Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2024 Volume 27 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2024 Volume 27 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review)

  • Authors:
    • Danilo Segovia
    • Polona Safaric Tepes
  • View Affiliations / Copyright

    Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA
    Copyright: © Segovia et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 210
    |
    Published online on: March 14, 2024
       https://doi.org/10.3892/ol.2024.14343
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gene fusions with translocations involving nuclear receptor coactivators (NCoAs) are relatively common among fusion‑driven malignancies. NCoAs are essential mediators of environmental cues and can modulate the transcription of downstream target genes upon binding to activated nuclear receptors. Therefore, fusion proteins containing NCoAs can become strong oncogenic drivers, affecting the cell transcriptional profile. These tumors show a strong dependency on the fusion oncogene; therefore, the direct pharmacological targeting of the fusion protein becomes an attractive strategy for therapy. Currently, different combinations of chemotherapy regimens are used to treat a variety of NCoA‑fusion‑driven tumors, but given the frequent tumor reoccurrence, more efficient treatment strategies are needed. Specific approaches directed towards inhibition or silencing of the fusion gene need to be developed while minimizing the interference with the original genes. This review highlights the relevant literature describing the normal function and structure of NCoAs and their oncogenic activity in NCoA‑gene fusion‑driven cancers, and explores potential strategies that could be effective in targeting these fusions. 
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Mertens F, Johansson B, Fioretos T and Mitelman F: The emerging complexity of gene fusions in cancer. Nat Rev Cancer. 15:371–381. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Folpe AL, Graham RP, Martinez A, Schembri-Wismayer D, Boland J and Fritchie KJ: Mesenchymal chondrosarcomas showing immunohistochemical evidence of rhabdomyoblastic differentiation: A potential diagnostic pitfall. Hum Pathol. 77:28–34. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Latysheva NS and Babu MM: Discovering and understanding oncogenic gene fusions through data intensive computational approaches. Nucleic Acids Res. 44:4487–4503. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Mitelman F, Johansson B and Mertens F: The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 7:233–245. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, Carter SL, Cibulskis K, Hanna M, Kiezun A, et al: The genetic landscape of high-risk neuroblastoma. Nat Genet. 45:279–284. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Lobato MN, Metzler M, Drynan L, Forster A, Pannell R and Rabbitts TH: Modeling chromosomal translocations using conditional alleles to recapitulate initiating events in human leukemias. J Natl Cancer Inst Monogr. 39:58–63. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Cocco E, Scaltriti M and Drilon A: NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 15:731–747. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Frenkel-Morgenstern M and Valencia A: Novel domain combinations in proteins encoded by chimeric transcripts. Bioinformatics. 28:i67–i74. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Padmavathi G, Roy NK, Bordoloi D, Monisha J and Kunnumakkara AB: ‘Basic concepts of fusion genes and their classification’ in fusion genes and cancer. (World scientific, 2016), doi:10.1142/9789813200944_000210.1142/9789813200944_0002. 17–58

10 

Webb P, Nguyen P, Shinsako J, Anderson C, Feng W, Nguyen MP, Chen D, Huang SM, Subramanian S, McKinerney E, et al: Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol Endocrinol. 12:1605–1618. 1998. View Article : Google Scholar : PubMed/NCBI

11 

Kushner PJ, Agard D, Feng WJ, Lopez G, Schiau A, Uht R, Webb P and Greene G: Oestrogen receptor function at classical and alternative response elements. Novartis Found Symp. 230:20–26. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Rollins DA, Coppo M and Rogatsky I: Minireview: Nuclear receptor coregulators of the p160 family: Insights into inflammation and metabolism. Mol Endocrinol. 29:502–517. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Yoshida H, Miyachi M, Sakamoto K, Ouchi K, Yagyu S, Kikuchi K, Kuwahara Y, Tsuchiya K, Imamura T, Iehara T, et al: PAX3-NCOA2 fusion gene has a dual role in promoting the proliferation and inhibiting the myogenic differentiation of rhabdomyosarcoma cells. Oncogene. 33:5601–5608. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Yin H, Glass J and Blanchard KJ: MOZ-TIF2 repression of nuclear receptor-mediated transcription requires multiple domains in MOZ and in the CID domain of TIF2. Mol Cancer. 6:512007. View Article : Google Scholar : PubMed/NCBI

15 

Goebel EA, Bonilla SH, Dong F, Dickson BC, Hoang LN, Hardisson D, Lacambra MD, Lu FI, Fletcher CDM, Crum CP, et al: Uterine tumor resembling ovarian sex cord tumor (UTROSCT): A morphologic and molecular study of 26 cases confirms recurrent NCOA1-3 rearrangement. Am J Surg Pathol. 44:30–42. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Hagenbuchner J and Ausserlechner MJ: Targeting transcription factors by small compounds-current strategies and future implications. Biochem Pharmacol. 107:1–13. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Xu J and Li Q: Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol. 17:1681–1692. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Xu J and O'Malley BW: Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptor function. Rev Endocr Metab Disord. 3:185–192. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Hultqvist G, Åberg E, Camilloni C, Sundell GN, Andersson E, Dogan J, Chi CN, Vendruscolo M and Jemth P: Emergence and evolution of an interaction between intrinsically disordered proteins. Elife. 6:e160592017. View Article : Google Scholar : PubMed/NCBI

20 

Heery DM, Kalkhoven E, Hoare S and Parker MG: A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature. 387:733–736. 1997. View Article : Google Scholar : PubMed/NCBI

21 

Lodrini M, Münz T, Coudevylle N, Griesinger C, Becker S and Pfitzner E: P160/SRC/NCoA coactivators form complexes via specific interaction of their PAS-B domain with the CID/AD1 domain. Nucleic Acids Res. 36:1847–1860. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Szwarc MM, Kommagani R, Lessey BA and Lydon JP: The p160/steroid receptor coactivator family: Potent arbiters of uterine physiology and dysfunction. Biol Reprod. 91:1222014. View Article : Google Scholar : PubMed/NCBI

23 

Zhang H, Yi X, Sun X, Yin N, Shi B, Wu H, Wang D, Wu G and Shang Y: Differential gene regulation by the SRC family of coactivators. Genes Dev. 18:1753–1765. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Litterst CM and Pfitzner E: Transcriptional activation by STAT6 requires the direct interaction with NCoA-1. J Biol Chem. 276:45713–45721. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Karlsson E, Lindberg A, Andersson E and Jemth P: High affinity between CREBBP/p300 and NCOA evolved in vertebrates. Protein Sci. 29:1687–1691. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Na SY, Lee SK, Han SJ, Choi HS, Im SY and Lee JW: Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappaB-mediated transactivations. J Biol Chem. 273:10831–10834. 1998. View Article : Google Scholar : PubMed/NCBI

27 

Beischlag TV, Wang S, Rose DW, Torchia J, Reisz-Porszasz S, Muhammad K, Nelson WE, Probst MR, Rosenfeld MG and Hankinson O: Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Mol Cell Biol. 22:4319–4333. 2002. View Article : Google Scholar : PubMed/NCBI

28 

Rohira AD and Lonard DM: Steroid receptor coactivators present a unique opportunity for drug development in hormone-dependent cancers. Biochem Pharmacol. 140:1–7. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Koh SS, Chen D, Lee YH and Stallcup MR: Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem. 276:1089–1098. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ and O'Malley BW: Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 389:194–198. 1997. View Article : Google Scholar : PubMed/NCBI

31 

Drazic A, Myklebust LM, Ree R and Arnesen T: The world of protein acetylation. Biochim Biophys Acta. 1864:1372–1401. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Ding XF, Anderson CM, Ma H, Hong H, Uht RM, Kushner PJ and Stallcup MR: Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): Multiple motifs with different binding specificities. Mol Endocrinol. 12:302–313. 1998. View Article : Google Scholar : PubMed/NCBI

33 

Kalkhoven E, Valentine JE, Heery DM and Parker MG: Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 17:232–243. 1998. View Article : Google Scholar : PubMed/NCBI

34 

Kumar MB and Perdew GH: Nuclear receptor coactivator SRC-1 interacts with the Q-rich subdomain of the AhR and modulates its transactivation potential. Gene Expr. 8:273–286. 1999.PubMed/NCBI

35 

Bevan CL, Hoare S, Claessens F, Heery DM and Parker MG: The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol. 19:8383–8392. 1999. View Article : Google Scholar : PubMed/NCBI

36 

Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, et al: AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50:D439–D444. 2022. View Article : Google Scholar : PubMed/NCBI

37 

Razeto A, Ramakrishnan V, Litterst CM, Giller K, Griesinger C, Carlomagno T, Lakomek N, Heimburg T, Lodrini M, Pfitzner E and Becker S: Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. J Mol Biol. 336:319–329. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Russo L, Giller K, Pfitzner E, Griesinger C and Becker S: Insight into the molecular recognition mechanism of the coactivator NCoA1 by STAT6. Sci Rep. 7:168452017. View Article : Google Scholar : PubMed/NCBI

39 

Li S and Shang Y: Regulation of SRC family coactivators by post-translational modifications. Cell Signal. 19:1101–1112. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Han SJ, Lonard B and O'Malley W: Multi-modulation of nuclear receptor coactivators through posttranslational modifications. Trends Endocrinol Metab. 20:8–15. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Rowan BG, Garrison N, Weigel NL and O'Malley BW: 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol Cell Biol. 20:8720–8730. 2000. View Article : Google Scholar : PubMed/NCBI

42 

Narayanan R, Adigun AA, Edwards DP and Weigel NL: Cyclin-dependent kinase activity is required for progesterone receptor function: Novel role for cyclin A/Cdk2 as a progesterone receptor coactivator. Mol Cell Biol. 25:264–277. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Ueda T, Mawji NR, Bruchovsky N and Sadar MD: Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem. 277:38087–38094. 2002. View Article : Google Scholar : PubMed/NCBI

44 

Rowan BG, Weigel NL and O'Malley BW: Phosphorylation of steroid receptor coactivator-1: Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J Biol Chem. 275:4475–4483. 2000. View Article : Google Scholar : PubMed/NCBI

45 

Hoang T, Fenne IS, Cook C, Børud B, Bakke M, Lien EA and Mellgren G: cAMP-dependent protein kinase regulates ubiquitin-proteasome-mediated degradation and subcellular localization of the nuclear receptor coactivator GRIP1. J Biol Chem. 279:49120–49130. 2004. View Article : Google Scholar : PubMed/NCBI

46 

Oh AS, Lahusen JT, Chien CD, Fereshteh MP, Zhang X, Dakshanamurthy S, Xu J, Kagan BL, Wellstein A and Riegel AT: Tyrosine phosphorylation of the nuclear receptor coactivator AIB1/SRC-3 is enhanced by Abl kinase and is required for its activity in cancer cells. Mol Cell Biol. 28:6580–6593. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Baumann CT, Ma H, Wolford R, Reyes JC, Maruvada P, Lim C, Yen PM, Stallcup MR and Hager GL: The glucocorticoid receptor interacting protein 1 (GRIP1) localizes in discrete nuclear foci that associate with ND10 bodies and are enriched in components of the 26S proteasome. Mol Endocrinol. 15:485–500. 2001. View Article : Google Scholar : PubMed/NCBI

48 

Chauchereau A, Amazit L, Quesne M, Guiochon-Mantel A and Milgrom E: Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. J Biol Chem. 278:12335–12343. 2003. View Article : Google Scholar : PubMed/NCBI

49 

Kotaja N, Karvonen U, Jänne OA and Palvimo JJ: The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J Biol Chem. 277:30283–30288. 2002. View Article : Google Scholar : PubMed/NCBI

50 

Wu H, Sun L, Zhang Y, Chen Y, Shi B, Li R, Wang Y, Liang J, Fan D, Wu G, et al: Coordinated regulation of AIB1 transcriptional activity by sumoylation and phosphorylation. J Biol Chem. 281:21848–21856. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Chen H, Lin RJ, Xie W, Wilpitz D and Evans RM: Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell. 98:675–686. 1999. View Article : Google Scholar : PubMed/NCBI

52 

Naeem H, Cheng D, Zhao Q, Underhill C, Tini M, Bedford MT and Torchia J: The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol Cell Biol. 27:120–134. 2007. View Article : Google Scholar : PubMed/NCBI

53 

McKenna NJ and O'Malley BW: Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 108:465–474. 2002. View Article : Google Scholar : PubMed/NCBI

54 

Voegel JJ, Heine MJ, Tini M, Vivat V, Chambon P and Gronemeyer H: The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17:507–519. 1998. View Article : Google Scholar : PubMed/NCBI

55 

Johnson AB and Barton MC: Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat Res. 618:149–162. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Wang L, Motoi T, Khanin R, Olshen A, Mertens F, Bridge J, Cin PD, Antonescu CR, Singer S, Hameed M, et al: Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer. 51:127–139. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Sumegi J, Streblow R, Frayer RW, Cin PD, Rosenberg A, Meloni-Ehrig A and Bridge JA: Recurrent t(2;2) and t(2;8) translocations in rhabdomyosarcoma without the canonical PAX-FOXO1 fuse PAX3 to members of the nuclear receptor transcriptional coactivator family. Genes Chromosomes Cancer. 49:224–236. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Bekers EM, Groenen PJTA, Verdijk MAJ, Raaijmakers-van Geloof WL, Roepman P, Vink R, Gilhuijs NDB, van Gorp JM, Bovée JVMG, Creytens DH, et al: Soft tissue angiofibroma: Clinicopathologic, immunohistochemical and molecular analysis of 14 cases. Genes Chromosomes Cancer. 56:750–757. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Argani P, Reuter VE, Kapur P, Brown JE, Sung YS, Zhang L, Williamson R, Francis G, Sommerville S, Swanson D, et al: Novel MEIS1-NCOA2 gene fusions define a distinct primitive spindle cell sarcoma of the kidney. Am J Surg Pathol. 42:1562–1570. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Piscuoglio S, Burke KA, Ng CK, Papanastasiou AD, Geyer FC, Macedo GS, Martelotto LG, de Bruijn I, De Filippo MR, Schultheis AM, et al: Uterine adenosarcomas are mesenchymal neoplasms. J Pathol. 238:381–388. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Dickson BC, Childs TJ, Colgan TJ, Sung YS, Swanson D, Zhang L and Antonescu CR: Uterine tumor resembling ovarian sex cord tumor: A distinct entity characterized by recurrent NCOA2/3 gene fusions. Am J Surg Pathol. 43:178–186. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Le Loarer F, Laffont S, Lesluyes T, Tirode F, Antonescu C, Baglin AC, Delespaul L, Soubeyran I, Hostein I, Pérot G, et al: Clinicopathologic and molecular features of a series of 41 biphenotypic sinonasal sarcomas expanding their molecular spectrum. Am J Surg Pathol. 43:747–754. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Lacambra MD, Weinreb I, Demicco EG, Chow C, Sung YS, Swanson D, To KF, Wong KC, Antonescu CR and Dickson BC: PRRX-NCOA1/2 rearrangement characterizes a distinctive fibroblastic neoplasm. Genes Chromosomes Cancer. 58:705–712. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Wachtel M, Dettling M, Koscielniak E, Stegmaier S, Treuner J, Simon-Klingenstein K, Bühlmann P, Niggli FK and Schäfer BW: Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res. 64:5539–5545. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Bean GR, Anderson J, Sangoi AR, Krings G and Garg K: DICER1 mutations are frequent in mullerian adenosarcomas and are independent of rhabdomyosarcomatous differentiation. Mod Pathol. 32:280–289. 2019. View Article : Google Scholar : PubMed/NCBI

66 

El Beaino M, Roszik J, Livingston JA, Wang WL, Lazar AJ, Amini B, Subbiah V, Lewis V and Conley AP: Mesenchymal chondrosarcoma: A review with emphasis on its fusion-driven biology. Curr Oncol Rep. 20:372018. View Article : Google Scholar : PubMed/NCBI

67 

Schneiderman BA, Kliethermes SA and Nystrom LM: Survival in mesenchymal chondrosarcoma varies based on age and tumor location: A survival analysis of the SEER database. Clin Orthop Relat Res. 475:799–805. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Brown RE and Boyle JL: Mesenchymal chondrosarcoma: Molecular characterization by a proteomic approach, with morphogenic and therapeutic implications. Ann Clin Lab Sci. 33:131–141. 2003.PubMed/NCBI

69 

Fischer A and Gessler M: Delta-Notch-and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res. 35:4583–4596. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Swanson PE, Lillemoe TJ, Manivel JC and Wick MR: Mesenchymal chondrosarcoma. An immunohistochemical study. Arch Pathol Lab Med. 114:943–948. 1990.PubMed/NCBI

71 

Qi W, Rosikiewicz W, Yin Z, Xu B, Jiang H, Wan S, Fan Y, Wu G and Wang L: Genomic profiling identifies genes and pathways dysregulated by HEY1-NCOA2 fusion and shines a light on mesenchymal chondrosarcoma tumorigenesis. J Pathol. 257:579–592. 2022. View Article : Google Scholar : PubMed/NCBI

72 

Tepes PS, Segovia D, Jevtic S, Ramirez D, Lyons SK and Sordella R: Patient-derived xenografts and in vitro model show rationale for imatinib mesylate repurposing in HEY1-NCoA2-driven mesenchymal chondrosarcoma. Lab Invest. 102:1038–1049. 2021. View Article : Google Scholar

73 

de Jong Y, van Maldegem AM, Marino-Enriquez A, de Jong D, Suijker J, Briaire-de Bruijn IH, Kruisselbrink AB, Cleton-Jansen AM, Szuhai K, Gelderblom H, et al: Inhibition of Bcl-2 family members sensitizes mesenchymal chondrosarcoma to conventional chemotherapy: Report on a novel mesenchymal chondrosarcoma cell line. Lab Invest. 96:1128–1137. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Tanaka M, Homme M, Teramura Y, Kumegawa K, Yamazaki Y, Yamashita K, Osato M, Maruyama R and Nakamura T: HEY1-NCOA2 expression modulates chondrogenic differentiation and induces mesenchymal chondrosarcoma in mice. JCI Insight. 8:e1602792023. View Article : Google Scholar : PubMed/NCBI

75 

Nakayama S, Nishio J, Aoki M, Koga K, Nabeshima K and Yamamoto T: Angiofibroma of soft tissue: Current status of pathology and genetics. Histol Histopathol. 37:717–722. 2022.PubMed/NCBI

76 

Sugita S, Aoyama T, Kondo K, Keira Y, Ogino J, Nakanishi K, Kaya M, Emori M, Tsukahara T and Nakajima H: Diagnostic utility of NCOA2 fluorescence in situ hybridization and Stat6 immunohistochemistry staining for soft tissue angiofibroma and morphologically similar fibrovascular tumors. Hum Pathol. 45:1588–1596. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Jin Y, Möller E, Nord KH, Mandahl N, Von Steyern FV, Domanski HA, Mariño-Enríquez A, Magnusson L, Nilsson J, Sciot R, et al: Fusion of the AHRR and NCOA2 genes through a recurrent translocation t(5;8)(p15;q13) in soft tissue angiofibroma results in upregulation of aryl hydrocarbon receptor target genes. Genes Chromosomes Cancer. 51:510–520. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Uemura K, Komatsu M, Hara S, Kawamoto T, Bitoh Y, Itoh T and Hirose T: CYP1A1 is a useful diagnostic marker for angiofibroma of soft tissue. Am J Surg Pathol. 47:547–557. 2023. View Article : Google Scholar : PubMed/NCBI

79 

Yamashita K, Baba S, Togashi Y, Dobashi A, Ae K, Matsumoto S, Tanaka M, Nakamura T and Takeuchi K: Clinicopathologic and genetic characterization of angiofibroma of soft tissue: A study of 12 cases including two cases with AHRR::NCOA3 gene fusion. Histopathology. 83:57–66. 2023. View Article : Google Scholar : PubMed/NCBI

80 

Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR, Cross NC, Glass CK, Cleary ML and Gilliland DG: MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell. 3:259–271. 2003. View Article : Google Scholar : PubMed/NCBI

81 

Carapeti M, Aguiar RC, Goldman JM and Cross NC: A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood. 91:3127–3133. 1998. View Article : Google Scholar : PubMed/NCBI

82 

Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR, et al: MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 6:587–596. 2004. View Article : Google Scholar : PubMed/NCBI

83 

Largeot A, Perez-Campo FM, Marinopoulou E, Lie-a-Ling M, Kouskoff V and Lacaud G: Expression of the MOZ-TIF2 oncoprotein in mice represses senescence. Exp Hematol. 44:231–237.e234. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Shima H, Yamagata K, Aikawa Y, Shino M, Koseki H, Shimada H and Kitabayashi I: Bromodomain-PHD finger protein 1 is critical for leukemogenesis associated with MOZ-TIF2 fusion. Int J Hematol. 99:21–31. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Tam WF, Hähnel PS, Schüler A, Lee BH, Okabe R, Zhu N, Pante SV, Raffel G, Mercher T, Wernig G, et al: STAT5 is crucial to maintain leukemic stem cells in acute myelogenous leukemias induced by MOZ-TIF2. Cancer Res. 73:373–384. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Aikawa Y, Katsumoto T, Zhang P, Shima H, Shino M, Terui K, Ito E, Ohno H, Stanley ER, Singh H, et al: PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2. Nat Med. 16:580–585. 2010. View Article : Google Scholar : PubMed/NCBI

87 

Miyamoto R, Okuda H, Kanai A, Takahashi S, Kawamura T, Matsui H, Kitamura T, Kitabayashi I, Inaba T and Yokoyama A: Activation of CpG-rich promoters mediated by MLL drives MOZ-rearranged leukemia. Cell Rep. 32:1082002020. View Article : Google Scholar : PubMed/NCBI

88 

Shima H, Takamatsu-Ichihara E, Shino M, Yamagata K, Katsumoto T, Aikawa Y, Fujita S, Koseki H and Kitabayashi I: Ring1A and Ring1B inhibit expression of Glis2 to maintain murine MOZ-TIF2 AML stem cells. Blood. 131:1833–1845. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Cheung N, Fung TK, Zeisig BB, Holmes K, Rane JK, Mowen KA, Finn MG, Lenhard B, Chan LC and So CW: Targeting aberrant epigenetic networks mediated by PRMT1 and KDM4C in acute myeloid leukemia. Cancer Cell. 29:32–48. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Skapek SX, Ferrari A, Gupta AA, Lupo PJ, Butler E, Shipley J, Barr FG and Hawkins DS: Rhabdomyosarcoma. Nat Rev Dis Primers. 5:12019. View Article : Google Scholar : PubMed/NCBI

91 

Sun X, Guo W, Shen JK, Mankin HJ, Hornicek FJ and Duan Z: Rhabdomyosarcoma: Advances in molecular and cellular biology. Sarcoma. 2015:2320102015. View Article : Google Scholar : PubMed/NCBI

92 

Alaggio R, Zhang L, Sung YS, Huang SC, Chen CL, Bisogno G, Zin A, Agaram NP, LaQuaglia MP, Wexler LH and Antonescu CR: A molecular study of pediatric spindle and sclerosing rhabdomyosarcoma: Identification of novel and recurrent VGLL2-related fusions in infantile cases. Am J Surg Pathol. 40:224–235. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Mosquera JM, Sboner A, Zhang L, Kitabayashi N, Chen CL, Sung YS, Wexler LH, LaQuaglia MP, Edelman M, Sreekantaiah C, et al: Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer. 52:538–550. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Whittle S, Venkatramani R, Schönstein A, Pack SD, Alaggio R, Vokuhl C, Rudzinski ER, Wulf AL, Zin A, Gruver JR, et al: Congenital spindle cell rhabdomyosarcoma: An international cooperative analysis. Eur J Cancer. 168:56–64. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Jia M, Sun PL and Gao H: Uterine lesions with sex cord-like architectures: A systematic review. Diagn Pathol. 14:1292019. View Article : Google Scholar : PubMed/NCBI

96 

Schraag SM, Caduff R, Dedes KJ, Fink D and Schmidt AM: Uterine tumors resembling ovarian sex cord tumors-treatment, recurrence, pregnancy and brief review. Gynecol Oncol Rep. 19:53–56. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Clement PB and Scully RE: Mullerian adenosarcomas of the uterus with sex cord-like elements. A clinicopathologic analysis of eight cases. Am J Clin Pathol. 91:664–672. 1989. View Article : Google Scholar : PubMed/NCBI

98 

McCluggage WG, Date A, Bharucha H and Toner PG: Endometrial stromal sarcoma with sex cord-like areas and focal rhabdoid differentiation. Histopathology. 29:369–374. 1996. View Article : Google Scholar : PubMed/NCBI

99 

Boyraz B, Watkins JC, Young RH and Oliva E: Uterine tumors resembling ovarian sex cord tumors: A clinicopathologic study of 75 cases emphasizing features predicting adverse outcome and differential diagnosis. Am J Surg Pathol. 47:234–247. 2023. View Article : Google Scholar : PubMed/NCBI

100 

Lee CH, Kao YC, Lee WR, Hsiao YW, Lu TP, Chu CY, Lin YJ, Huang HY, Hsieh TH, Liu YR, et al: Clinicopathologic characterization of GREB1-rearranged uterine sarcomas with variable sex-cord differentiation. Am J Surg Pathol. 43:928–942. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Devereaux KA, Kertowidjojo E, Natale K, Ewalt MD, Soslow RA and Hodgson A: GTF2A1-NCOA2-associated uterine tumor resembling ovarian sex cord tumor (UTROSCT) shows focal rhabdoid morphology and aggressive behavior. Am J Surg Pathol. 45:1725–1728. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Bi R, Yao Q, Ji G, Bai Q, Li A, Liu Z, Cheng Y, Tu X, Yu L, Chang B, et al: Uterine tumor resembling ovarian sex cord tumors: 23 Cases indicating molecular heterogeneity with variable biological behavior. Am J Surg Pathol. 47:739–755. 2023. View Article : Google Scholar : PubMed/NCBI

103 

Lu B, Xia Y, Chen J, Tang J, Shao Y and Yu W: NCOA1/2/3 rearrangements in uterine tumor resembling ovarian sex cord tumor: A clinicopathological and molecular study of 18 cases. Hum Pathol. 135:65–75. 2023. View Article : Google Scholar : PubMed/NCBI

104 

Xiong SP, Luo RZ, Wang F, Yang X, Lai JP, Zhang C and Liu LL: PD-L1 expression, morphology, and molecular characteristic of a subset of aggressive uterine tumor resembling ovarian sex cord tumor and a literature review. J Ovarian Res. 16:1022023. View Article : Google Scholar : PubMed/NCBI

105 

Bernasconi M, Remppis A, Fredericks WJ, Rauscher FJ III and Schafer BW: Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci USA. 93:13164–13169. 1996. View Article : Google Scholar : PubMed/NCBI

106 

Oh AS, Lahusen JT, Chien CD, Fereshteh MP, Zhang X, Dakshanamurthy S, Xu J, Kagan BL, Wellstein A and Riegel AT: Tyrosine phosphorylation of the nuclear receptor coactivator AIB1/SRC-3 is enhanced by Abl kinase and is required for its activity in cancer cells. Mol Cell Biol. 28:6580–6593. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Crooke ST, Liang XH, Baker BF and Crooke RM: Antisense technology: A review. J Biol Chem. 296:1004162021. View Article : Google Scholar : PubMed/NCBI

108 

Quemener AM, Bachelot L, Forestier A, Donnou-Fournet E, Gilot D and Galibert MD: The powerful world of antisense oligonucleotides: From bench to bedside. Wiley Interdiscip Rev RNA. 11:e15942020. View Article : Google Scholar : PubMed/NCBI

109 

Katti A, Diaz BJ, Caragine CM, Sanjana NE and Dow LE: CRISPR in cancer biology and therapy. Nat Rev Cancer. 22:259–279. 2022. View Article : Google Scholar : PubMed/NCBI

110 

Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R and Rodriguez-Perales S: CRISPR/Cas9 for cancer therapy: Hopes and challenges. Biomedicines. 6:1052018. View Article : Google Scholar : PubMed/NCBI

111 

Martinez-Lage M, Torres-Ruiz R, Puig-Serra P, Moreno-Gaona P, Martin MC, Moya FJ, Quintana-Bustamante O, Garcia-Silva S, Carcaboso AM, Petazzi P, et al: In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nat Commun. 11:50602020. View Article : Google Scholar : PubMed/NCBI

112 

Chen ZH, Yu YP, Zuo ZH, Nelson JB, Michalopoulos GK, Monga S, Liu S, Tseng G and Luo JH: Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene. Nat Biotechnol. 35:543–550. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, Tong Y and Rao Y: PROTACs: Great opportunities for academia and industry. Signal Transduct Target Ther. 4:642019. View Article : Google Scholar : PubMed/NCBI

114 

Bekes M, Langley DR and Crews CM: PROTAC targeted protein degraders: The past is prologue. Nat Rev Drug Discov. 21:181–200. 2022. View Article : Google Scholar : PubMed/NCBI

115 

Lee Y, Heo J, Jeong H, Hong KT, Kwon DH, Shin MH, Oh M, Sable GA, Ahn GO, Lee JS, et al: Targeted degradation of transcription coactivator SRC-1 through the N-degron pathway. Angew Chem Int Ed Engl. 59:17548–17555. 2020. View Article : Google Scholar : PubMed/NCBI

116 

Tan GZL, Saminathan SN, Chang KTE, Odoño EG, Kuick CH, Chen H and Lee VKM: A rare case of congenital spindle cell rhabdomyosarcoma with TEAD1-NCOA2 fusion: A subset of spindle cell rhabdomyosarcoma with indolent behavior. Pathol Int. 70:234–236. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Avenarius MR, Miller CR, Arnold MA, Koo S, Roberts R, Hobby M, Grossman T, Moyer Y, Wilson RK, Mardis ER, et al: Genetic characterization of pediatric sarcomas by targeted RNA sequencing. J Mol Diagn. 22:1238–1245. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Bennett JA, Lastra RR, Barroeta JE, Parilla M, Galbo F, Wanjari P, Young RH, Krausz T and Oliva E: Uterine tumor resembling ovarian sex cord stromal tumor (UTROSCT): A series of 3 cases with extensive rhabdoid differentiation, malignant behavior, and ESR1-NCOA2 fusions. Am J Surg Pathol. 44:1563–1572. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Panagopoulos I, Gorunova L, Viset T and Heim S and Heim S: Gene fusions AHRR-NCOA2, NCOA2-ETV4, ETV4-AHRR, P4HA2-TBCK, and TBCK-P4HA2 resulting from the translocations t(5;8;17)(p15;q13;q21) and t(4;5)(q24;q31) in a soft tissue angiofibroma. Oncol Rep. 36:2455–2462. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Teramura Y, Tanaka M, Yamazaki Y, Yamashita K, Takazawa Y, Ae K, Matsumoto S, Nakayama T, Kaneko T, Musha Y and Nakamura T: Identification of novel fusion genes in bone and soft tissue sarcoma and their implication in the generation of a mouse model. Cancers (Basel). 12:23452020. View Article : Google Scholar : PubMed/NCBI

121 

Zhou M, Gao L, Jing Y, Xu YY, Ding Y, Wang N, Wang W, Li MY, Han XP, Sun JZ, et al: Detection of ETV6 gene rearrangements in adult acute lymphoblastic leukemia. Ann Hematol. 91:1235–1243. 2012. View Article : Google Scholar : PubMed/NCBI

122 

Zhuravleva J, Paggetti J, Martin L, Hammann A, Solary E, Bastie JN and Delva L: MYST3/NCOA2-induced acute myeloid leukemia in transgenic fish. Blood. 112:53292008. View Article : Google Scholar

123 

Esteyries S, Perot C, Adelaide J, Imbert M, Lagarde A, Pautas C, Olschwang S, Birnbaum D, Chaffanet M and Mozziconacci MJ: NCOA3, a new fusion partner for MOZ/MYST3 in M5 acute myeloid leukemia. Leukemia. 22:663–665. 2008. View Article : Google Scholar : PubMed/NCBI

124 

Chang B, Bai Q, Liang L, Ge H and Yao Q: Recurrent uterine tumors resembling ovarian sex-cord tumors with the growth regulation by estrogen in breast cancer 1-nuclear receptor coactivator 2 fusion gene: A case report and literature review. Diagn Pathol. 15:1102020. View Article : Google Scholar : PubMed/NCBI

125 

Yu J, Wu WK, Liang Q, Zhang N, He J, Li X, Zhang X, Xu L, Chan MT, Ng SS and Sung JJ: Disruption of NCOA2 by recurrent fusion with LACTB2 in colorectal cancer. Oncogene. 35:187–195. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Cao Q, Liu Z, Huang Y, Qi C and Yin X: NCOA1-ALK: A novel ALK rearrangement in one lung adenocarcinoma patient responding to crizotinib treatment. Onco Targets Ther. 12:1071–1074. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H and Verhaak RG: The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene. 34:4845–4854. 2015. View Article : Google Scholar : PubMed/NCBI

128 

Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B, Asangani IA, Iyer M, Maher CA, Grasso CS, et al: Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med. 17:1646–1651. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Segovia D and Tepes PS: p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review). Oncol Lett 27: 210, 2024.
APA
Segovia, D., & Tepes, P.S. (2024). p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review). Oncology Letters, 27, 210. https://doi.org/10.3892/ol.2024.14343
MLA
Segovia, D., Tepes, P. S."p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review)". Oncology Letters 27.5 (2024): 210.
Chicago
Segovia, D., Tepes, P. S."p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review)". Oncology Letters 27, no. 5 (2024): 210. https://doi.org/10.3892/ol.2024.14343
Copy and paste a formatted citation
x
Spandidos Publications style
Segovia D and Tepes PS: p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review). Oncol Lett 27: 210, 2024.
APA
Segovia, D., & Tepes, P.S. (2024). p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review). Oncology Letters, 27, 210. https://doi.org/10.3892/ol.2024.14343
MLA
Segovia, D., Tepes, P. S."p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review)". Oncology Letters 27.5 (2024): 210.
Chicago
Segovia, D., Tepes, P. S."p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review)". Oncology Letters 27, no. 5 (2024): 210. https://doi.org/10.3892/ol.2024.14343
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team