|
1
|
Mertens F, Johansson B, Fioretos T and
Mitelman F: The emerging complexity of gene fusions in cancer. Nat
Rev Cancer. 15:371–381. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Folpe AL, Graham RP, Martinez A,
Schembri-Wismayer D, Boland J and Fritchie KJ: Mesenchymal
chondrosarcomas showing immunohistochemical evidence of
rhabdomyoblastic differentiation: A potential diagnostic pitfall.
Hum Pathol. 77:28–34. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Latysheva NS and Babu MM: Discovering and
understanding oncogenic gene fusions through data intensive
computational approaches. Nucleic Acids Res. 44:4487–4503. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mitelman F, Johansson B and Mertens F: The
impact of translocations and gene fusions on cancer causation. Nat
Rev Cancer. 7:233–245. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pugh TJ, Morozova O, Attiyeh EF,
Asgharzadeh S, Wei JS, Auclair D, Carter SL, Cibulskis K, Hanna M,
Kiezun A, et al: The genetic landscape of high-risk neuroblastoma.
Nat Genet. 45:279–284. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lobato MN, Metzler M, Drynan L, Forster A,
Pannell R and Rabbitts TH: Modeling chromosomal translocations
using conditional alleles to recapitulate initiating events in
human leukemias. J Natl Cancer Inst Monogr. 39:58–63. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Cocco E, Scaltriti M and Drilon A: NTRK
fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin
Oncol. 15:731–747. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Frenkel-Morgenstern M and Valencia A:
Novel domain combinations in proteins encoded by chimeric
transcripts. Bioinformatics. 28:i67–i74. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Padmavathi G, Roy NK, Bordoloi D, Monisha
J and Kunnumakkara AB: ‘Basic concepts of fusion genes and their
classification’ in fusion genes and cancer. (World scientific,
2016), doi:10.1142/9789813200944_000210.1142/9789813200944_0002.
17–58
|
|
10
|
Webb P, Nguyen P, Shinsako J, Anderson C,
Feng W, Nguyen MP, Chen D, Huang SM, Subramanian S, McKinerney E,
et al: Estrogen receptor activation function 1 works by binding
p160 coactivator proteins. Mol Endocrinol. 12:1605–1618. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kushner PJ, Agard D, Feng WJ, Lopez G,
Schiau A, Uht R, Webb P and Greene G: Oestrogen receptor function
at classical and alternative response elements. Novartis Found
Symp. 230:20–26. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rollins DA, Coppo M and Rogatsky I:
Minireview: Nuclear receptor coregulators of the p160 family:
Insights into inflammation and metabolism. Mol Endocrinol.
29:502–517. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yoshida H, Miyachi M, Sakamoto K, Ouchi K,
Yagyu S, Kikuchi K, Kuwahara Y, Tsuchiya K, Imamura T, Iehara T, et
al: PAX3-NCOA2 fusion gene has a dual role in promoting the
proliferation and inhibiting the myogenic differentiation of
rhabdomyosarcoma cells. Oncogene. 33:5601–5608. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yin H, Glass J and Blanchard KJ: MOZ-TIF2
repression of nuclear receptor-mediated transcription requires
multiple domains in MOZ and in the CID domain of TIF2. Mol Cancer.
6:512007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Goebel EA, Bonilla SH, Dong F, Dickson BC,
Hoang LN, Hardisson D, Lacambra MD, Lu FI, Fletcher CDM, Crum CP,
et al: Uterine tumor resembling ovarian sex cord tumor (UTROSCT): A
morphologic and molecular study of 26 cases confirms recurrent
NCOA1-3 rearrangement. Am J Surg Pathol. 44:30–42. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hagenbuchner J and Ausserlechner MJ:
Targeting transcription factors by small compounds-current
strategies and future implications. Biochem Pharmacol. 107:1–13.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Xu J and Li Q: Review of the in vivo
functions of the p160 steroid receptor coactivator family. Mol
Endocrinol. 17:1681–1692. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Xu J and O'Malley BW: Molecular mechanisms
and cellular biology of the steroid receptor coactivator (SRC)
family in steroid receptor function. Rev Endocr Metab Disord.
3:185–192. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hultqvist G, Åberg E, Camilloni C, Sundell
GN, Andersson E, Dogan J, Chi CN, Vendruscolo M and Jemth P:
Emergence and evolution of an interaction between intrinsically
disordered proteins. Elife. 6:e160592017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Heery DM, Kalkhoven E, Hoare S and Parker
MG: A signature motif in transcriptional co-activators mediates
binding to nuclear receptors. Nature. 387:733–736. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lodrini M, Münz T, Coudevylle N,
Griesinger C, Becker S and Pfitzner E: P160/SRC/NCoA coactivators
form complexes via specific interaction of their PAS-B domain with
the CID/AD1 domain. Nucleic Acids Res. 36:1847–1860. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Szwarc MM, Kommagani R, Lessey BA and
Lydon JP: The p160/steroid receptor coactivator family: Potent
arbiters of uterine physiology and dysfunction. Biol Reprod.
91:1222014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang H, Yi X, Sun X, Yin N, Shi B, Wu H,
Wang D, Wu G and Shang Y: Differential gene regulation by the SRC
family of coactivators. Genes Dev. 18:1753–1765. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Litterst CM and Pfitzner E:
Transcriptional activation by STAT6 requires the direct interaction
with NCoA-1. J Biol Chem. 276:45713–45721. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Karlsson E, Lindberg A, Andersson E and
Jemth P: High affinity between CREBBP/p300 and NCOA evolved in
vertebrates. Protein Sci. 29:1687–1691. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Na SY, Lee SK, Han SJ, Choi HS, Im SY and
Lee JW: Steroid receptor coactivator-1 interacts with the p50
subunit and coactivates nuclear factor kappaB-mediated
transactivations. J Biol Chem. 273:10831–10834. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Beischlag TV, Wang S, Rose DW, Torchia J,
Reisz-Porszasz S, Muhammad K, Nelson WE, Probst MR, Rosenfeld MG
and Hankinson O: Recruitment of the NCoA/SRC-1/p160 family of
transcriptional coactivators by the aryl hydrocarbon receptor/aryl
hydrocarbon receptor nuclear translocator complex. Mol Cell Biol.
22:4319–4333. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Rohira AD and Lonard DM: Steroid receptor
coactivators present a unique opportunity for drug development in
hormone-dependent cancers. Biochem Pharmacol. 140:1–7. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Koh SS, Chen D, Lee YH and Stallcup MR:
Synergistic enhancement of nuclear receptor function by p160
coactivators and two coactivators with protein methyltransferase
activities. J Biol Chem. 276:1089–1098. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Spencer TE, Jenster G, Burcin MM, Allis
CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ and
O'Malley BW: Steroid receptor coactivator-1 is a histone
acetyltransferase. Nature. 389:194–198. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Drazic A, Myklebust LM, Ree R and Arnesen
T: The world of protein acetylation. Biochim Biophys Acta.
1864:1372–1401. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ding XF, Anderson CM, Ma H, Hong H, Uht
RM, Kushner PJ and Stallcup MR: Nuclear receptor-binding sites of
coactivators glucocorticoid receptor interacting protein 1 (GRIP1)
and steroid receptor coactivator 1 (SRC-1): Multiple motifs with
different binding specificities. Mol Endocrinol. 12:302–313. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kalkhoven E, Valentine JE, Heery DM and
Parker MG: Isoforms of steroid receptor co-activator 1 differ in
their ability to potentiate transcription by the oestrogen
receptor. EMBO J. 17:232–243. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kumar MB and Perdew GH: Nuclear receptor
coactivator SRC-1 interacts with the Q-rich subdomain of the AhR
and modulates its transactivation potential. Gene Expr. 8:273–286.
1999.PubMed/NCBI
|
|
35
|
Bevan CL, Hoare S, Claessens F, Heery DM
and Parker MG: The AF1 and AF2 domains of the androgen receptor
interact with distinct regions of SRC1. Mol Cell Biol.
19:8383–8392. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Varadi M, Anyango S, Deshpande M, Nair S,
Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, et al:
AlphaFold protein structure database: Massively expanding the
structural coverage of protein-sequence space with high-accuracy
models. Nucleic Acids Res. 50:D439–D444. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Razeto A, Ramakrishnan V, Litterst CM,
Giller K, Griesinger C, Carlomagno T, Lakomek N, Heimburg T,
Lodrini M, Pfitzner E and Becker S: Structure of the NCoA-1/SRC-1
PAS-B domain bound to the LXXLL motif of the STAT6 transactivation
domain. J Mol Biol. 336:319–329. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Russo L, Giller K, Pfitzner E, Griesinger
C and Becker S: Insight into the molecular recognition mechanism of
the coactivator NCoA1 by STAT6. Sci Rep. 7:168452017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Li S and Shang Y: Regulation of SRC family
coactivators by post-translational modifications. Cell Signal.
19:1101–1112. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Han SJ, Lonard B and O'Malley W:
Multi-modulation of nuclear receptor coactivators through
posttranslational modifications. Trends Endocrinol Metab. 20:8–15.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rowan BG, Garrison N, Weigel NL and
O'Malley BW: 8-Bromo-cyclic AMP induces phosphorylation of two
sites in SRC-1 that facilitate ligand-independent activation of the
chicken progesterone receptor and are critical for functional
cooperation between SRC-1 and CREB binding protein. Mol Cell Biol.
20:8720–8730. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Narayanan R, Adigun AA, Edwards DP and
Weigel NL: Cyclin-dependent kinase activity is required for
progesterone receptor function: Novel role for cyclin A/Cdk2 as a
progesterone receptor coactivator. Mol Cell Biol. 25:264–277. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ueda T, Mawji NR, Bruchovsky N and Sadar
MD: Ligand-independent activation of the androgen receptor by
interleukin-6 and the role of steroid receptor coactivator-1 in
prostate cancer cells. J Biol Chem. 277:38087–38094. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Rowan BG, Weigel NL and O'Malley BW:
Phosphorylation of steroid receptor coactivator-1: Identification
of the phosphorylation sites and phosphorylation through the
mitogen-activated protein kinase pathway. J Biol Chem.
275:4475–4483. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hoang T, Fenne IS, Cook C, Børud B, Bakke
M, Lien EA and Mellgren G: cAMP-dependent protein kinase regulates
ubiquitin-proteasome-mediated degradation and subcellular
localization of the nuclear receptor coactivator GRIP1. J Biol
Chem. 279:49120–49130. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Oh AS, Lahusen JT, Chien CD, Fereshteh MP,
Zhang X, Dakshanamurthy S, Xu J, Kagan BL, Wellstein A and Riegel
AT: Tyrosine phosphorylation of the nuclear receptor coactivator
AIB1/SRC-3 is enhanced by Abl kinase and is required for its
activity in cancer cells. Mol Cell Biol. 28:6580–6593. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Baumann CT, Ma H, Wolford R, Reyes JC,
Maruvada P, Lim C, Yen PM, Stallcup MR and Hager GL: The
glucocorticoid receptor interacting protein 1 (GRIP1) localizes in
discrete nuclear foci that associate with ND10 bodies and are
enriched in components of the 26S proteasome. Mol Endocrinol.
15:485–500. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chauchereau A, Amazit L, Quesne M,
Guiochon-Mantel A and Milgrom E: Sumoylation of the progesterone
receptor and of the steroid receptor coactivator SRC-1. J Biol
Chem. 278:12335–12343. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kotaja N, Karvonen U, Jänne OA and Palvimo
JJ: The nuclear receptor interaction domain of GRIP1 is modulated
by covalent attachment of SUMO-1. J Biol Chem. 277:30283–30288.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wu H, Sun L, Zhang Y, Chen Y, Shi B, Li R,
Wang Y, Liang J, Fan D, Wu G, et al: Coordinated regulation of AIB1
transcriptional activity by sumoylation and phosphorylation. J Biol
Chem. 281:21848–21856. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chen H, Lin RJ, Xie W, Wilpitz D and Evans
RM: Regulation of hormone-induced histone hyperacetylation and gene
activation via acetylation of an acetylase. Cell. 98:675–686. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Naeem H, Cheng D, Zhao Q, Underhill C,
Tini M, Bedford MT and Torchia J: The activity and stability of the
transcriptional coactivator p/CIP/SRC-3 are regulated by
CARM1-dependent methylation. Mol Cell Biol. 27:120–134. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
McKenna NJ and O'Malley BW: Combinatorial
control of gene expression by nuclear receptors and coregulators.
Cell. 108:465–474. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Voegel JJ, Heine MJ, Tini M, Vivat V,
Chambon P and Gronemeyer H: The coactivator TIF2 contains three
nuclear receptor-binding motifs and mediates transactivation
through CBP binding-dependent and -independent pathways. EMBO J.
17:507–519. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Johnson AB and Barton MC: Hypoxia-induced
and stress-specific changes in chromatin structure and function.
Mutat Res. 618:149–162. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang L, Motoi T, Khanin R, Olshen A,
Mertens F, Bridge J, Cin PD, Antonescu CR, Singer S, Hameed M, et
al: Identification of a novel, recurrent HEY1-NCOA2 fusion in
mesenchymal chondrosarcoma based on a genome-wide screen of
exon-level expression data. Genes Chromosomes Cancer. 51:127–139.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sumegi J, Streblow R, Frayer RW, Cin PD,
Rosenberg A, Meloni-Ehrig A and Bridge JA: Recurrent t(2;2) and
t(2;8) translocations in rhabdomyosarcoma without the canonical
PAX-FOXO1 fuse PAX3 to members of the nuclear receptor
transcriptional coactivator family. Genes Chromosomes Cancer.
49:224–236. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Bekers EM, Groenen PJTA, Verdijk MAJ,
Raaijmakers-van Geloof WL, Roepman P, Vink R, Gilhuijs NDB, van
Gorp JM, Bovée JVMG, Creytens DH, et al: Soft tissue angiofibroma:
Clinicopathologic, immunohistochemical and molecular analysis of 14
cases. Genes Chromosomes Cancer. 56:750–757. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Argani P, Reuter VE, Kapur P, Brown JE,
Sung YS, Zhang L, Williamson R, Francis G, Sommerville S, Swanson
D, et al: Novel MEIS1-NCOA2 gene fusions define a distinct
primitive spindle cell sarcoma of the kidney. Am J Surg Pathol.
42:1562–1570. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Piscuoglio S, Burke KA, Ng CK,
Papanastasiou AD, Geyer FC, Macedo GS, Martelotto LG, de Bruijn I,
De Filippo MR, Schultheis AM, et al: Uterine adenosarcomas are
mesenchymal neoplasms. J Pathol. 238:381–388. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Dickson BC, Childs TJ, Colgan TJ, Sung YS,
Swanson D, Zhang L and Antonescu CR: Uterine tumor resembling
ovarian sex cord tumor: A distinct entity characterized by
recurrent NCOA2/3 gene fusions. Am J Surg Pathol. 43:178–186. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Le Loarer F, Laffont S, Lesluyes T, Tirode
F, Antonescu C, Baglin AC, Delespaul L, Soubeyran I, Hostein I,
Pérot G, et al: Clinicopathologic and molecular features of a
series of 41 biphenotypic sinonasal sarcomas expanding their
molecular spectrum. Am J Surg Pathol. 43:747–754. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lacambra MD, Weinreb I, Demicco EG, Chow
C, Sung YS, Swanson D, To KF, Wong KC, Antonescu CR and Dickson BC:
PRRX-NCOA1/2 rearrangement characterizes a distinctive fibroblastic
neoplasm. Genes Chromosomes Cancer. 58:705–712. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wachtel M, Dettling M, Koscielniak E,
Stegmaier S, Treuner J, Simon-Klingenstein K, Bühlmann P, Niggli FK
and Schäfer BW: Gene expression signatures identify
rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23)
translocation fusing PAX3 to NCOA1. Cancer Res. 64:5539–5545. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bean GR, Anderson J, Sangoi AR, Krings G
and Garg K: DICER1 mutations are frequent in mullerian
adenosarcomas and are independent of rhabdomyosarcomatous
differentiation. Mod Pathol. 32:280–289. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
El Beaino M, Roszik J, Livingston JA, Wang
WL, Lazar AJ, Amini B, Subbiah V, Lewis V and Conley AP:
Mesenchymal chondrosarcoma: A review with emphasis on its
fusion-driven biology. Curr Oncol Rep. 20:372018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Schneiderman BA, Kliethermes SA and
Nystrom LM: Survival in mesenchymal chondrosarcoma varies based on
age and tumor location: A survival analysis of the SEER database.
Clin Orthop Relat Res. 475:799–805. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Brown RE and Boyle JL: Mesenchymal
chondrosarcoma: Molecular characterization by a proteomic approach,
with morphogenic and therapeutic implications. Ann Clin Lab Sci.
33:131–141. 2003.PubMed/NCBI
|
|
69
|
Fischer A and Gessler M: Delta-Notch-and
then? Protein interactions and proposed modes of repression by Hes
and Hey bHLH factors. Nucleic Acids Res. 35:4583–4596. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Swanson PE, Lillemoe TJ, Manivel JC and
Wick MR: Mesenchymal chondrosarcoma. An immunohistochemical study.
Arch Pathol Lab Med. 114:943–948. 1990.PubMed/NCBI
|
|
71
|
Qi W, Rosikiewicz W, Yin Z, Xu B, Jiang H,
Wan S, Fan Y, Wu G and Wang L: Genomic profiling identifies genes
and pathways dysregulated by HEY1-NCOA2 fusion and shines a light
on mesenchymal chondrosarcoma tumorigenesis. J Pathol. 257:579–592.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tepes PS, Segovia D, Jevtic S, Ramirez D,
Lyons SK and Sordella R: Patient-derived xenografts and in vitro
model show rationale for imatinib mesylate repurposing in
HEY1-NCoA2-driven mesenchymal chondrosarcoma. Lab Invest.
102:1038–1049. 2021. View Article : Google Scholar
|
|
73
|
de Jong Y, van Maldegem AM,
Marino-Enriquez A, de Jong D, Suijker J, Briaire-de Bruijn IH,
Kruisselbrink AB, Cleton-Jansen AM, Szuhai K, Gelderblom H, et al:
Inhibition of Bcl-2 family members sensitizes mesenchymal
chondrosarcoma to conventional chemotherapy: Report on a novel
mesenchymal chondrosarcoma cell line. Lab Invest. 96:1128–1137.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tanaka M, Homme M, Teramura Y, Kumegawa K,
Yamazaki Y, Yamashita K, Osato M, Maruyama R and Nakamura T:
HEY1-NCOA2 expression modulates chondrogenic differentiation and
induces mesenchymal chondrosarcoma in mice. JCI Insight.
8:e1602792023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Nakayama S, Nishio J, Aoki M, Koga K,
Nabeshima K and Yamamoto T: Angiofibroma of soft tissue: Current
status of pathology and genetics. Histol Histopathol. 37:717–722.
2022.PubMed/NCBI
|
|
76
|
Sugita S, Aoyama T, Kondo K, Keira Y,
Ogino J, Nakanishi K, Kaya M, Emori M, Tsukahara T and Nakajima H:
Diagnostic utility of NCOA2 fluorescence in situ hybridization and
Stat6 immunohistochemistry staining for soft tissue angiofibroma
and morphologically similar fibrovascular tumors. Hum Pathol.
45:1588–1596. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jin Y, Möller E, Nord KH, Mandahl N, Von
Steyern FV, Domanski HA, Mariño-Enríquez A, Magnusson L, Nilsson J,
Sciot R, et al: Fusion of the AHRR and NCOA2 genes through a
recurrent translocation t(5;8)(p15;q13) in soft tissue angiofibroma
results in upregulation of aryl hydrocarbon receptor target genes.
Genes Chromosomes Cancer. 51:510–520. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Uemura K, Komatsu M, Hara S, Kawamoto T,
Bitoh Y, Itoh T and Hirose T: CYP1A1 is a useful diagnostic marker
for angiofibroma of soft tissue. Am J Surg Pathol. 47:547–557.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yamashita K, Baba S, Togashi Y, Dobashi A,
Ae K, Matsumoto S, Tanaka M, Nakamura T and Takeuchi K:
Clinicopathologic and genetic characterization of angiofibroma of
soft tissue: A study of 12 cases including two cases with
AHRR::NCOA3 gene fusion. Histopathology. 83:57–66. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Deguchi K, Ayton PM, Carapeti M, Kutok JL,
Snyder CS, Williams IR, Cross NC, Glass CK, Cleary ML and Gilliland
DG: MOZ-TIF2-induced acute myeloid leukemia requires the MOZ
nucleosome binding motif and TIF2-mediated recruitment of CBP.
Cancer Cell. 3:259–271. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Carapeti M, Aguiar RC, Goldman JM and
Cross NC: A novel fusion between MOZ and the nuclear receptor
coactivator TIF2 in acute myeloid leukemia. Blood. 91:3127–3133.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Huntly BJ, Shigematsu H, Deguchi K, Lee
BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR,
et al: MOZ-TIF2, but not BCR-ABL, confers properties of leukemic
stem cells to committed murine hematopoietic progenitors. Cancer
Cell. 6:587–596. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Largeot A, Perez-Campo FM, Marinopoulou E,
Lie-a-Ling M, Kouskoff V and Lacaud G: Expression of the MOZ-TIF2
oncoprotein in mice represses senescence. Exp Hematol.
44:231–237.e234. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Shima H, Yamagata K, Aikawa Y, Shino M,
Koseki H, Shimada H and Kitabayashi I: Bromodomain-PHD finger
protein 1 is critical for leukemogenesis associated with MOZ-TIF2
fusion. Int J Hematol. 99:21–31. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tam WF, Hähnel PS, Schüler A, Lee BH,
Okabe R, Zhu N, Pante SV, Raffel G, Mercher T, Wernig G, et al:
STAT5 is crucial to maintain leukemic stem cells in acute
myelogenous leukemias induced by MOZ-TIF2. Cancer Res. 73:373–384.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Aikawa Y, Katsumoto T, Zhang P, Shima H,
Shino M, Terui K, Ito E, Ohno H, Stanley ER, Singh H, et al:
PU.1-mediated upregulation of CSF1R is crucial for leukemia stem
cell potential induced by MOZ-TIF2. Nat Med. 16:580–585. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Miyamoto R, Okuda H, Kanai A, Takahashi S,
Kawamura T, Matsui H, Kitamura T, Kitabayashi I, Inaba T and
Yokoyama A: Activation of CpG-rich promoters mediated by MLL drives
MOZ-rearranged leukemia. Cell Rep. 32:1082002020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Shima H, Takamatsu-Ichihara E, Shino M,
Yamagata K, Katsumoto T, Aikawa Y, Fujita S, Koseki H and
Kitabayashi I: Ring1A and Ring1B inhibit expression of Glis2 to
maintain murine MOZ-TIF2 AML stem cells. Blood. 131:1833–1845.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Cheung N, Fung TK, Zeisig BB, Holmes K,
Rane JK, Mowen KA, Finn MG, Lenhard B, Chan LC and So CW: Targeting
aberrant epigenetic networks mediated by PRMT1 and KDM4C in acute
myeloid leukemia. Cancer Cell. 29:32–48. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Skapek SX, Ferrari A, Gupta AA, Lupo PJ,
Butler E, Shipley J, Barr FG and Hawkins DS: Rhabdomyosarcoma. Nat
Rev Dis Primers. 5:12019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Sun X, Guo W, Shen JK, Mankin HJ, Hornicek
FJ and Duan Z: Rhabdomyosarcoma: Advances in molecular and cellular
biology. Sarcoma. 2015:2320102015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Alaggio R, Zhang L, Sung YS, Huang SC,
Chen CL, Bisogno G, Zin A, Agaram NP, LaQuaglia MP, Wexler LH and
Antonescu CR: A molecular study of pediatric spindle and sclerosing
rhabdomyosarcoma: Identification of novel and recurrent
VGLL2-related fusions in infantile cases. Am J Surg Pathol.
40:224–235. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mosquera JM, Sboner A, Zhang L,
Kitabayashi N, Chen CL, Sung YS, Wexler LH, LaQuaglia MP, Edelman
M, Sreekantaiah C, et al: Recurrent NCOA2 gene rearrangements in
congenital/infantile spindle cell rhabdomyosarcoma. Genes
Chromosomes Cancer. 52:538–550. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Whittle S, Venkatramani R, Schönstein A,
Pack SD, Alaggio R, Vokuhl C, Rudzinski ER, Wulf AL, Zin A, Gruver
JR, et al: Congenital spindle cell rhabdomyosarcoma: An
international cooperative analysis. Eur J Cancer. 168:56–64. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Jia M, Sun PL and Gao H: Uterine lesions
with sex cord-like architectures: A systematic review. Diagn
Pathol. 14:1292019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Schraag SM, Caduff R, Dedes KJ, Fink D and
Schmidt AM: Uterine tumors resembling ovarian sex cord
tumors-treatment, recurrence, pregnancy and brief review. Gynecol
Oncol Rep. 19:53–56. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Clement PB and Scully RE: Mullerian
adenosarcomas of the uterus with sex cord-like elements. A
clinicopathologic analysis of eight cases. Am J Clin Pathol.
91:664–672. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
McCluggage WG, Date A, Bharucha H and
Toner PG: Endometrial stromal sarcoma with sex cord-like areas and
focal rhabdoid differentiation. Histopathology. 29:369–374. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Boyraz B, Watkins JC, Young RH and Oliva
E: Uterine tumors resembling ovarian sex cord tumors: A
clinicopathologic study of 75 cases emphasizing features predicting
adverse outcome and differential diagnosis. Am J Surg Pathol.
47:234–247. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Lee CH, Kao YC, Lee WR, Hsiao YW, Lu TP,
Chu CY, Lin YJ, Huang HY, Hsieh TH, Liu YR, et al:
Clinicopathologic characterization of GREB1-rearranged uterine
sarcomas with variable sex-cord differentiation. Am J Surg Pathol.
43:928–942. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Devereaux KA, Kertowidjojo E, Natale K,
Ewalt MD, Soslow RA and Hodgson A: GTF2A1-NCOA2-associated uterine
tumor resembling ovarian sex cord tumor (UTROSCT) shows focal
rhabdoid morphology and aggressive behavior. Am J Surg Pathol.
45:1725–1728. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bi R, Yao Q, Ji G, Bai Q, Li A, Liu Z,
Cheng Y, Tu X, Yu L, Chang B, et al: Uterine tumor resembling
ovarian sex cord tumors: 23 Cases indicating molecular
heterogeneity with variable biological behavior. Am J Surg Pathol.
47:739–755. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Lu B, Xia Y, Chen J, Tang J, Shao Y and Yu
W: NCOA1/2/3 rearrangements in uterine tumor resembling ovarian sex
cord tumor: A clinicopathological and molecular study of 18 cases.
Hum Pathol. 135:65–75. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Xiong SP, Luo RZ, Wang F, Yang X, Lai JP,
Zhang C and Liu LL: PD-L1 expression, morphology, and molecular
characteristic of a subset of aggressive uterine tumor resembling
ovarian sex cord tumor and a literature review. J Ovarian Res.
16:1022023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bernasconi M, Remppis A, Fredericks WJ,
Rauscher FJ III and Schafer BW: Induction of apoptosis in
rhabdomyosarcoma cells through down-regulation of PAX proteins.
Proc Natl Acad Sci USA. 93:13164–13169. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Oh AS, Lahusen JT, Chien CD, Fereshteh MP,
Zhang X, Dakshanamurthy S, Xu J, Kagan BL, Wellstein A and Riegel
AT: Tyrosine phosphorylation of the nuclear receptor coactivator
AIB1/SRC-3 is enhanced by Abl kinase and is required for its
activity in cancer cells. Mol Cell Biol. 28:6580–6593. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Crooke ST, Liang XH, Baker BF and Crooke
RM: Antisense technology: A review. J Biol Chem. 296:1004162021.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Quemener AM, Bachelot L, Forestier A,
Donnou-Fournet E, Gilot D and Galibert MD: The powerful world of
antisense oligonucleotides: From bench to bedside. Wiley
Interdiscip Rev RNA. 11:e15942020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Katti A, Diaz BJ, Caragine CM, Sanjana NE
and Dow LE: CRISPR in cancer biology and therapy. Nat Rev Cancer.
22:259–279. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Martinez-Lage M, Puig-Serra P, Menendez P,
Torres-Ruiz R and Rodriguez-Perales S: CRISPR/Cas9 for cancer
therapy: Hopes and challenges. Biomedicines. 6:1052018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Martinez-Lage M, Torres-Ruiz R, Puig-Serra
P, Moreno-Gaona P, Martin MC, Moya FJ, Quintana-Bustamante O,
Garcia-Silva S, Carcaboso AM, Petazzi P, et al: In vivo CRISPR/Cas9
targeting of fusion oncogenes for selective elimination of cancer
cells. Nat Commun. 11:50602020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Chen ZH, Yu YP, Zuo ZH, Nelson JB,
Michalopoulos GK, Monga S, Liu S, Tseng G and Luo JH: Targeting
genomic rearrangements in tumor cells through Cas9-mediated
insertion of a suicide gene. Nat Biotechnol. 35:543–550. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Sun X, Gao H, Yang Y, He M, Wu Y, Song Y,
Tong Y and Rao Y: PROTACs: Great opportunities for academia and
industry. Signal Transduct Target Ther. 4:642019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Bekes M, Langley DR and Crews CM: PROTAC
targeted protein degraders: The past is prologue. Nat Rev Drug
Discov. 21:181–200. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Lee Y, Heo J, Jeong H, Hong KT, Kwon DH,
Shin MH, Oh M, Sable GA, Ahn GO, Lee JS, et al: Targeted
degradation of transcription coactivator SRC-1 through the N-degron
pathway. Angew Chem Int Ed Engl. 59:17548–17555. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Tan GZL, Saminathan SN, Chang KTE, Odoño
EG, Kuick CH, Chen H and Lee VKM: A rare case of congenital spindle
cell rhabdomyosarcoma with TEAD1-NCOA2 fusion: A subset of spindle
cell rhabdomyosarcoma with indolent behavior. Pathol Int.
70:234–236. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Avenarius MR, Miller CR, Arnold MA, Koo S,
Roberts R, Hobby M, Grossman T, Moyer Y, Wilson RK, Mardis ER, et
al: Genetic characterization of pediatric sarcomas by targeted RNA
sequencing. J Mol Diagn. 22:1238–1245. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Bennett JA, Lastra RR, Barroeta JE,
Parilla M, Galbo F, Wanjari P, Young RH, Krausz T and Oliva E:
Uterine tumor resembling ovarian sex cord stromal tumor (UTROSCT):
A series of 3 cases with extensive rhabdoid differentiation,
malignant behavior, and ESR1-NCOA2 fusions. Am J Surg Pathol.
44:1563–1572. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Panagopoulos I, Gorunova L, Viset T and
Heim S and Heim S: Gene fusions AHRR-NCOA2, NCOA2-ETV4, ETV4-AHRR,
P4HA2-TBCK, and TBCK-P4HA2 resulting from the translocations
t(5;8;17)(p15;q13;q21) and t(4;5)(q24;q31) in a soft tissue
angiofibroma. Oncol Rep. 36:2455–2462. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Teramura Y, Tanaka M, Yamazaki Y,
Yamashita K, Takazawa Y, Ae K, Matsumoto S, Nakayama T, Kaneko T,
Musha Y and Nakamura T: Identification of novel fusion genes in
bone and soft tissue sarcoma and their implication in the
generation of a mouse model. Cancers (Basel). 12:23452020.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zhou M, Gao L, Jing Y, Xu YY, Ding Y, Wang
N, Wang W, Li MY, Han XP, Sun JZ, et al: Detection of ETV6 gene
rearrangements in adult acute lymphoblastic leukemia. Ann Hematol.
91:1235–1243. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhuravleva J, Paggetti J, Martin L,
Hammann A, Solary E, Bastie JN and Delva L: MYST3/NCOA2-induced
acute myeloid leukemia in transgenic fish. Blood. 112:53292008.
View Article : Google Scholar
|
|
123
|
Esteyries S, Perot C, Adelaide J, Imbert
M, Lagarde A, Pautas C, Olschwang S, Birnbaum D, Chaffanet M and
Mozziconacci MJ: NCOA3, a new fusion partner for MOZ/MYST3 in M5
acute myeloid leukemia. Leukemia. 22:663–665. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Chang B, Bai Q, Liang L, Ge H and Yao Q:
Recurrent uterine tumors resembling ovarian sex-cord tumors with
the growth regulation by estrogen in breast cancer 1-nuclear
receptor coactivator 2 fusion gene: A case report and literature
review. Diagn Pathol. 15:1102020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Yu J, Wu WK, Liang Q, Zhang N, He J, Li X,
Zhang X, Xu L, Chan MT, Ng SS and Sung JJ: Disruption of NCOA2 by
recurrent fusion with LACTB2 in colorectal cancer. Oncogene.
35:187–195. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Cao Q, Liu Z, Huang Y, Qi C and Yin X:
NCOA1-ALK: A novel ALK rearrangement in one lung adenocarcinoma
patient responding to crizotinib treatment. Onco Targets Ther.
12:1071–1074. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Yoshihara K, Wang Q, Torres-Garcia W,
Zheng S, Vegesna R, Kim H and Verhaak RG: The landscape and
therapeutic relevance of cancer-associated transcript fusions.
Oncogene. 34:4845–4854. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Robinson DR, Kalyana-Sundaram S, Wu YM,
Shankar S, Cao X, Ateeq B, Asangani IA, Iyer M, Maher CA, Grasso
CS, et al: Functionally recurrent rearrangements of the MAST kinase
and Notch gene families in breast cancer. Nat Med. 17:1646–1651.
2011. View Article : Google Scholar : PubMed/NCBI
|