1
|
Cao W, Chen HD, Yu YW, Li N and Chen WQ:
Changing profiles of cancer burden worldwide and in China: A
secondary analysis of the global cancer statistics 2020. Chin Med J
(Engl). 134:783–791. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wang Z, Wu X, Chen HN and Wang K: Amino
acid metabolic reprogramming in tumor metastatic colonization.
Front Oncol. 13:11231922023. View Article : Google Scholar : PubMed/NCBI
|
4
|
Krishnan N, Dickman MB and Becker DF:
Proline modulates the intracellular redox environment and protects
mammalian cells against oxidative stress. Free Radic Biol Med.
44:671–681. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pandhare J, Donald SP, Cooper SK and Phang
JM: Regulation and function of proline oxidase under nutrient
stress. J Cell Biochem. 107:759–768. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bogner AN, Stiers KM and Tanner JJ:
Structure, biochemistry, and gene expression patterns of the
proline biosynthetic enzyme pyrroline-5-carboxylate reductase
(PYCR), an emerging cancer therapy target. Amino Acids.
53:1817–1834. 2021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Hu CA, Williams DB, Zhaorigetu S, Khalil
S, Wan G and Valle D: Functional genomics and SNP analysis of human
genes encoding proline metabolic enzymes. Amino Acids. 35:655–664.
2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Phang JM, Liu W and Zabirnyk O: Proline
metabolism and microenvironmental stress. Annu Rev Nutr.
30:441–463. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Meng Z, Lou Z, Liu Z, Li M, Zhao X,
Bartlam M and Rao Z: Crystal structure of human
pyrroline-5-carboxylate reductase. J Mol Biol. 359:1364–1377. 2006.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Christensen EM, Patel SM, Korasick DA,
Campbell AC, Krause KL, Becker DF and Tanner JJ: Resolving the
cofactor-binding site in the proline biosynthetic enzyme human
pyrroline-5-carboxylate reductase 1. J Biol Chem. 292:7233–7243.
2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dimopoulou A, Fischer B, Gardeitchik T,
Schroter P, Kayserili H, Schlack C, Li Y, Brum JM, Barisic I,
Castori M, et al: Genotype-phenotype spectrum of PYCR1-related
autosomal recessive cutis laxa. Mol Genet Metab. 110:352–361. 2013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Scherrer DZ, Baptista MB, Matos AH,
Maurer-Morelli CV and Steiner CE: Mutations in PYCR1 gene in three
families with autosomal recessive cutis laxa, type 2. Eur J Med
Genet. 56:336–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yasuda T, Kaji Y, Agatsuma T, Niki T,
Arisawa M, Shuto S, Ariga H and Iguchi-Ariga SM: DJ-1 cooperates
with PYCR1 in cell protection against oxidative stress. Biochem
Biophys Res Commun. 436:289–294. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ding J, Kuo ML, Su L, Xue L, Luh F, Zhang
H, Wang J, Lin TG, Zhang K, Chu P, et al: Human mitochondrial
pyrroline-5-carboxylate reductase 1 promotes invasiveness and
impacts survival in breast cancers. Carcinogenesis. 38:519–531.
2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wiley SR, Schooley K, Smolak PJ, Din WS,
Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C and Smith
CA: Identification and characterization of a new member of the TNF
family that induces apoptosis. Immunity. 3:673–682. 1995.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Hao C, Song JH, Hsi B, Lewis J, Song DK,
Petruk KC, Tyrrell DL and Kneteman NM: TRAIL inhibits tumor growth
but is nontoxic to human hepatocytes in chimeric mice. Cancer Res.
64:8502–8506. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jong K, Mohamed E and Ibrahim ZA: Escaping
cell death via TRAIL decoy receptors: A systematic review of their
roles and expressions in colorectal cancer. Apoptosis. 27:787–799.
2022. View Article : Google Scholar : PubMed/NCBI
|
18
|
She Y, Mao A, Li F and Wei X: P5CR1
protein expression and the effect of gene-silencing on lung
adenocarcinoma. Peer J. 7:e69342019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yan K, Xu X, Wu T, Li J, Cao G, Li Y and
Ji Z: Knockdown of PYCR1 inhibits proliferation, drug resistance
and EMT in colorectal cancer cells by regulating STAT3-Mediated p38
MAPK and NF-kappaB signalling pathway. Biochem Biophys Res Commun.
520:486–491. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Mert U and Sanlioglu AD: Intracellular
localization of DR5 and related regulatory pathways as a mechanism
of resistance to TRAIL in cancer. Cell Mol Life Sci. 74:245–255.
2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ouyang W, Yang C, Liu Y, Xiong J, Zhang J,
Zhong Y, Zhang G, Zhou F, Zhou Y and Xie C: Redistribution of DR4
and DR5 in lipid rafts accounts for the sensitivity to TRAIL in
NSCLC cells. Int J Oncol. 39:1577–1586. 2011.PubMed/NCBI
|
23
|
You C, Sun Y, Zhang S, Tang G, Zhang N, Li
C, Tian X, Ma S, Luo Y, Sun W, et al: Trichosanthin enhances
sensitivity of non-small cell lung cancer (NSCLC) TRAIL-resistance
cells. Int J Biol Sci. 14:217–227. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cao C, D'Amico T, Demmy T, Dunning J,
Gossot D, Hansen H, He J, Jheon S, Petersen RH, Sihoe A, et al:
Surgery versus SABR for resectable non-small-cell lung cancer.
Lancet Oncol. 16:e370–e371. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kischkel FC, Lawrence DA, Chuntharapai A,
Schow P, Kim KJ and Ashkenazi A: Apo2L/TRAIL-dependent recruitment
of endogenous FADD and caspase-8 to death receptors 4 and 5.
Immunity. 12:611–620. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ashkenazi A: Directing cancer cells to
self-destruct with pro-apoptotic receptor agonists. Nat Rev Drug
Discov. 7:1001–1012. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Johnstone RW, Frew AJ and Smyth MJ: The
TRAIL apoptotic pathway in cancer onset, progression and therapy.
Nat Rev Cancer. 8:782–798. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Maksimovic-Ivanic D, Stosic-Grujicic S,
Nicoletti F and Mijatovic S: Resistance to TRAIL and how to
surmount it. Immunol Res. 52:157–168. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fan S, Li Y, Yue P, Khuri FR and Sun SY:
The eIF4E/eIF4G interaction inhibitor 4EGI-1 augments
TRAIL-mediated apoptosis through c-FLIP down-regulation and DR5
induction independent of inhibition of cap-dependent protein
translation. Neoplasia. 12:346–356. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cai F, Miao Y, Liu C, Wu T, Shen S, Su X
and Shi Y: Pyrroline-5-carboxylate reductase 1 promotes
proliferation and inhibits apoptosis in non-small cell lung cancer.
Oncol Lett. 15:731–740. 2018.PubMed/NCBI
|
32
|
Xue W, Wu K, Guo X, Chen C, Huang T, Li L,
Liu B, Chang H and Zhao J: The pan-cancer landscape of glutamate
and glutamine metabolism: A comprehensive bioinformatic analysis
across 32 solid cancer types. Biochim Biophys Acta Mol Basis Dis.
1870:1669822024. View Article : Google Scholar : PubMed/NCBI
|
33
|
Oudaert I, Satilmis H, Vlummens P, De
Brouwer W, Maes A, Hose D, De Bruyne E, Ghesquiere B, Vanderkerken
K, De Veirman K and Menu E: Pyrroline-5-carboxylate reductase 1: A
novel target for sensitizing multiple myeloma cells to bortezomib
by inhibition of PRAS40-mediated protein synthesis. J Exp Clin
Cancer Res. 41:452022. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nilsson R, Jain M, Madhusudhan N, Sheppard
NG, Strittmatter L, Kampf C, Huang J, Asplund A and Mootha VK:
Metabolic enzyme expression highlights a key role for MTHFD2 and
the mitochondrial folate pathway in cancer. Nat Commun. 5:31282014.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Schwörer S, Berisa M, Violante S, Qin W,
Zhu J, Hendrickson RC, Cross JR and Thompson CB: Proline
biosynthesis is a vent for TGFβ-induced mitochondrial redox stress.
EMBO J. 39:e1033342020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu W, Le A, Hancock C, Lane AN, Dang CV,
Fan TW and Phang JM: Reprogramming of proline and glutamine
metabolism contributes to the proliferative and metabolic responses
regulated by oncogenic transcription factor c-MYC. Proc Natl Acad
Sci USA. 109:8983–8988. 2012. View Article : Google Scholar : PubMed/NCBI
|