You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Quirke P, Williams GT, Ectors N, Ensari A, Piard F and Nagtegaal I: The future of the TNM staging system in colorectal cancer: Time for a debate? Lancet Oncol. 8:651–657. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Amin MB, Edge SB, Greene FL, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, et al: AJCC Cancer Staging Manual. 8th edition. Springer; New York, NY: 2017, View Article : Google Scholar | |
|
Bae JM, Kim JH and Kang GH: Molecular subtypes of colorectal cancer and their clinicopathologic features, with an emphasis on the serrated neoplasia pathway. Arch Pathol Lab Med. 140:406–412. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
National Cancer Institute (NCI), . Director's Challenge: Toward a molecular classification of tumors [J/0L]. https://grants.nih.gov/grants/guide/rfa-files/RFA-CA-98-027.html1999. | |
|
Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Farkas L, et al: Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 19:329–359. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Benson AB, Venook AP, Al-Hawary MM, Arain MA, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Garrido-Laguna I, et al: NCCN guidelines insights: rectal cancer, version 6.2020. J Natl Compr Canc Netw. 18:806–815. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cohen R, Pudlarz T, Delattre JF, Colle R and André T: Molecular targets for the treatment of metastatic colorectal cancer. Cancers (Basel). 12:23502020. View Article : Google Scholar : PubMed/NCBI | |
|
Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, et al: The consensus molecular subtypes of colorectal cancer. Nat Med. 21:1350–1356. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lengauer C, Kinzler KW and Vogelstein B: Genetic instability in colorectal cancers. Nature. 386:623–627. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Miao T, Wang Z, Sang N, Xiong R and Cao S: Clinical significance of flow cytometric deoxyribonucleic acid measurements of deparaffinized specimens in bladder tumors. Eur Urol. 21:98–102. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Mitelman F, Johansson B, Mandahl N and Mertens F: Clinical significance of cytogenetic findings in solid tumors. Cancer Genet Cytogenet. 95:1–8. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng WJ, Liu GY, Xu J, Zhou XD, Zhang YE and Zhang N: Pathological characteristics, PCNA labeling index and DNA index in prognostic evaluation of patients with moderately differentiated hepatocellular carcinoma. World J Gastroenterol. 8:1040–1044. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Lengauer C, Kinzler KW and Vogelstein B: Genetic instabilities in human cancers. Nature. 396:643–649. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Watanabe T, Kobunai T, Yamamoto Y, Matsuda K, Ishihara S, Nozawa K, Yamada H, Hayama T, Inoue E, Tamura J, et al: Chromosomal instability (CIN) phenotype, CIN high or CIN low, predicts survival for colorectal cancer. J Clin Oncol. 30:2256–2264. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li JA, Liu BC, Song Y and Chen X: Cyclin A2 regulates symmetrical mitotic spindle formation and centrosome amplification in human colon cancer cells. Am J Transl Res. 10:2669–2676. 2018.PubMed/NCBI | |
|
Grady WM: Genomic instability and colon cancer. Cancer Metastasis Rev. 23:11–27. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Sunde L, Bisgaard ML, Soll-Johanning H, Jacobsen NO, Bolund L, Skouv J and Lynge E: Familial colorectal cancer, can it be identified by microsatellite instability and chromosomal instability? -A case-control study. Cancer Biomark. 5:197–205. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Cisyk AL, Nugent Z, Wightman RH, Singh H and McManus KJ: Characterizing microsatellite instability and chromosome instability in interval colorectal cancers. Neoplasia. 20:943–950. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cisyk AL, Penner-Goeke S, Lichtensztejn Z, Nugent Z, Wightman RH, Singh H and McManus KJ: Characterizing the prevalence of chromosome instability in interval colorectal cancer. Neoplasia. 17:306–316. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Walther A, Houlston R and Tomlinson I: Association between chromosomal instability and prognosis in colorectal cancer: A meta-analysis. Gut. 57:941–950. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK, et al: Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 553:467–472. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Orsetti B, Selves J, Bascoul-Mollevi C, Lasorsa L, Gordien K, Bibeau F, Massemin B, Paraf F, Soubeyran I, Hostein I, et al: Impact of chromosomal instability on colorectal cancer progression and outcome. BMC Cancer. 14:1212014. View Article : Google Scholar : PubMed/NCBI | |
|
Leber B, Maier B, Fuchs F, Chi J, Riffel P, Anderhub S, Wagner L, Ho AD, Salisbury JL, Boutros M and Krämer A: Proteins required for centrosome clustering in cancer cells. Sci Transl Med. 2:33ra382010. View Article : Google Scholar : PubMed/NCBI | |
|
Levine MS, Bakker B, Boeckx B, Moyett J, Lu J, Vitre B, Spierings DC, Lansdorp PM, Cleveland DW, Lambrechts D, et al: Centrosome amplification is sufficient to promote spontaneous tumorigenesis in mammals. Dev Cell. 40:313–322.e5. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Raab MS, Breitkreutz I, Anderhub S, Ronnest MH, Leber B, Larsen TO, Weiz L, Konotop G, Hayden PJ, Podar K, et al: GF-15, a novel inhibitor of centrosomal clustering, suppresses tumor cell growth in vitro and in vivo. Cancer Res. 72:5374–5385. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Warner SL, Bearss DJ, Han H and Von Hoff DD: Targeting Aurora-2 kinase in cancer. Mol Cancer Ther. 2:589–595. 2003.PubMed/NCBI | |
|
Chen G, Bradford WD, Seidel CW and Li R: Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature. 482:246–250. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Pazdur R, Lassere Y, Soh LT, Ajani JA, Bready B, Soo E, Sugarman S, Patt Y, Abbruzzese JL and Levin B: Phase II trial of docetaxel (Taxotere) in metastatic colorectal carcinoma. Ann Oncol. 5:468–470. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Swanton C, Tomlinson I and Downward J: Chromosomal instability, colorectal cancer and taxane resistance. Cell Cycle. 5:818–823. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Thibodeau SN, Bren G and Schaid D: Microsatellite instability in cancer of the proximal colon. Science. 260:816–819. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Aaltonen LA, Peltomäki P, Mecklin JP, Järvinen H, Jass JR, Green JS, Lynch HT, Watson P, Tallqvist G, Juhola M, et al: Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 54:1645–1648. 1994.PubMed/NCBI | |
|
Mori Y, Selaru FM, Sato F, Yin J, Simms LA, Xu Y, Olaru A, Deacu E, Wang S, Taylor JM, et al: The impact of microsatellite instability on the molecular phenotype of colorectal tumors. Cancer Res. 63:4577–4582. 2003.PubMed/NCBI | |
|
Seppälä TT, Böhm JP, Friman M, Lahtinen L, Väyrynen VM, Liipo TK, Ristimäki AP, Kairaluoma MV, Kellokumpu IH, Kuopio TH and Mecklin JP: Combination of microsatellite instability and BRAF mutation status for subtyping colorectal cancer. Br J Cancer. 112:1966–1975. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Evrard C, Messina S, Sefrioui D, Frouin É, Auriault ML, Chautard R, Zaanan A, Jaffrelot M, De La Fouchardière C, Aparicio T, et al: Heterogeneity of mismatch repair status and microsatellite instability between primary tumour and metastasis and its implications for immunotherapy in colorectal cancers. Int J Mol Sci. 23:44272022. View Article : Google Scholar : PubMed/NCBI | |
|
Kazama Y, Watanabe T, Kanazawa T, Tanaka J, Tanaka T and Nagawa H: Microsatellite instability in poorly differentiated adenocarcinomas of the colon and rectum: Relationship to clinicopathological features. J Clin Pathol. 60:701–704. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, Redston M and Gallinger S: Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med. 342:69–77. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Kim H, Jen J, Vogelstein B and Hamilton SR: Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol. 145:148–156. 1994.PubMed/NCBI | |
|
Montminy EM, Zhou M, Maniscalco L, Heda R, Kim MK, Patel SG, Wu XC, Itzkowitz SH and Karlitz JJ: Shifts in the proportion of distant stage early-onset colorectal adenocarcinoma in the United States. Cancer Epidemiol Biomarkers Prev. 31:334–341. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bailey CE, Hu CY, You YN, Bednarski BK, Rodriguez-Bigas MA, Skibber JM, Cantor SB and Chang GJ: Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975-2010. JAMA Surg. 150:17–22. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Z, Dixon JG, Fiskum JM, Parekh HD, Sinicrope FA, Yothers G, Allegra CJ, Wolmark N, Haller D, Schmoll HJ, et al: Clinicopathological and molecular characteristics of early-onset stage III colon adenocarcinoma: An analysis of the ACCENT database. J Natl Cancer Inst. 113:1693–1704. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Guastadisegni C, Colafranceschi M, Ottini L and Dogliotti E: Microsatellite instability as a marker of prognosis and response to therapy: A meta-analysis of colorectal cancer survival data. Eur J Cancer. 46:2788–2798. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Popat S, Hubner R and Houlston RS: Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 23:609–618. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
NCCN Clinical Practice Guideline in Oncology, . Version 3.2021. Available at. Colon. Cancer.NCCN.org | |
|
NCCN Clinical Practice Guideline in Oncology, . Version 1.2021. Available at. Rectal. Cancer.NCCN.org | |
|
Kim ST, Lee J, Park SH, Park JO, Lim HY, Kang WK, Kim JY, Kim YH, Chang DK, Rhee PL, et al: Clinical impact of microsatellite instability in colon cancer following adjuvant FOLFOX therapy. Cancer Chemother Pharmacol. 66:659–667. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Koenig JL, Toesca DAS, Harris JP, Tsai CJ, Haraldsdottir S, Lin AY, Pollom EL and Chang DT: Microsatellite instability and adjuvant chemotherapy in stage II colon cancer. Am J Clin Oncol. 42:573–580. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
De'Angelis GL, Bottarelli L, Azzoni C, De'Angelis N, Leandro G, Di Mario F, Gaiani F and Negri F: Microsatellite instability in colorectal cancer. Acta Biomed. 89:97–101. 2018. | |
|
Taieb J, Svrcek M, Cohen R, Basile D, Tougeron D and Phelip JM: Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur J Cancer. 175:136–157. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Coupez D, Hulo P, Touchefeu Y, Bossard C and Bennouna J: Pembrolizumab for the treatment of colorectal cancer. Expert Opin Biol Ther. 20:219–226. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, Manzuk L, Piha-Paul SA, Xu L, Zeigenfuss S, et al: Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: Results from the phase II KEYNOTE-158 study. J Clin Oncol. 37:1470–1478. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Le DT, Yoshino T, Jäger D, Andre T, Bendell JC, Wang R, Kang SP, Koshiji M and Diaz LA: KEYNOTE-164: Phase II study of pembrolizumab (MK-3475) for patients with previously treated, microsatellite instability-high advanced colorectal carcinoma. J Clin Oncol. 34 (Suppl 4):TPS7872016. View Article : Google Scholar | |
|
Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, Eder JP, Golan T, Le DT, Burtness B, et al: Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 17:717–726. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
O'Neil BH, Wallmark JM, Lorente D, Elez E, Raimbourg J, Gomez-Roca C, Ejadi S, Piha-Paul SA, Stein MN, Abdul Razak AR, et al: Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma. PLoS One. 12:e01898482017. View Article : Google Scholar : PubMed/NCBI | |
|
Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al: Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 18:1182–1191. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et al: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 357:409–413. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Diaz LA Jr, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C, Smith D, Garcia-Carbonero R, Benavides M, Gibbs P, et al: Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): Final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 23:659–670. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lenz HJ, Van Cutsem E, Luisa Limon M, Wong KYM, Hendlisz A, Aglietta M, Garcia-Alfonso P, Neyns B, Luppi G, Cardin DB, et al: First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: The phase II CheckMate 142 study. J Clin Oncol. 40:161–170. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Josef LH, Parikh AR, Spigel DR, Cohn AL, Yoshino T, Kochenderfer MD, Elez E, Shao SH, Deming DA, Holdridge RC, et al: Nivolumab (NIVO) + 5-fluorouracil/leucovorin/oxaliplatin (mFOLFOX6)/bevacizumab (BEV) versus mFOLFOX6/BEV for first-line (1L) treatment of metastatic colorectal cancer (mCRC): Phase 2 results from CheckMate 9X8. J Clin Oncol. 40 (Suppl 4):S82022. View Article : Google Scholar | |
|
Zhang C, Li D, Xiao B, Zhou C, Jiang W, Tang J, Li Y, Zhang R, Han K, Hou Z, et al: B2M and JAK1/2-mutated MSI-H colorectal carcinomas can benefit from Anti-PD-1 therapy. J Immunother. 45:187–193. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cohen R, Hain E, Buhard O, Guilloux A, Bardier A, Kaci R, Bertheau P, Renaud F, Bibeau F, Fléjou JF, et al: Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status. JAMA Oncol. 5:551–555. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, Miller R, Riaz N, Douillard JY, Andre F and Scarpa A: ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: A systematic review-based approach. Ann Oncol. 30:1232–1243. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hajirawala L and Barton JS: Diagnosis and management of lynch syndrome. Dis Colon Rectum. 62:403–405. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mouradov D, Domingo E, Gibbs P, Jorissen RN, Li S, Soo PY, Lipton L, Desai J, Danielsen HE, Oukrif D, et al: Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am J Gastroenterol. 108:1785–1793. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Goel A, Arnold CN, Niedzwiecki D, Chang DK, Ricciardiello L, Carethers JM, Dowell JM, Wasserman L, Compton C, Mayer RJ, et al: Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Res. 63:1608–1614. 2003.PubMed/NCBI | |
|
Sinicrope FA, Rego RL, Halling KC, Foster N, Sargent DJ, La Plant B, French AJ, Laurie JA, Goldberg RM, Thibodeau SN and Witzig TE: Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology. 131:729–737. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Diep CB, Thorstensen L, Meling GI, Skovlund E, Rognum TO and Lothe RA: Genetic tumor markers with prognostic impact in Dukes' stages B and C colorectal cancer patients. J Clin Oncol. 21:820–829. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Rowan A, Halford S, Gaasenbeek M, Kemp Z, Sieber O, Volikos E, Douglas E, Fiegler H, Carter N, Talbot I, et al: Refining molecular analysis in the pathways of colorectal carcinogenesis. Clin Gastroenterol Hepatol. 3:1115–1123. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Sobral D, Martins M, Kaplan S, Golkaram M, Salmans M, Khan N, Vijayaraghavan R, Casimiro S, Fernandes A, Borralho P, et al: Genetic and microenvironmental intra-tumor heterogeneity impacts colorectal cancer evolution and metastatic development. Commun Biol. 5:9372022. View Article : Google Scholar : PubMed/NCBI | |
|
Almendro V, Cheng YK, Randles A, Itzkovitz S, Marusyk A, Ametller E, Gonzalez-Farre X, Muñoz M, Russnes HG, Helland A, et al: Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity. Cell Rep. 6:514–527. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Morris LG, Riaz N, Desrichard A, Şenbabaoğlu Y, Hakimi AA, Makarov V, Reis-Filho JS and Chan TA: Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget. 7:10051–10063. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Stanta G and Bonin S: Overview on clinical relevance of intra-tumor heterogeneity. Front Med (Lausanne). 5:852018. View Article : Google Scholar : PubMed/NCBI | |
|
He WZ, Hu WM, Wang F, Rong YM, Yang L, Xie QK, Yang YZ, Jiang C, Qiu HJ, Lu JB, et al: Comparison of mismatch repair status between primary and matched metastatic sites in patients with colorectal cancer. J Natl Compr Canc Netw. 17:1174–1183. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Q, Yu T, Li L, Zhang Q, Zhang S, Li B, Li X, Xiao W and Liu G: Intraindividual tumor heterogeneity of mismatch repair status in metastatic colorectal cancer. Appl Immunohistochem Mol Morphol. 31:84–93. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Costello JF, Frühwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomäki P, Lang JC, et al: Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet. 24:132–138. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Gardiner-Garden M and Frommer M: CpG islands in vertebrate genomes. J Mol Biol. 196:261–282. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M and Schübeler D: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet. 39:457–466. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk CM, et al: Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 22:271–282. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Herman JG and Baylin SB: Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 349:2042–2054. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D, et al: CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 38:787–793. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Ogino S, Kawasaki T, Kirkner GJ, Kraft P, Loda M and Fuchs CS: Evaluation of markers for CpG island methylator phenotype (CIMP) in colorectal cancer by a large population-based sample. J Mol Diagn. 9:305–314. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Issa JP: CpG island methylator phenotype in cancer. Nat Rev Cancer. 4:988–993. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Samowitz WS: The CpG island methylator phenotype in colorectal cancer. J Mol Diagn. 9:281–283. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Bae JM, Kim MJ, Kim JH, Koh JM, Cho NY, Kim TY and Kang GH: Differential clinicopathological features in microsatellite instability-positive colorectal cancers depending on CIMP status. Virchows Arch. 459:55–63. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Weisenberger DJ, Levine AJ, Long TI, Buchanan DD, Walters R, Clendenning M, Rosty C, Joshi AD, Stern MC, LeMarchand L, et al: Association of the colorectal CpG island methylator phenotype with molecular features, risk factors, and family history. Cancer Epidemiol Biomarkers Prev. 24:512–519. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Meyerhardt JA, Loda M, Giovannucci EL and Fuchs CS: CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 58:90–96. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Deng Z, Lang X, Jiang J, Xie K, Lu S, Hu Q, Huo Y, Xiong X, Zhu N and Zhang W: Meta-analysis of the prognostic and predictive role of the CpG island methylator phenotype in colorectal cancer. Dis Markers. 2022:42548622022. View Article : Google Scholar : PubMed/NCBI | |
|
Cha Y, Kim KJ, Han SW, Rhee YY, Bae JM, Wen X, Cho NY, Lee DW, Lee KH, Kim TY, et al: Adverse prognostic impact of the CpG island methylator phenotype in metastatic colorectal cancer. Br J Cancer. 115:164–171. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jover R, Nguyen TP, Pérez-Carbonell L, Zapater P, Payá A, Alenda C, Rojas E, Cubiella J, Balaguer F, Morillas JD, et al: 5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer. Gastroenterology. 140:1174–1181. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Iacopetta B, Kawakami K and Watanabe T: Predicting clinical outcome of 5-fluorouracil-based chemotherapy for colon cancer patients: Is the CpG island methylator phenotype the 5-fluorouracil-responsive subgroup? Int J Clin Oncol. 13:498–503. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Jahan Z, Benthani FA, Currey N, Parker HW, Dahlstrom JE, Caldon CE and Kohonen-Corish MRJ: MCC gene silencing is a CpG island methylator phenotype-associated factor that predisposes colon cancer cells to irinotecan and olaparib. Cancers (Basel). 14:28592022. View Article : Google Scholar : PubMed/NCBI | |
|
Pawel K and Maria Małgorzata S: CpG island methylator phenotype-a hope for the future or a road to nowhere? Int J Mol Sci. 23:8302022. View Article : Google Scholar : PubMed/NCBI | |
|
Cancer Genome Atlas Network, . Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Andreyev HJ, Norman AR, Cunningham D, Oates J, Dix BR, Iacopetta BJ, Young J, Walsh T, Ward R, Hawkins N, et al: Kirsten ras mutations in patients with colorectal cancer: The ‘RASCAL II’ study. Br J Cancer. 85:692–696. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Sugimoto T, Ohta M, Ikenoue T, Yamada A, Tada M, Fujishiro M, Ogura K, Yamaji Y, Okamoto M, Kanai F, et al: Macroscopic morphologic subtypes of laterally spreading colorectal tumors showing distinct molecular alterations. Int J Cancer. 127:1562–1569. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, et al: Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 26:1626–1634. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, Donea S, Ludwig H, Schuch G, Stroh C, et al: Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 27:663–671. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, et al: Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 369:1023–1034. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lièvre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E, Ychou M, Bouché O, Landi B, Louvet C, et al: KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 26:374–379. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Osumi H, Shinozaki E, Suenaga M, Matsusaka S, Konishi T, Akiyoshi T, Fujimoto Y, Nagayama S, Fukunaga Y, Ueno M, et al: RAS mutation is a prognostic biomarker in colorectal cancer patients with metastasectomy. Int J Cancer. 139:803–811. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Stintzing S, Modest DP, Rossius L, Lerch MM, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, Heintges T, et al: FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab for metastatic colorectal cancer (FIRE-3): A post-hoc analysis of tumour dynamics in the final RAS wild-type subgroup of this randomised open-label phase 3 trial. Lancet Oncol. 17:1426–1434. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Van Cutsem E, Lenz HJ, Köhne CH, Heinemann V, Tejpar S, Melezinek I, Beier F, Stroh C, Rougier P, van Krieken JH and Ciardiello F: Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol. 33:692–700. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Venook AP, Niedzwiecki D, Lenz HJ, Innocenti F, Fruth B, Meyerhardt JA, Schrag D, Greene C, O'Neil BH, Atkins JN, et al: Effect of first-line chemotherapy combined with cetuximab or bevacizumab on overall survival in patients with KRAS wild-type advanced or metastatic colorectal cancer: A randomized clinical trial. JAMA. 317:2392–2401. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Taieb J, Le Malicot K, Penault-Llorca FM, Bouche O, Shi Q, Thibodeau SN, Tabernero J, Mini E, Goldberg RM, Folprecht G, et al: Prognostic value of BRAF V600E and KRAS exon 2 mutations in microsatellite stable (MSS), stage III colon cancers (CC) from patients (pts) treated with adjuvant FOLFOX+/-cetuximab: A pooled analysis of 3934 pts from the PETACC8 and N0147 trials. J Clin Oncol. 33 (Suppl 15):S35072015. View Article : Google Scholar | |
|
Stintzing S, Wirapati P, Lenz HJ, Neureiter D, Fischer von Weikersthal L, Decker T, Kiani A, Kaiser F, Al-Batran S, Heintges T, et al: Consensus molecular subgroups (CMS) of colorectal cancer (CRC) and first-line efficacy of FOLFIRI plus cetuximab or bevacizumab in the FIRE3 (AIO KRK-0306) trial. Ann Oncol. 30:1796–1803. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tejpar S, Bertagnolli M, Bosman F, Lenz HJ, Garraway L, Waldman F, Warren R, Bild A, Collins-Brennan D, Hahn H, et al: Prognostic and predictive biomarkers in resected colon cancer: Current status and future perspectives for integrating genomics into biomarker discovery. Oncologist. 15:390–404. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yamauchi M, Morikawa T, Kuchiba A, Imamura Y, Qian ZR, Nishihara R, Liao X, Waldron L, Hoshida Y, Huttenhower C, et al: Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut. 61:847–854. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Chen KH, Lin YL, Liau JY, Tsai JH, Tseng LH, Lin LI, Liang JT, Lin BR, Hung JS, Chang YL, et al: BRAF mutation may have different prognostic implications in early- and late-stage colorectal cancer. Med Oncol. 33:392016. View Article : Google Scholar : PubMed/NCBI | |
|
Van Cutsem E, Köhne CH, Láng I, Folprecht G, Nowacki MP, Cascinu S, Shchepotin I, Maurel J, Cunningham D, Tejpar S, et al: Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: Updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 29:2011–2019. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Venderbosch S, Nagtegaal ID, Maughan TS, Smith CG, Cheadle JP, Fisher D, Kaplan R, Quirke P, Seymour MT, Richman SD, et al: Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: A pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin Cancer Res. 20:5322–5330. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sinicrope FA, Shi Q, Allegra CJ, Smyrk TC, Thibodeau SN, Goldberg RM, Meyers JP, Pogue-Geile KL, Yothers G, Sargent DJ and Alberts SR: Association of DNA mismatch repair and mutations in BRAF and KRAS with survival after recurrence in stage III colon cancers: A secondary analysis of 2 randomized clinical trials. JAMA Oncol. 3:472–480. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Birgisson H, Edlund K, Wallin U, Påhlman L, Kultima HG, Mayrhofer M, Micke P, Isaksson A, Botling J, Glimelius B and Sundström M: Microsatellite instability and mutations in BRAF and KRAS are significant predictors of disseminated disease in colon cancer. BMC Cancer. 15:1252015. View Article : Google Scholar : PubMed/NCBI | |
|
Liao X, Lochhead P, Nishihara R, Morikawa T, Kuchiba A, Yamauchi M, Imamura Y, Qian ZR, Baba Y, Shima K, et al: Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 367:1596–1606. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Thorpe LM, Yuzugullu H and Zhao JJ: PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 15:7–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sepulveda AR, Hamilton SR, Allegra CJ, Grody W, Cushman-Vokoun AM, Funkhouser WK, Kopetz SE, Lieu C, Lindor NM, Minsky BD, et al: Molecular biomarkers for the evaluation of colorectal cancer: Guideline from the american society for clinical pathology, college of American pathologists, association for molecular pathology, and the American society of clinical oncology. J Clin Oncol. 35:1453–1486. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Akinleye A, Avvaru P, Furqan M, Song Y and Liu D: Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol. 6:882013. View Article : Google Scholar : PubMed/NCBI | |
|
Carew JS, Kelly KR and Nawrocki ST: Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol. 6:17–27. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Liao X, Morikawa T, Lochhead P, Imamura Y, Kuchiba A, Yamauchi M, Nosho K, Qian ZR, Nishihara R, Meyerhardt JA, et al: Prognostic role of PIK3CA mutation in colorectal cancer: Cohort study and literature review. Clin Cancer Res. 18:2257–2268. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Tougeron D, Sha D, Manthravadi S and Sinicrope FA: Aspirin and colorectal cancer: Back to the future. Clin Cancer Res. 20:1087–1094. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Valtorta E, Martino C, Sartore-Bianchi A, Penaullt-Llorca F, Viale G, Risio M, Rugge M, Grigioni W, Bencardino K, Lonardi S, et al: Assessment of a HER2 scoring system for colorectal cancer: Results from a validation study. Mod Pathol. 28:1481–1491. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tu J, Yu Y, Liu W and Chen S: Significance of human epidermal growth factor receptor 2 expression in colorectal cancer. Exp Ther Med. 9:17–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kavanagh DO, Chambers G, O'Grady L, Barry KM, Waldron RP, Bennani F, Eustace PW and Tobbia I: Is overexpression of HER-2 a predictor of prognosis in colorectal cancer? BMC Cancer. 9:12009. View Article : Google Scholar : PubMed/NCBI | |
|
Seo AN, Kwak Y, Kim DW, Kang SB, Choe G, Kim WH and Lee HS: HER2 status in colorectal cancer: Its clinical significance and the relationship between HER2 gene amplification and expression. PLoS One. 9:e985282014. View Article : Google Scholar : PubMed/NCBI | |
|
Sveen A, Kopetz S and Lothe RA: Biomarker-guided therapy for colorectal cancer: Strength in complexity. Nat Rev Clin Oncol. 17:11–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Siena S, Di Bartolomeo M, Raghav K, Masuishi T, Loupakis F, Kawakami H, Yamaguchi K, Nishina T, Fakih M, Elez E, et al: Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol. 22:779–789. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P, et al: Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. Lancet Oncol. 11:753–762. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Gil-Raga M, Jantus-Lewintre E, Gallach S, Giner-Bosch V, Frangi-Caregnato A, Safont-Aguilera MJ, Garde-Noguera J, Zorraquino-Pina E, Garcia-Martinez M and Camps-Herrero C: Molecular subtypes in early colorectal cancer associated with clinical features and patient prognosis. Clin Transl Oncol. 20:1422–1429. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ros J, Saoudi N, Salvà F, Baraibar I, Alonso G, Tabernero J and Elez E: Ongoing and evolving clinical trials enhancing future colorectal cancer treatment strategies. Expert Opin Investig Drugs. 31:235–247. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jass JR: Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 50:113–130. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
De Sousa E, Melo F, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, de Jong JH, de Boer OJ, van Leersum R, Bijlsma MF, et al: Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 19:614–618. 2013. View Article : Google Scholar | |
|
Ogino S and Goel A: Molecular classification and correlates in colorectal cancer. J Mol Diagn. 10:13–27. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Mangi FH, Shaikh TA, Soria D, Waryah AM, Ujjan ID, Qureshi JN and Syed BM: Novel molecular classification of colorectal cancer and correlation with survival. Saudi J Biol Sci. 29:3929–3936. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Singh MP, Rai S, Pandey A, Singh NK and Srivastava S: Molecular subtypes of colorectal cancer: An emerging therapeutic opportunity for personalized medicine. Genes Dis. 8:133–145. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ten Hoorn S, de Back TR, Sommeijer DW and Vermeulen L: Clinical value of consensus molecular subtypes in colorectal cancer: A systematic review and meta-analysis. J Natl Cancer Inst. 114:503–516. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Valenzuela G, Canepa J, Simonetti C, Solo de Zaldivar L, Marcelain K and González-Montero J: Consensus molecular subtypes of colorectal cancer in clinical practice: A translational approach. World J Clin Oncol. 12:1000–1008. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Allen WL, Dunne PD, McDade S, Scanlon E, Loughrey M, Coleman H, McCann C, McLaughlin K, Nemeth Z, Syed N, et al: Transcriptional subtyping and CD8 immunohistochemistry identifies poor prognosis stage II/III colorectal cancer patients who benefit from adjuvant chemotherapy. JCO Precis Oncol. 2018.PO.17.00241. 2018. View Article : Google Scholar | |
|
Li Y, Yao Q, Zhang L, Mo S, Cai S, Huang D and Peng J: Immunohistochemistry-based consensus molecular subtypes as a prognostic and predictive biomarker for adjuvant chemotherapy in patients with stage II colorectal cancer. Oncologist. 25:e1968–e1979. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Roepman P, Schlicker A, Tabernero J, Majewski I, Tian S, Moreno V, Snel MH, Chresta CM, Rosenberg R, Nitsche U, et al: Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int J Cancer. 134:552–562. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Dunne PD, O'Reilly PG, Coleman HG, Gray RT, Longley DB, Johnston PG, Salto-Tellez M, Lawler M and McArt DG: Stratified analysis reveals chemokine-like factor (CKLF) as a potential prognostic marker in the MSI-immune consensus molecular subtype CMS1 of colorectal cancer. Oncotarget. 7:36632–36644. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Borelli B, Fontana E, Giordano M, Antoniotti C, Lonardi S, Bergamo F, Pietrantonio F, Morano F, Tamburini E, Boccaccino A, et al: Prognostic and predictive impact of consensus molecular subtypes and CRCAssigner classifications in metastatic colorectal cancer: A translational analysis of the TRIBE2 study. ESMO Open. 6:1000732021. View Article : Google Scholar : PubMed/NCBI | |
|
Del Rio M, Mollevi C, Bibeau F, Vie N, Selves J, Emile JF, Roger P, Gongora C, Robert J, Tubiana-Mathieu N, et al: Molecular subtypes of metastatic colorectal cancer are associated with patient response to irinotecan-based therapies. Eur J Cancer. 76:68–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Okita A, Takahashi S, Ouchi K, Inoue M, Watanabe M, Endo M, Honda H, Yamada Y and Ishioka C: Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget. 9:18698–18711. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yuki S, Gamoh M, Denda T, Takashima A, Takahashi S, Nakamura M, Ohori H, Yamaguchi T, Kobayashi Y, Baba H, et al: Analysis of consensus molecular subtypes (CMS) classification in the TRICOLORE trial: A randomized phase III trial of S-1 and irinotecan (IRI) plus bevacizumab (Bmab) versus mFOLFOX6 or CapeOX plus Bmab as first-line treatment for metastatic colorectal cancer (mCRC). J Clin Oncol. 38 (Suppl 4):S1692020. View Article : Google Scholar | |
|
Mooi JK, Wirapati P, Asher R, Lee CK, Savas P, Price TJ, Townsend A, Hardingham J, Buchanan D, Williams D, et al: The prognostic impact of consensus molecular subtypes (CMS) and its predictive effects for bevacizumab benefit in metastatic colorectal cancer: Molecular analysis of the AGITG MAX clinical trial. Ann Oncol. 29:2240–2246. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lenz HJ, Ou FS, Venook AP, Hochster HS, Niedzwiecki D, Goldberg RM, Mayer RJ, Bertagnolli MM, Blanke CD, Zemla T, et al: Impact of consensus molecular subtype on survival in patients with metastatic colorectal cancer: Results from CALGB/SWOG 80405 (alliance). J Clin Oncol. 37:1876–1885. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Aderka D, Stintzing S and Heinemann V: Explaining the unexplainable: Discrepancies in results from the CALGB/SWOG 80405 and FIRE-3 studies. Lancet Oncol. 20:e274–e283. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lan Y, Zhang D, Xu C, Hance KW, Marelli B, Qi J, Yu H, Qin G, Sircar A, Hernández VM, et al: Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci Transl Med. 10:eaan54882018. View Article : Google Scholar : PubMed/NCBI | |
|
Mehrvarz Sarshekeh A, Lam M, Zorrilla IR, Holliday EB, Das P, Kee BK, Overman MJ, Parseghian CM, Shen JPYC, Tam A, et al: Consensus molecular subtype (CMS) as a novel integral biomarker in colorectal cancer: A phase II trial of bintrafusp alfa in CMS4 metastatic CRC. J Clin Oncol. 38 (15 Suppl):S40842020. View Article : Google Scholar | |
|
Eisenberg D, Marcotte EM, Xenarios I and Yeates TO: Protein function in the post-genomic era. Nature. 405:823–826. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S and Bork P: Comparative assessment of large-scale data sets of protein-protein interactions. Nature. 417:399–403. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Barbieri I and Kouzarides T: Role of RNA modifications in cancer. Nat Rev Cancer. 20:303–322. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Eisenberg E: Proteome diversification by RNA editing. Methods Mol Biol. 2181:229–251. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, et al: Proteogenomic characterization of human colon and rectal cancer. Nature. 513:382–387. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Sun YD, Yu GY, Cui JR, Lou Z, Zhang H, Huang Y, Bai CG, Deng LL, Liu P, et al: Integrated omics of metastatic colorectal cancer. Cancer Cell. 38:734–747.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J and Cervantes A: Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin. 72:372–401. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang W, Kandimalla R, Huang H, Zhu L, Li Y, Gao F, Goel A and Wang X: Molecular subtyping of colorectal cancer: Recent progress, new challenges and emerging opportunities. Semin Cancer Biol. 55:37–52. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Trinh A, Trumpi K, De Sousa EMF, Wang X, de Jong JH, Fessler E, Kuppen PJ, Reimers MS, Swets M, Koopman M, et al: Practical and robust identification of molecular subtypes in colorectal cancer by immunohistochemistry. Clin Cancer Res. 23:387–398. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Banias L, Jung I, Chiciudean R and Gurzu S: From dukes-MAC staging system to molecular classification: Evolving concepts in colorectal cancer. Int J Mol Sci. 23:94552022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen G, Yang Z, Eshleman JR, Netto GJ and Lin MT: Molecular diagnostics for precision medicine in colorectal cancer: Current status and future perspective. Biomed Res Int. 2016:98506902016. View Article : Google Scholar : PubMed/NCBI | |
|
Drier Y and Domany E: Do two machine-learning based prognostic signatures for breast cancer capture the same biological processes? PLoS One. 6:e177952011. View Article : Google Scholar : PubMed/NCBI | |
|
Ein-Dor L, Kela I, Getz G, Givol D and Domany E: Outcome signature genes in breast cancer: Is there a unique set? Bioinformatics. 21:171–178. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Haury AC, Gestraud P and Vert JP: The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures. PLoS One. 6:e282102011. View Article : Google Scholar : PubMed/NCBI | |
|
Huang S, Chaudhary K and Garmire LX: More is better: Recent progress in multi-omics data integration methods. Front Genet. 8:842017. View Article : Google Scholar : PubMed/NCBI | |
|
Vucic EA, Thu KL, Robison K, Rybaczyk LA, Chari R, Alvarez CE and Lam WL: Translating cancer ‘omics’ to improved outcomes. Genome Res. 22:188–195. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Akbani R, Ng PK, Werner HM, Shahmoradgoli M, Zhang F, Ju Z, Liu W, Yang JY, Yoshihara K, Li J, et al: A pan-cancer proteomic perspective on the cancer genome atlas. Nat Commun. 5:38872014. View Article : Google Scholar : PubMed/NCBI | |
|
Cancer Genome Atlas Research Network, . Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, Shmulevich I, Sander C and Stuart JM: The cancer genome atlas pan-cancer analysis project. Nat Genet. 45:1113–1120. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Robertson AG, Kim J, Al-Ahmadie H, Bellmunt J, Guo G, Cherniack AD, Hinoue T, Laird PW, Hoadley KA, Akbani R, et al: Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 171:540–556.e25. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Suo C, Hrydziuszko O, Lee D, Pramana S, Saputra D, Joshi H, Calza S and Pawitan Y: Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Bioinformatics. 31:2607–2613. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bertrand D, Chng KR, Sherbaf FG, Kiesel A, Chia BK, Sia YY, Huang SK, Hoon DS, Liu ET, Hillmer A and Nagarajan N: Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Res. 43:e442015. View Article : Google Scholar : PubMed/NCBI | |
|
Pavel AB, Sonkin D and Reddy A: Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity. BMC Syst Biol. 10:162016. View Article : Google Scholar : PubMed/NCBI |