1
|
Ritter J and Bielack SS: Osteosarcoma. Ann
Oncol. 21 (Suppl 7):vii320–vii325. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fletcher CDM, Unni KK and Mertens F:
Osteogenic tumours: WHO Classification Tumours of Soft Tissue and
Bone. IARC Press; Lyon: 2002
|
3
|
Jaffe N: Osteosarcoma: Review of the past,
impact on the future. The American experience. Cancer Treatment and
Res. 152:239–262. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Moore DD and Luu HH: Osteosarcoma. Cancer
Treat Res. 162:65–92. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Shimizu T, Ishikawa T, Sugihara E,
Kuninaka S, Miyamoto T, Mabuchi Y, Matsuzaki Y, Tsunoda T, Miya F,
Morioka H, et al: c-MYC overexpression with loss of Ink4a/Arf
transforms bone marrow stromal cells into osteosarcoma accompanied
by loss of adipogenesis. Oncogene. 29:5687–5699. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shimizu T, Sugihara E, Yamaguchi-Iwai S,
Tamaki S, Koyama Y, Kamel W, Ueki A, Ishikawa T, Chiyoda T, Osuka
S, et al: IGF2 preserves osteosarcoma cell survival by creating an
autophagic state of dormancy that protects cells against
chemotherapeutic stress. Cancer Res. 74:6531–6541. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yamaguchi SI, Ueki A, Sugihara E, Onishi
N, Yaguchi T, Kawakami Y, Horiuchi K, Morioka H, Matsumoto M,
Nakamura M, et al: Synergistic antiproliferative effect of imatinib
and adriamycin in platelet-derived growth factor
receptor-expressing osteosarcoma cells. Cancer Sci. 106:875–882.
2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kamel WA, Sugihara E, Nobusue H,
Yamaguchi-Iwai S, Onishi N, Maki K, Fukuchi Y, Matsuo K, Muto A,
Saya H and Shimizu T: Simvastatin-induced apoptosis in osteosarcoma
cells: A key role of RhoA-AMPK/p38 MAPK signaling in antitumor
activity. Mol Cancer Ther. 16:182–192. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Shimizu T, Ishikawa T, Iwai S, Ueki A,
Sugihara E, Onishi N, Kuninaka S, Miyamoto T, Toyama Y, Ijiri H, et
al: Fibroblast growth factor-2 is an important factor that
maintains cellular immaturity and contributes to aggressiveness of
osteosarcoma. Mol Cancer Res. 10:454–468. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hilberg F, Roth GJ, Krssak M, Kautschitsch
S, Sommergruber W, Tontsch-Grunt U, Garin-Chesa P, Bader G, Zoephel
A, Quant J, et al: BIBF 1120: Triple angiokinase inhibitor with
sustained receptor blockade and good antitumor efficacy. Cancer
Res. 68:4774–4782. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Roth GJ, Heckel A, Colbatzky F, Handschuh
S, Kley J, Lehmann-Lintz T, Lotz R, Tontsch-Grunt U, Walter R and
Hilberg F: Design, synthesis, and evaluation of indolinones as
triple angiokinase inhibitors and the discovery of a highly
specific 6-methoxycarbonyl-substituted indolinone (BIBF 1120). J
Med Chem. 52:4466–4480. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wind S, Schmid U, Freiwald M, Marzin K,
Lotz R, Ebner T, Stopfer P and Dallinger C: Clinical
pharmacokinetics and pharmacodynamics of nintedanib. Clin
Pharmacokinet. 58:1131–1147. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Richeldi L, Costabel U, Selman M, Kim DS,
Hansell DM, Nicholson AG, Brown KK, Flaherty KR, Noble PW, Raghu G,
et al: Efficacy of a tyrosine kinase inhibitor in idiopathic
pulmonary fibrosis. New Engl J Med. 365:1079–1087. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Richeldi L, du Bois RM, Raghu G, Azuma A,
Brown KK, Costabel U, Cottin V, Flaherty KR, Hansell DM, Inoue Y,
et al: Efficacy and safety of nintedanib in idiopathic pulmonary
fibrosis. New Engl J Med. 370:2071–2082. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Reck M, Kaiser R, Mellemgaard A, Douillard
JY, Orlov S, Krzakowski M, von Pawel J, Gottfried M, Bondarenko I,
Liao M, et al: Docetaxel plus nintedanib versus docetaxel plus
placebo in patients with previously treated non-small-cell lung
cancer (LUME-Lung 1): A phase 3, double-blind, randomised
controlled trial. Lancet Oncol. 15:143–155. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kutluk Cenik B, Ostapoff K T, Gerber DE
and Brekken RA: BIBF 1120 (nintedanib), a triple angiokinase
inhibitor, induces hypoxia but not EMT and blocks progression of
preclinical models of lung and pancreatic cancer. Mol Cancer Ther.
12:992–1001. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Awasthi N and Schwartz RE: Profile of
nintedanib in the treatment of solid tumors: The evidence to date.
Onco Targets Ther. 8:3691–3701. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Awasthi N, Hinz S, Brekken RA, Schwarz MA
and Schwarz RE: Nintedanib, a triple angiokinase inhibitor,
enhances cytotoxic therapy response in pancreatic cancer. Cancer
Lett. 358:59–66. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Marqués M, Corral S, Sánchez-Díaz M, Del
Pozo N, Martínez de Villarreal J, Schweifer N, Zagorac I, Hilberg F
and Real FX: Tumor and stromal cell targeting with nintedanib and
alpelisib overcomes intrinsic bladder cancer resistance. Mol Cancer
Ther. 22:616–629. 2023. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu J, Gao J, Wang A, Jiang Z, Qi S, Qi Z,
Liu F, Yu K, Cao J, Chen C, et al: Nintedanib overcomes drug
resistance from upregulation of FGFR signalling and
imatinib-induced KIT mutations in gastrointestinal stromal tumours.
Mol Oncol. 16:1761–1774. 2022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gabasa M, Ikemori R, Hilberg F, Reguart N
and Alcaraz J: Nintedanib selectively inhibits the activation and
tumour-promoting effects of fibroblasts from lung adenocarcinoma
patients. Br J Cancer. 117:1128–1138. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yamanaka T, Harimoto N, Yokobori T,
Muranushi R, Hoshino K, Hagiwara K, Gantumur D, Handa T, Ishii N,
Tsukagoshi M, et al: Nintedanib inhibits intrahepatic
cholangiocarcinoma aggressiveness via suppression of cytokines
extracted from activated cancer-associated fibroblasts. Br J
Cancer. 122:986–994. 2020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kato R, Haratani K, Hayashi H, Sakai K,
Sakai H, Kawakami H, Tanaka K, Takeda M, Yonesaka K, Nishio K and
Nakagawa K: Nintedanib promotes antitumour immunity and shows
antitumour activity in combination with PD-1 blockade in mice:
Potential role of cancer-associated fibroblasts. Br J Cancer.
124:914–924. 2021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ledermann JA, Hackshaw A, Kaye S, Jayson
G, Gabra H, McNeish I, Earl H, Perren T, Gore M, Persic M, et al:
Randomized phase II placebo-controlled trial of maintenance therapy
using the oral triple angiokinase inhibitor BIBF 1120 after
chemotherapy for relapsed ovarian cancer. J Clin Oncol.
29:3798–3804. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Grosso F, Steele N, Novello S, Nowak AK,
Popat S, Greillier L, John T, Leighl NB, Reck M, Taylor P, et al:
Nintedanib plus pemetrexed/cisplatin in patients with malignant
pleural mesothelioma: Phase II results from the randomized,
placebo-controlled LUME-meso trial. J Clin Oncol. 35:3591–3600.
2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang W, Zhao JM, Lin J, Hu CZ, Zhang WB,
Yang WL, Zhang J, Zhang JW and Zhu J: Adaptive fibrogenic
reprogramming of osteosarcoma stem cells promotes metastatic
growth. Cell Rep. 24:1266–1277.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shimizu T, Kimura K, Sugihara E,
Yamaguchi-Iwai S, Nobusue H, Sampetrean O, Otsuki Y, Fukuchi Y,
Saitoh K, Kato K, et al: MEK inhibition preferentially suppresses
anchorage-independent growth in osteosarcoma cells and decreases
tumors in vivo. J Orthop Res. 39:2732–2743. 2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shimizu T, Sugihara E, Takeshima H,
Nobusue H, Yamaguchi R, Yamaguchi-Iwai S, Fukuchi Y, Ushijima T,
Muto A and Saya H: Depletion of R270C mutant p53 in osteosarcoma
attenuates cell growth but does not prevent invasion and metastasis
in vivo. Cells. 11:36142022. View Article : Google Scholar : PubMed/NCBI
|
29
|
Schneider CA, Rasband WS and Eliceiri KW:
NIH image to ImageJ: 25 Years of image analysis. Nat Methods.
9:671–675. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Johnson DE, O'Keefe RA and Grandis JR:
Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev
Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ha H, Debnath B and Neamati N: Role of the
CXCL8-CXCR1/2 axis in cancer and inflammatory diseases.
Theranostics. 7:1543–1588. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gross AC, Cam H, Phelps DA, Saraf AJ, Bid
HK, Cam M, London CA, Winget SA, Arnold MA, Brandolini L, et al:
IL-6 and CXCL8 mediate osteosarcoma-lung interactions critical to
metastasis. JCI Insight. 3:e997912018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sappino AP, Skalli O, Jackson B, Schürch W
and Gabbiani G: Smooth-muscle differentiation in stromal cells of
malignant and non-malignant breast tissues. Int J Cancer.
41:707–712. 1988. View Article : Google Scholar : PubMed/NCBI
|
34
|
Orimo A, Gupta PB, Sgroi DC,
Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL
and Weinberg RA: Stromal fibroblasts present in invasive human
breast carcinomas promote tumor growth and angiogenesis through
elevated SDF-1/CXCL12 secretion. Cell. 121:335–348. 2005.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Wollin L, Maillet I, Quesniaux V, Holweg A
and Ryffel B: Antifibrotic and anti-inflammatory activity of the
tyrosine kinase inhibitor nintedanib in experimental models of lung
fibrosis. J Pharmacol Exp Ther. 349:209–220. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hostettler KE, Zhong J, Papakonstantinou
E, Karakiulakis G, Tamm M, Seidel P, Sun Q, Mandal J, Lardinois D,
Lambers C and Roth M: Anti-fibrotic effects of nintedanib in lung
fibroblasts derived from patients with idiopathic pulmonary
fibrosis. Respir Res. 15:1572014. View Article : Google Scholar : PubMed/NCBI
|
37
|
Labrie M, Brugge JS, Mills GB and
Zervantonakis IK: Therapy resistance: Opportunities created by
adaptive responses to targeted therapies in cancer. Nat Rev Cancer.
22:323–339. 2022. View Article : Google Scholar : PubMed/NCBI
|
38
|
Bejarano L, Jordāo MJC and Joyce JA:
Therapeutic targeting of the tumor microenvironment. Cancer Discov.
11:933–959. 2021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Vail ME, Farnsworth RH, Hii L, Allen S,
Arora S, Anderson RL, Dickins RA, Orimo A, Wu SZ, Swarbrick A, et
al: Inhibition of EphA3 expression in tumour stromal cells
suppresses tumour growth and progression. Cancers (Basel).
15:46462023. View Article : Google Scholar : PubMed/NCBI
|
40
|
Albrengues J, Bertero T, Grasset E, Bonan
S, Maiel M, Bourget I, Philippe C, Herraiz Serrano C, Benamar S,
Croce O, et al: Epigenetic switch drives the conversion of
fibroblasts into proinvasive cancer-associated fibroblasts. Nat
Commun. 6:102042015. View Article : Google Scholar : PubMed/NCBI
|