|
1
|
Akram M, Iqbal M, Daniyal M and Khan AU:
Awareness and current knowledge of breast cancer. Biol Res.
50:332017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Li X, Yang J, Peng L, Sahin AA, Huo L,
Ward KC, O'Regan R, Torres MA and Meisel JL: Triple-negative breast
cancer has worse overall survival and cause-specific survival than
non-triple-negative breast cancer. Breast Cancer Res Treat.
161:279–287. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gomathi K, Akshaya N, Srinaath N, Moorthi
A and Selvamurugan N: Regulation of Runx2 by post-translational
modifications in osteoblast differentiation. Life Sci.
245:1173892020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Liu DD, Zhang CY, Liu Y, Li J, Wang YX and
Zheng SG: RUNX2 regulates osteoblast differentiation via the BMP4
signaling pathway. J Dent Res. 101:1227–1237. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Komori T: Runx2, a multifunctional
transcription factor in skeletal development. J Cell Biochem.
87:1–8. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Li Y, Ge C and Franceschi RT: Role of
Runx2 in prostate development and stem cell function. Prostate.
81:231–241. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Westendorf JJ: Transcriptional
co-repressors of Runx2. J Cell Biochem. 98:54–64. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang L, Wei Y, Chi Y, Liu D, Yang S, Han
Z and Li Z: Two-step generation of mesenchymal stem/stromal cells
from human pluripotent stem cells with reinforced efficacy upon
osteoarthritis rabbits by HA hydrogel. Cell Biosci. 11:62021.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhang L, Wang H, Liu C, Wu Q, Su P, Wu D,
Guo J, Zhou W, Xu Y, Shi L and Zhou J: MSX2 initiates and
accelerates mesenchymal stem/stromal cell specification of hPSCs by
regulating TWIST1 and PRAME. Stem Cell Reports. 11:497–513. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lu J and Zhang H, Pan J, Hu Z, Liu L, Liu
Y, Yu X, Bai X, Cai D and Zhang H: Fargesin ameliorates
osteoarthritis via macrophage reprogramming by downregulating MAPK
and NF-κB pathways. Arthritis Res Ther. 23:1422021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kim HJ, Kim WJ and Ryoo HM:
Post-translational regulations of transcriptional activity of
RUNX2. Mol Cells. 43:160–167. 2020.PubMed/NCBI
|
|
13
|
Zhang Y and Duan X: A novel 90-kbp
deletion of RUNX2 associated with cleidocranial dysplasia. Genes
(Basel). 13:11282022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ukkat J, Hoang-Vu C, Trojanowicz B and
Rebelo A: Osteocalcin, osteopontin and RUNX2 expression in
patients' leucocytes with arteriosclerosis. Diseases. 9:192021.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang X, Ren Z, Liu B and Wei S: RUNX2
mediates renal cell carcinoma invasion through calpain2. Biol Pharm
Bull. 45:1653–1659. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wysokinski D, Blasiak J and Pawlowska E:
Role of RUNX2 in breast carcinogenesis. Int J Mol Sci.
16:20969–20993. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
He F, Matsumoto Y, Asano Y, Yamamura Y,
Katsuyama T, La Rose J, Tomonobu N, Komalasari NLGY, Sakaguchi M,
Rottapel R and Wada J: RUNX2 phosphorylation by tyrosine kinase ABL
promotes breast cancer invasion. Front Oncol. 11:6652732021.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Song X, Liu J, Liu B, Piao C, Kong C and
Li Z: RUNX2 interacts with SCD1 and activates Wnt/β-catenin
signaling pathway to promote the progression of clear cell renal
cell carcinoma. Cancer Med. Oct 6–2022.(Epub ahead of print).
|
|
19
|
Guo Z, Zhou K, Wang Q, Huang Y, Ji J, Peng
Y, Zhang X, Zheng T, Zhang Z, Chong D and Yang Z: The transcription
factor RUNX2 fuels YAP1 signaling and gastric cancer tumorigenesis.
Cancer Sci. 112:3533–3544. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li N, Luo D, Hu X, Luo W, Lei G, Wang Q,
Zhu T, Gu J, Lu Y and Zheng Q: RUNX2 and osteosarcoma. Anticancer
Agents Med Chem. 15:881–887. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Si W, Xu X, Wan L, Lv F, Wei W, Xu X, Li
W, Huang D, Zhang L and Li F: RUNX2 facilitates aggressiveness and
chemoresistance of triple negative breast cancer cells via
activating MMP1. Front Oncol. 12:9960802022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ferrari N, McDonald L, Morris JS, Cameron
ER and Blyth K: RUNX2 in mammary gland development and breast
cancer. J Cell Physiol. 228:1137–1142. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang L, Liu L, Xu X, He X, Wang G, Fan C,
Zheng Q and Li F: miR-205/RunX2 axis negatively regulates
CD44+/CD24− breast cancer stem cell activity.
Am J Cancer Res. 10:1871–1887. 2020.PubMed/NCBI
|
|
24
|
Zhang P, Liu L, Zhang L, He X, Xu X, Lu Y
and Li F: Runx2 is required for activity of
CD44+/CD24−/low breast cancer stem cell in
breast cancer development. Am J Transl Res. 12:2305–2318.
2020.PubMed/NCBI
|
|
25
|
Kudela E, Samec M, Koklesova L, Liskova A,
Kubatka P, Kozubik E, Rokos T, Pribulova T, Gabonova E, Smolar M
and Biringer K: miRNA expression profiles in luminal A breast
cancer-implications in biology, prognosis, and prediction of
response to hormonal treatment. Int J Mol Sci. 21:76912020.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Harbeck N and Gnant M: Breast cancer.
Lancet. 389:1134–1150. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ades F, Zardavas D, Bozovic-Spasojevic I,
Pugliano L, Fumagalli D, de Azambuja E, Viale G, Sotiriou C and
Piccart M: Luminal B breast cancer: Molecular characterization,
clinical management, and future perspectives. J Clin Oncol.
32:2794–2803. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Loibl S and Gianni L: HER2-positive breast
cancer. Lancet. 389:2415–2429. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Alexandrou S, George SM, Ormandy CJ, Lim
E, Oakes SR and Caldon CE: The proliferative and apoptotic
landscape of basal-like breast cancer. Int J Mol Sci. 20:6672019.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Perou CM, Sørlie T, Eisen MB, van de Rijn
M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA,
et al: Molecular portraits of human breast tumours. Nature.
406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wolff AC, Hammond ME, Hicks DG, Dowsett M,
McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M,
Fitzgibbons P, et al: Recommendations for human epidermal growth
factor receptor 2 testing in breast cancer: American society of
clinical oncology/college of American pathologists clinical
practice guideline update. Arch Pathol Lab Med. 138:241–256. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dagogo-Jack I and Shaw AT: Tumour
heterogeneity and resistance to cancer therapies. Nat Rev Clin
Oncol. 15:81–94. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cardoso F, Kyriakides S, Ohno S,
Penault-Llorca F, Poortmans P, Rubio IT, Zackrisson S and Senkus E;
ESMO Guidelines Committee. Electronic address, : simpleclinicalguidelines@esmo.org:
Early breast cancer: ESMO clinical practice guidelines for
diagnosis, treatment and follow-up†. Ann Oncol. 30:1194–1220. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tosello G, Torloni MR, Mota BS, Neeman T
and Riera R: Breast surgery for metastatic breast cancer. Cochrane
Database Syst Rev. 3:CD0112762018.PubMed/NCBI
|
|
35
|
Maughan KL, Lutterbie MA and Ham PS:
Treatment of breast cancer. Am Fam Physician. 81:1339–1346.
2010.PubMed/NCBI
|
|
36
|
Pondé NF, Zardavas D and Piccart M:
Progress in adjuvant systemic therapy for breast cancer. Nat Rev
Clin Oncol. 16:27–44. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Waks AG and Winer EP: Breast cancer
treatment: A review. JAMA. 321:288–300. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Abderrahman B and Jordan VC: Telling
details of breast-cancer recurrence. Nature. 553:1552018.
View Article : Google Scholar
|
|
39
|
Miyoshi H, Shimizu K, Kozu T, Maseki N,
Kaneko Y and Ohki M: t(8;21) breakpoints on chromosome 21 in acute
myeloid leukemia are clustered within a limited region of a single
gene, AML1. Proc Natl Acad Sci USA. 88:10431–10434. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Schlegelberger B and Heller PG: RUNX1
deficiency (familial platelet disorder with predisposition to
myeloid leukemia, FPDMM). Semin Hematol. 54:75–80. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ito Y, Bae SC and Chuang LS: The RUNX
family: developmental regulators in cancer. Nat Rev Cancer.
15:81–95. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cecconi D, Brandi J, Manfredi M, Serena M,
Dalle Carbonare L, Deiana M, Cheri S, Parolini F, Gandini A,
Marchetto G, et al: Runx2 stimulates neoangiogenesis through the
Runt domain in melanoma. Sci Rep. 9:80522019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Vitale E, Sauta E, Gugnoni M, Torricelli
F, Manicardi V and Ciarrocchi A: A multimodal integrative approach
to model transcriptional addiction of thyroid cancer on RUNX2.
Cancer Commun (Lond). 42:892–896. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Guan Y, Zhang Y, Hao L and Nie Z:
CircRNA_102272 promotes cisplatin-resistance in hepatocellular
carcinoma by decreasing MiR-326 targeting of RUNX2. Cancer Manag
Res. 12:12527–12534. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Matthijssens F, Sharma ND, Nysus M, Nickl
CK, Kang H, Perez DR, Lintermans B, Van Loocke W, Roels J, Peirs S,
et al: RUNX2 regulates leukemic cell metabolism and chemotaxis in
high-risk T cell acute lymphoblastic leukemia. J Clin Invest.
131:e1415662021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ji Q, Cai G, Liu X, Zhang Y, Wang Y, Zhou
L, Sui H and Li Q: MALAT1 regulates the transcriptional and
translational levels of proto-oncogene RUNX2 in colorectal cancer
metastasis. Cell Death Dis. 10:3782019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhang F, Su T and Xiao M: RUNX3-regulated
circRNA METTL3 inhibits colorectal cancer proliferation and
metastasis via miR-107/PER3 axis. Cell Death Dis. 13:5502022.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Liu H, Xue Q, Cai H, Jiang X, Cao G, Chen
T, Chen Y and Wang D: RUNX3-mediated circDYRK1A inhibits glutamine
metabolism in gastric cancer by up-regulating
microRNA-889-3p-dependent FBXO4. J Transl Med. 20:1202022.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang L, Tang W, Yang S, He P, Wang J,
Gaedcke J, Ströbel P, Azizian A, Ried T, Gaida MM, et al:
NO•/RUNX3/kynurenine metabolic signaling enhances
disease aggressiveness in pancreatic cancer. Int J Cancer.
146:3160–3169. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mevel R, Draper JE, Lie-A-Ling M, Kouskoff
V and Lacaud G: RUNX transcription factors: Orchestrators of
development. Development. 146:dev1482962019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Komori T: Regulation of proliferation,
differentiation and functions of osteoblasts by Runx2. Int J Mol
Sci. 20:16942019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Nagata K, Hojo H, Chang SH, Okada H, Yano
F, Chijimatsu R, Omata Y, Mori D, Makii Y, Kawata M, et al: Runx2
and Runx3 differentially regulate articular chondrocytes during
surgically induced osteoarthritis development. Nat Commun.
13:61872022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Villanueva F, Araya H, Briceño P, Varela
N, Stevenson A, Jerez S, Tempio F, Chnaiderman J, Perez C,
Villarroel M, et al: The cancer-related transcription factor RUNX2
modulates expression and secretion of the matricellular protein
osteopontin in osteosarcoma cells to promote adhesion to
endothelial pulmonary cells and lung metastasis. J Cell Physiol.
234:13659–13679. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Senbanjo LT, AlJohani H, Majumdar S and
Chellaiah MA: Characterization of CD44 intracellular domain
interaction with RUNX2 in PC3 human prostate cancer cells. Cell
Commun Signal. 17:802019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yin X, Teng X, Ma T, Yang T, Zhang J, Huo
M, Liu W, Yang Y, Yuan B, Yu H, et al: RUNX2 recruits the
NuRD(MTA1)/CRL4B complex to promote breast cancer progression and
bone metastasis. Cell Death Differ. 29:2203–2217. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chan WCW, Tan Z, To MKT and Chan D:
Regulation and role of transcription factors in osteogenesis. Int J
Mol Sci. 22:54452021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Coffman JA: Runx transcription factors and
the developmental balance between cell proliferation and
differentiation. Cell Biol Int. 27:315–324. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Han X, Feng J, Guo T, Loh YE, Yuan Y, Ho
TV, Cho CK, Li J, Jing J, Janeckova E, et al: Runx2-Twist1
interaction coordinates cranial neural crest guidance of soft
palate myogenesis. Elife. 10:e623872021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shu HS, Liu YL, Tang XT, Zhang XS, Zhou B,
Zou W and Zhou BO: Tracing the skeletal progenitor transition
during postnatal bone formation. Cell Stem Cell. 28:2122–2136.e3.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu TM and Lee EH: Transcriptional
regulatory cascades in Runx2-dependent bone development. Tissue Eng
Part B Rev. 19:254–263. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Qin X, Jiang Q, Nagano K, Moriishi T,
Miyazaki T, Komori H, Ito K, Mark KV, Sakane C, Kaneko H and Komori
T: Runx2 is essential for the transdifferentiation of chondrocytes
into osteoblasts. PLoS Genet. 16:e10091692020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Owens TW, Rogers RL, Best S, Ledger A,
Mooney AM, Ferguson A, Shore P, Swarbrick A, Ormandy CJ, Simpson
PT, et al: Runx2 is a novel regulator of mammary epithelial cell
fate in development and breast cancer. Cancer Res. 74:5277–5286.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Inman CK and Shore P: The osteoblast
transcription factor Runx2 is expressed in mammary epithelial cells
and mediates osteopontin expression. J Biol Chem. 278:48684–48689.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sato M, Morii E, Komori T, Kawahata H,
Sugimoto M, Terai K, Shimizu H, Yasui T, Ogihara H, Yasui N, et al:
Transcriptional regulation of osteopontin gene in vivo by
PEBP2alphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene.
17:1517–1525. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Pratap J, Lian JB, Javed A, Barnes GL, van
Wijnen AJ, Stein JL and Stein GS: Regulatory roles of Runx2 in
metastatic tumor and cancer cell interactions with bone. Cancer
Metastasis Rev. 25:589–600. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kim B, Kim H, Jung S, Moon A, Noh DY, Lee
ZH, Kim HJ and Kim HH: A CTGF-RUNX2-RANKL axis in breast and
prostate cancer cells promotes tumor progression in bone. J Bone
Miner Res. 35:155–166. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ma F, Xie Y, Lei Y, Kuang Z and Liu X: The
microRNA-130a-5p/RUNX2/STK32A network modulates tumor invasive and
metastatic potential in non-small cell lung cancer. BMC Cancer.
20:5802020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wu CY, Li L, Chen SL, Yang X, Zhang CZ and
Cao Y: A Zic2/Runx2/NOLC1 signaling axis mediates tumor growth and
metastasis in clear cell renal cell carcinoma. Cell Death Dis.
12:3192021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Cohen-Solal KA, Boregowda RK and Lasfar A:
RUNX2 and the PI3K/AKT axis reciprocal activation as a driving
force for tumor progression. Mol Cancer. 14:1372015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tandon M, Gokul K, Ali SA, Chen Z, Lian J,
Stein GS and Pratap J: Runx2 mediates epigenetic silencing of the
bone morphogenetic protein-3B (BMP-3B/GDF10) in lung cancer cells.
Mol Cancer. 11:272012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Pranavkrishna S, Sanjeev G, Akshaya RL,
Rohini M and Selvamurugan N: A computational approach on studying
the regulation of TGF-β1-stimulated Runx2 expression by MicroRNAs
in human breast cancer cells. Comput Biol Med. 137:1048232021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Vishal M, Swetha R, Thejaswini G, Arumugam
B and Selvamurugan N: Role of Runx2 in breast cancer-mediated bone
metastasis. Int J Biol Macromol. 99:608–614. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Fang Y, Xue Z, Zhao L, Yang X, Yang Y,
Zhou X, Feng S and Chen K: Calycosin stimulates the osteogenic
differentiation of rat calvarial osteoblasts by activating the
IGF1R/PI3K/Akt signaling pathway. Cell Biol Int. 43:323–332. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tandon M, Othman AH, Ashok V, Stein GS and
Pratap J: The role of Runx2 in facilitating autophagy in metastatic
breast cancer cells. J Cell Physiol. 233:559–571. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Schneider JG, Amend SR and Weilbaecher KN:
Integrins and bone metastasis: Integrating tumor cell and stromal
cell interactions. Bone. 48:54–65. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li XQ, Lu JT, Tan CC, Wang QS and Feng YM:
RUNX2 promotes breast cancer bone metastasis by increasing integrin
α5-mediated colonization. Cancer Lett. 380:78–86. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Si W, Zhou J, Zhao Y, Zheng J and Cui L:
SET7/9 promotes multiple malignant processes in breast cancer
development via RUNX2 activation and is negatively regulated by
TRIM21. Cell Death Dis. 11:1512020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Morikawa M, Derynck R and Miyazono K:
TGF-β and the TGF-β family: Context-dependent roles in cell and
tissue physiology. Cold Spring Harb Perspect Biol. 8:a0218732016.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Larson C, Oronsky B, Carter CA, Oronsky A,
Knox SJ, Sher D and Reid TR: TGF-beta: A master immune regulator.
Expert Opin Ther Targets. 24:427–438. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Li XQ, Du X, Li DM, Kong PZ, Sun Y, Liu
PF, Wang QS and Feng YM: ITGBL1 is a Runx2 transcriptional target
and promotes breast cancer bone metastasis by activating the TGFβ
signaling pathway. Cancer Res. 75:3302–3313. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Taipaleenmäki H, Browne G, Akech J, Zustin
J, van Wijnen AJ, Stein JL, Hesse E, Stein GS and Lian JB:
Targeting of Runx2 by miR-135 and miR-203 impairs progression of
breast cancer and metastatic bone disease. Cancer Res.
75:1433–1444. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Croset M, Pantano F, Kan CWS, Bonnelye E,
Descotes F, Alix-Panabières C, Lecellier CH, Bachelier R, Allioli
N, Hong SS, et al: miRNA-30 family members inhibit breast cancer
invasion, osteomimicry, and bone destruction by directly targeting
multiple bone metastasis-associated genes. Cancer Res.
78:5259–5273. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhao P, Guan H, Dai Z, Ma Y, Zhao Y and
Liu D: Long noncoding RNA DLX6-AS1 promotes breast cancer
progression via miR-505-3p/RUNX2 axis. Eur J Pharmacol.
865:1727782019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Rohini M, Gokulnath M, Miranda PJ and
Selvamurugan N: miR-590-3p inhibits proliferation and promotes
apoptosis by targeting activating transcription factor 3 in human
breast cancer cells. Biochimie. 154:10–18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Batlle E and Clevers H: Cancer stem cells
revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Babaei G, Aziz SGG and Jaghi NZZ: EMT,
cancer stem cells and autophagy; the three main axes of metastasis.
Biomed Pharmacother. 133:1109092021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Peitzsch C, Tyutyunnykova A, Pantel K and
Dubrovska A: Cancer stem cells: The root of tumor recurrence and
metastases. Semin Cancer Biol. 44:10–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ishiguro T, Ohata H, Sato A, Yamawaki K,
Enomoto T and Okamoto K: Tumor-derived spheroids: Relevance to
cancer stem cells and clinical applications. Cancer Sci.
108:283–289. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Baccelli I, Schneeweiss A, Riethdorf S,
Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bäuerle T,
Wallwiener M, et al: Identification of a population of blood
circulating tumor cells from breast cancer patients that initiates
metastasis in a xenograft assay. Nat Biotechnol. 31:539–544. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Butti R, Gunasekaran VP, Kumar TVS,
Banerjee P and Kundu GC: Breast cancer stem cells: Biology and
therapeutic implications. Int J Biochem Cell Biol. 107:38–52. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Dittmer J: Breast cancer stem cells:
Features, key drivers and treatment options. Semin Cancer Biol.
53:59–74. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Katoh M: Canonical and non-canonical WNT
signaling in cancer stem cells and their niches: Cellular
heterogeneity, omics reprogramming, targeted therapy and tumor
plasticity (review). Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ibrahim SA, Gadalla R, El-Ghonaimy EA,
Samir O, Mohamed HT, Hassan H, Greve B, El-Shinawi M, Mohamed MM
and Götte M: Syndecan-1 is a novel molecular marker for triple
negative inflammatory breast cancer and modulates the cancer stem
cell phenotype via the IL-6/STAT3, Notch and EGFR signaling
pathways. Mol Cancer. 16:572017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Colacino JA, Azizi E, Brooks MD, Harouaka
R, Fouladdel S, McDermott SP, Lee M, Hill D, Madden J, Boerner J,
et al: Heterogeneity of human breast stem and progenitor cells as
revealed by transcriptional profiling. Stem Cell Reports.
10:1596–1609. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu
Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, et al:
Breast cancer stem cells transition between epithelial and
mesenchymal states reflective of their normal counterparts. Stem
Cell Reports. 2:78–91. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zöller M: CD44: Can a cancer-initiating
cell profit from an abundantly expressed molecule? Nat Rev Cancer.
11:254–267. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Vikram R, Chou WC, Hung SC and Shen CY:
Tumorigenic and metastatic role of
CD44−/low/CD24−/low cells in luminal breast
cancer. Cancers (Basel). 12:12392020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yan X, Han D, Chen Z, Han C, Dong W, Han
L, Zou L, Zhang J, Liu Y and Chai J: RUNX2 interacts with BRG1 to
target CD44 for promoting invasion and migration of colorectal
cancer cells. Cancer Cell Int. 20:5052020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Knutson TP, Truong TH, Ma S, Brady NJ,
Sullivan ME, Raj G, Schwertfeger KL and Lange CA:
Posttranslationally modified progesterone receptors direct
ligand-specific expression of breast cancer stem cell-associated
gene programs. J Hematol Oncol. 10:892017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Valenti MT, Serafini P, Innamorati G, Gili
A, Cheri S, Bassi C and Dalle Carbonare L: Runx2 expression: A
mesenchymal stem marker for cancer. Oncol Lett. 12:4167–4172. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Fritz AJ, Hong D, Boyd J, Kost J, Finstaad
KH, Fitzgerald MP, Hanna S, Abuarqoub AH, Malik M, Bushweller J, et
al: RUNX1 and RUNX2 transcription factors function in opposing
roles to regulate breast cancer stem cells. J Cell Physiol.
235:7261–7272. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Muley H, Fadó R, Rodriguez-Rodriguez R and
Casals N: Drug uptake-based chemoresistance in breast cancer
treatment. Biochem Pharmacol. 177:1139592020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Dingwall S, Lee JB, Guezguez B, Fiebig A,
McNicol J, Boreham D, Collins TJ and Bhatia M: Neoplastic human
embryonic stem cells as a model of radiation resistance of human
cancer stem cells. Oncotarget. 6:22258–22269. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Najafi M, Mortezaee K and Majidpoor J:
Cancer stem cell (CSC) resistance drivers. Life Sci.
234:1167812019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Huang T, Song X, Xu D, Tiek D, Goenka A,
Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer
initiation, progression, and therapy resistance. Theranostics.
10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Garcia-Mayea Y, Mir C, Masson F, Paciucci
R and LLeonart ME: Insights into new mechanisms and models of
cancer stem cell multidrug resistance. Semin Cancer Biol.
60:166–180. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Smith AG and Macleod KF: Autophagy, cancer
stem cells and drug resistance. J Pathol. 247:708–718. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Pece S, Tosoni D, Confalonieri S, Mazzarol
G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG and Di Fiore
PP: Biological and molecular heterogeneity of breast cancers
correlates with their cancer stem cell content. Cell. 140:62–73.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Phillips TM, McBride WH and Pajonk F: The
response of CD24(−/low)/CD44+ breast cancer-initiating cells to
radiation. J Natl Cancer Inst. 98:1777–1785. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ryoo IG, Choi BH and Kwak MK: Activation
of NRF2 by p62 and proteasome reduction in sphere-forming breast
carcinoma cells. Oncotarget. 6:8167–8184. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Bai J, Chen WB, Zhang XY, Kang XN, Jin LJ,
Zhang H and Wang ZY: HIF-2α regulates CD44 to promote cancer stem
cell activation in triple-negative breast cancer via PI3K/AKT/mTOR
signaling. World J Stem Cells. 12:87–99. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Bai X, Ni J, Beretov J, Graham P and Li Y:
Cancer stem cell in breast cancer therapeutic resistance. Cancer
Treat Rev. 69:152–163. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Leccia F, Del Vecchio L, Mariotti E, Di
Noto R, Morel AP, Puisieux A, Salvatore F and Ansieau S: ABCG2, a
novel antigen to sort luminal progenitors of BRCA1- breast cancer
cells. Mol Cancer. 13:2132014. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Sadikovic B, Thorner P, Chilton-Macneill
S, Martin JW, Cervigne NK, Squire J and Zielenska M: Expression
analysis of genes associated with human osteosarcoma tumors shows
correlation of RUNX2 overexpression with poor response to
chemotherapy. BMC Cancer. 10:2022010. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Roos A, Satterfield L, Zhao S, Fuja D,
Shuck R, Hicks MJ, Donehower LA and Yustein JT: Loss of Runx2
sensitises osteosarcoma to chemotherapy-induced apoptosis. Br J
Cancer. 113:1289–1297. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Sugimoto H, Nakamura M, Yoda H, Hiraoka K,
Shinohara K, Sang M, Fujiwara K, Shimozato O, Nagase H and Ozaki T:
Silencing of RUNX2 enhances gemcitabine sensitivity of
p53-deficient human pancreatic cancer AsPC-1 cells through the
stimulation of TAp63-mediated cell death. Cell Death Discov.
1:150102015. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Ozaki T, Nakamura M, Ogata T, Sang M, Yoda
H, Hiraoka K, Sang M and Shimozato O: Depletion of pro-oncogenic
RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated
pancreatic cancer Panc-1 cells through the induction of
pro-apoptotic TAp63. Oncotarget. 7:71937–71950. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Jeselsohn R, Cornwell M, Pun M, Buchwalter
G, Nguyen M, Bango C, Huang Y, Kuang Y, Paweletz C, Fu X, et al:
Embryonic transcription factor SOX9 drives breast cancer endocrine
resistance. Proc Natl Acad Sci USA. 114:E4482–E4491. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Geter PA, Ernlund AW, Bakogianni S, Alard
A, Arju R, Giashuddin S, Gadi A, Bromberg J and Schneider RJ:
Hyperactive mTOR and MNK1 phosphorylation of eIF4E confer tamoxifen
resistance and estrogen independence through selective mRNA
translation reprogramming. Genes Dev. 31:2235–2249. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Othman A, Winogradzki M, Patel S, Holmes
W, Blank A and Pratap J: The role of Runx2 in microtubule
acetylation in bone metastatic breast cancer cells. Cancers
(Basel). 14:34362022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wang XX, Ye FG, Zhang J, Li JJ, Chen QX,
Lin PY and Song CG: Serum miR-4530 sensitizes breast cancer to
neoadjuvant chemotherapy by suppressing RUNX2. Cancer Manag Res.
10:4393–4400. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Huang L, Zhang L and Chen X: Updated
review of advances in microRNAs and complex diseases: Taxonomy,
trends and challenges of computational models. Brief Bioinform.
23:bbac3582022. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Chen X, Xie D, Zhao Q and You ZH:
MicroRNAs and complex diseases: From experimental results to
computational models. Brief Bioinform. 20:515–539. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Chen X, Yan CC, Zhang X and You ZH: Long
non-coding RNAs and complex diseases: From experimental results to
computational models. Brief Bioinform. 18:558–576. 2017.PubMed/NCBI
|
|
126
|
Wang CC, Han CD, Zhao Q and Chen X:
Circular RNAs and complex diseases: From experimental results to
computational models. Brief Bioinform. 22:bbab2862021. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhao W, Geng D, Li S, Chen Z and Sun M:
LncRNA HOTAIR influences cell growth, migration, invasion, and
apoptosis via the miR-20a-5p/HMGA2 axis in breast cancer. Cancer
Med. 7:842–855. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Xu J, Wu KJ, Jia QJ and Ding XF: Roles of
miRNA and lncRNA in triple-negative breast cancer. J Zhejiang Univ
Sci B. 21:673–689. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Kong X, Duan Y, Sang Y, Li Y, Zhang H,
Liang Y, Liu Y, Zhang N and Yang Q: LncRNA-CDC6 promotes breast
cancer progression and function as ceRNA to target CDC6 by sponging
microRNA-215. J Cell Physiol. 234:9105–9117. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Sang Y, Chen B, Song X, Li Y, Liang Y, Han
D, Zhang N, Zhang H, Liu Y, Chen T, et al: circRNA_0025202
regulates tamoxifen sensitivity and tumor progression via
regulating the miR-182-5p/FOXO3a axis in breast cancer. Mol Ther.
27:1638–1652. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Yin X, Wang P, Yang T, Li G, Teng X, Huang
W and Yu H: Identification of key modules and genes associated with
breast cancer prognosis using WGCNA and ceRNA network analysis.
Aging (Albany NY). 13:2519–2538. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Joshi H and Press MF: Molecular oncology
of breast cancer. The Breast. Elsevier; Amsterdam, The Netherlands:
pp. pp282–307.e5. 2018, Available online:. https://www.sciencedirect.com/science/article/pii/B978032335955900022230–May.
2021 View Article : Google Scholar
|
|
133
|
Dzobo K and Sinkala M: Cancer stem cell
marker CD44 plays multiple key roles in human cancers: immune
suppression/evasion, drug resistance, epithelial-mesenchymal
transition, and metastasis. OMICS. 25:313–332. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Fillmore C and Kuperwasser C: Human breast
cancer stem cell markers CD44 and CD24: Enriching for cells with
functional properties in mice or in man? Breast Cancer Res.
9:3032007. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Tomita H, Tanaka K, Tanaka T and Hara A:
Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget.
7:11018–11032. 2016. View Article : Google Scholar : PubMed/NCBI
|