubMed/NCBI

84 

Rohini M, Gokulnath M, Miranda PJ and Selvamurugan N: miR-590-3p inhibits proliferation and promotes apoptosis by targeting activating transcription factor 3 in human breast cancer cells. Biochimie. 154:10–18. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Batlle E and Clevers H: Cancer stem cells revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Babaei G, Aziz SGG and Jaghi NZZ: EMT, cancer stem cells and autophagy; the three main axes of metastasis. Biomed Pharmacother. 133:1109092021. View Article : Google Scholar : PubMed/NCBI

87 

Peitzsch C, Tyutyunnykova A, Pantel K and Dubrovska A: Cancer stem cells: The root of tumor recurrence and metastases. Semin Cancer Biol. 44:10–24. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T and Okamoto K: Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci. 108:283–289. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bäuerle T, Wallwiener M, et al: Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 31:539–544. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Butti R, Gunasekaran VP, Kumar TVS, Banerjee P and Kundu GC: Breast cancer stem cells: Biology and therapeutic implications. Int J Biochem Cell Biol. 107:38–52. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Dittmer J: Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol. 53:59–74. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI

93 

Katoh M: Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (review). Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Ibrahim SA, Gadalla R, El-Ghonaimy EA, Samir O, Mohamed HT, Hassan H, Greve B, El-Shinawi M, Mohamed MM and Götte M: Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Mol Cancer. 16:572017. View Article : Google Scholar : PubMed/NCBI

95 

Colacino JA, Azizi E, Brooks MD, Harouaka R, Fouladdel S, McDermott SP, Lee M, Hill D, Madden J, Boerner J, et al: Heterogeneity of human breast stem and progenitor cells as revealed by transcriptional profiling. Stem Cell Reports. 10:1596–1609. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, et al: Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports. 2:78–91. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Zöller M: CD44: Can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 11:254–267. 2011. View Article : Google Scholar : PubMed/NCBI

98 

Vikram R, Chou WC, Hung SC and Shen CY: Tumorigenic and metastatic role of CD44−/low/CD24−/low cells in luminal breast cancer. Cancers (Basel). 12:12392020. View Article : Google Scholar : PubMed/NCBI

99 

Yan X, Han D, Chen Z, Han C, Dong W, Han L, Zou L, Zhang J, Liu Y and Chai J: RUNX2 interacts with BRG1 to target CD44 for promoting invasion and migration of colorectal cancer cells. Cancer Cell Int. 20:5052020. View Article : Google Scholar : PubMed/NCBI

100 

Knutson TP, Truong TH, Ma S, Brady NJ, Sullivan ME, Raj G, Schwertfeger KL and Lange CA: Posttranslationally modified progesterone receptors direct ligand-specific expression of breast cancer stem cell-associated gene programs. J Hematol Oncol. 10:892017. View Article : Google Scholar : PubMed/NCBI

101 

Valenti MT, Serafini P, Innamorati G, Gili A, Cheri S, Bassi C and Dalle Carbonare L: Runx2 expression: A mesenchymal stem marker for cancer. Oncol Lett. 12:4167–4172. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Fritz AJ, Hong D, Boyd J, Kost J, Finstaad KH, Fitzgerald MP, Hanna S, Abuarqoub AH, Malik M, Bushweller J, et al: RUNX1 and RUNX2 transcription factors function in opposing roles to regulate breast cancer stem cells. J Cell Physiol. 235:7261–7272. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Muley H, Fadó R, Rodriguez-Rodriguez R and Casals N: Drug uptake-based chemoresistance in breast cancer treatment. Biochem Pharmacol. 177:1139592020. View Article : Google Scholar : PubMed/NCBI

104 

Dingwall S, Lee JB, Guezguez B, Fiebig A, McNicol J, Boreham D, Collins TJ and Bhatia M: Neoplastic human embryonic stem cells as a model of radiation resistance of human cancer stem cells. Oncotarget. 6:22258–22269. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Najafi M, Mortezaee K and Majidpoor J: Cancer stem cell (CSC) resistance drivers. Life Sci. 234:1167812019. View Article : Google Scholar : PubMed/NCBI

106 

Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics. 10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI

107 

Garcia-Mayea Y, Mir C, Masson F, Paciucci R and LLeonart ME: Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol. 60:166–180. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Smith AG and Macleod KF: Autophagy, cancer stem cells and drug resistance. J Pathol. 247:708–718. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG and Di Fiore PP: Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell. 140:62–73. 2010. View Article : Google Scholar : PubMed/NCBI

110 

Phillips TM, McBride WH and Pajonk F: The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 98:1777–1785. 2006. View Article : Google Scholar : PubMed/NCBI

111 

Ryoo IG, Choi BH and Kwak MK: Activation of NRF2 by p62 and proteasome reduction in sphere-forming breast carcinoma cells. Oncotarget. 6:8167–8184. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Bai J, Chen WB, Zhang XY, Kang XN, Jin LJ, Zhang H and Wang ZY: HIF-2α regulates CD44 to promote cancer stem cell activation in triple-negative breast cancer via PI3K/AKT/mTOR signaling. World J Stem Cells. 12:87–99. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Bai X, Ni J, Beretov J, Graham P and Li Y: Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev. 69:152–163. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Leccia F, Del Vecchio L, Mariotti E, Di Noto R, Morel AP, Puisieux A, Salvatore F and Ansieau S: ABCG2, a novel antigen to sort luminal progenitors of BRCA1- breast cancer cells. Mol Cancer. 13:2132014. View Article : Google Scholar : PubMed/NCBI

115 

Sadikovic B, Thorner P, Chilton-Macneill S, Martin JW, Cervigne NK, Squire J and Zielenska M: Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer. 10:2022010. View Article : Google Scholar : PubMed/NCBI

116 

Roos A, Satterfield L, Zhao S, Fuja D, Shuck R, Hicks MJ, Donehower LA and Yustein JT: Loss of Runx2 sensitises osteosarcoma to chemotherapy-induced apoptosis. Br J Cancer. 113:1289–1297. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Sugimoto H, Nakamura M, Yoda H, Hiraoka K, Shinohara K, Sang M, Fujiwara K, Shimozato O, Nagase H and Ozaki T: Silencing of RUNX2 enhances gemcitabine sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the stimulation of TAp63-mediated cell death. Cell Death Discov. 1:150102015. View Article : Google Scholar : PubMed/NCBI

118 

Ozaki T, Nakamura M, Ogata T, Sang M, Yoda H, Hiraoka K, Sang M and Shimozato O: Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63. Oncotarget. 7:71937–71950. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Jeselsohn R, Cornwell M, Pun M, Buchwalter G, Nguyen M, Bango C, Huang Y, Kuang Y, Paweletz C, Fu X, et al: Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proc Natl Acad Sci USA. 114:E4482–E4491. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Geter PA, Ernlund AW, Bakogianni S, Alard A, Arju R, Giashuddin S, Gadi A, Bromberg J and Schneider RJ: Hyperactive mTOR and MNK1 phosphorylation of eIF4E confer tamoxifen resistance and estrogen independence through selective mRNA translation reprogramming. Genes Dev. 31:2235–2249. 2017. View Article : Google Scholar : PubMed/NCBI

121 

Othman A, Winogradzki M, Patel S, Holmes W, Blank A and Pratap J: The role of Runx2 in microtubule acetylation in bone metastatic breast cancer cells. Cancers (Basel). 14:34362022. View Article : Google Scholar : PubMed/NCBI

122 

Wang XX, Ye FG, Zhang J, Li JJ, Chen QX, Lin PY and Song CG: Serum miR-4530 sensitizes breast cancer to neoadjuvant chemotherapy by suppressing RUNX2. Cancer Manag Res. 10:4393–4400. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Huang L, Zhang L and Chen X: Updated review of advances in microRNAs and complex diseases: Taxonomy, trends and challenges of computational models. Brief Bioinform. 23:bbac3582022. View Article : Google Scholar : PubMed/NCBI

124 

Chen X, Xie D, Zhao Q and You ZH: MicroRNAs and complex diseases: From experimental results to computational models. Brief Bioinform. 20:515–539. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Chen X, Yan CC, Zhang X and You ZH: Long non-coding RNAs and complex diseases: From experimental results to computational models. Brief Bioinform. 18:558–576. 2017.PubMed/NCBI

126 

Wang CC, Han CD, Zhao Q and Chen X: Circular RNAs and complex diseases: From experimental results to computational models. Brief Bioinform. 22:bbab2862021. View Article : Google Scholar : PubMed/NCBI

127 

Zhao W, Geng D, Li S, Chen Z and Sun M: LncRNA HOTAIR influences cell growth, migration, invasion, and apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer Med. 7:842–855. 2018. View Article : Google Scholar : PubMed/NCBI

128 

Xu J, Wu KJ, Jia QJ and Ding XF: Roles of miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ Sci B. 21:673–689. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Kong X, Duan Y, Sang Y, Li Y, Zhang H, Liang Y, Liu Y, Zhang N and Yang Q: LncRNA-CDC6 promotes breast cancer progression and function as ceRNA to target CDC6 by sponging microRNA-215. J Cell Physiol. 234:9105–9117. 2019. View Article : Google Scholar : PubMed/NCBI

130 

Sang Y, Chen B, Song X, Li Y, Liang Y, Han D, Zhang N, Zhang H, Liu Y, Chen T, et al: circRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol Ther. 27:1638–1652. 2019. View Article : Google Scholar : PubMed/NCBI

131 

Yin X, Wang P, Yang T, Li G, Teng X, Huang W and Yu H: Identification of key modules and genes associated with breast cancer prognosis using WGCNA and ceRNA network analysis. Aging (Albany NY). 13:2519–2538. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Joshi H and Press MF: Molecular oncology of breast cancer. The Breast. Elsevier; Amsterdam, The Netherlands: pp. pp282–307.e5. 2018, Available online:. https://www.sciencedirect.com/science/article/pii/B978032335955900022230–May. 2021 View Article : Google Scholar

133 

Dzobo K and Sinkala M: Cancer stem cell marker CD44 plays multiple key roles in human cancers: immune suppression/evasion, drug resistance, epithelial-mesenchymal transition, and metastasis. OMICS. 25:313–332. 2021. View Article : Google Scholar : PubMed/NCBI

134 

Fillmore C and Kuperwasser C: Human breast cancer stem cell markers CD44 and CD24: Enriching for cells with functional properties in mice or in man? Breast Cancer Res. 9:3032007. View Article : Google Scholar : PubMed/NCBI

135 

Tomita H, Tanaka K, Tanaka T and Hara A: Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 7:11018–11032. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Si W, Kan C, Zhang L and Li F: Role of RUNX2 in breast cancer development and drug resistance (Review). Oncol Lett 25: 176, 2023.
APA
Si, W., Kan, C., Zhang, L., & Li, F. (2023). Role of RUNX2 in breast cancer development and drug resistance (Review). Oncology Letters, 25, 176. https://doi.org/10.3892/ol.2023.13762
MLA
Si, W., Kan, C., Zhang, L., Li, F."Role of RUNX2 in breast cancer development and drug resistance (Review)". Oncology Letters 25.5 (2023): 176.
Chicago
Si, W., Kan, C., Zhang, L., Li, F."Role of RUNX2 in breast cancer development and drug resistance (Review)". Oncology Letters 25, no. 5 (2023): 176. https://doi.org/10.3892/ol.2023.13762
Copy and paste a formatted citation
x
Spandidos Publications style
Si W, Kan C, Zhang L and Li F: Role of RUNX2 in breast cancer development and drug resistance (Review). Oncol Lett 25: 176, 2023.
APA
Si, W., Kan, C., Zhang, L., & Li, F. (2023). Role of RUNX2 in breast cancer development and drug resistance (Review). Oncology Letters, 25, 176. https://doi.org/10.3892/ol.2023.13762
MLA
Si, W., Kan, C., Zhang, L., Li, F."Role of RUNX2 in breast cancer development and drug resistance (Review)". Oncology Letters 25.5 (2023): 176.
Chicago
Si, W., Kan, C., Zhang, L., Li, F."Role of RUNX2 in breast cancer development and drug resistance (Review)". Oncology Letters 25, no. 5 (2023): 176. https://doi.org/10.3892/ol.2023.13762
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team