
Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review)
- Authors:
- Fan Wu
- Hongyuan Pang
- Fan Li
- Mengqing Hua
- Chuanwang Song
- Jie Tang
-
Affiliations: Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China - Published online on: April 9, 2024 https://doi.org/10.3892/ol.2024.14389
- Article Number: 256
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Chao MP, Weissman IL and Majeti R: The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 24:225–232. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khandelwal S, van Rooijen N and Saxena RK: Reduced expression of CD47 during murine red blood cell (RBC) senescence and its role in RBC clearance from the circulation. Transfusion. 47:1725–1732. 2007. View Article : Google Scholar : PubMed/NCBI | |
Matlung HL, Szilagyi K, Barclay NA and van den Berg TK: The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol Rev. 276:145–164. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jia X, Yan B, Tian X, Liu Q, Jin J, Shi J and Hou Y: CD47/SIRPα pathway mediates cancer immune escape and immunotherapy. Int J Biol Sci. 17:3281–3287. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin F, Xiong M, Hao W, Song Y, Liu R, Yang Y, Yuan X, Fan D, Zhang Y, Hao M, et al: A novel blockade CD47 antibody with therapeutic potential for cancer. Front Oncol. 10:6155342020. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Guo X and Ma W: Opportunities and challenges of CD47-targeted therapy in cancer immunotherapy. Oncol Res. 32:49–60. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Meng Z, Xu T, Kuerban K, Wang S, Zhang X, Fan J, Ju D, Tian W, Huang X, et al: A SIRPαFc fusion protein conjugated with the Collagen-Binding domain for targeted immunotherapy of non-small cell lung cancer. Front Immunol. 13:8452172022. View Article : Google Scholar : PubMed/NCBI | |
Ozaniak A, Smetanova J, Bartolini R, Rataj M, Capkova L, Hacek J, Fialova M, Krupickova L, Striz I, Lischke R, et al: A novel anti-CD47-targeted blockade promotes immune activation in human soft tissue sarcoma but does not potentiate anti-PD-1 blockade. J Cancer Res Clin Oncol. 149:3789–3801. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hao Y, Zhou X, Li Y, Li B and Cheng L: The CD47-SIRPα axis is a promising target for cancer immunotherapies. Int Immunopharmacol. 120:1102552023. View Article : Google Scholar : PubMed/NCBI | |
Brown E, Hooper L, Ho T and Gresham H: Integrin-associated protein: A 50-kD plasma membrane antigen physically and functionally associated with integrins. J Cell Biol. 111:2785–2794. 1990. View Article : Google Scholar : PubMed/NCBI | |
Lindberg FP, Bullard DC, Caver TE, Gresham HD, Beaudet AL and Brown EJ: Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science. 274:795–798. 1996. View Article : Google Scholar : PubMed/NCBI | |
van Helden MJ, Zwarthoff SA, Arends RJ, Reinieren-Beeren IMJ, Paradé MCBC, Driessen-Engels L, de Laat-Arts K, Damming D, Santegoeds-Lenssen EWH, van Kuppeveld DWJ, et al: BYON4228 is a pan-allelic antagonistic SIRPα antibody that potentiates destruction of antibody-opsonized tumor cells and lacks binding to SIRPγ on T cells. J Immunother Cancer. 11:e0065672023. View Article : Google Scholar : PubMed/NCBI | |
Navarro-Alvarez N and Yang YG: CD47: A new player in phagocytosis and xenograft rejection. Cell Mol Immunol. 8:285–288. 2011. View Article : Google Scholar : PubMed/NCBI | |
Deng H, Wang G, Zhao S, Tao Y, Zhang Z, Yang J and Lei Y: New hope for tumor immunotherapy: The macrophage-related ‘do not eat me’ signaling pathway. Front Pharmacol. 14:12289622023. View Article : Google Scholar : PubMed/NCBI | |
Hatherley D, Graham SC, Turner J, Harlos K, Stuart DI and Barclay AN: Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Mol Cell. 31:266–277. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hatherley D, Harlos K, Dunlop DC, Stuart DI and Barclay AN: The structure of the macrophage signal regulatory protein alpha (SIRPalpha) inhibitory receptor reveals a binding face reminiscent of that used by T cell receptors. J Biol Chem. 282:14567–14575. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lymn JS, Patel MK, Clunn GF, Rao SJ, Gallagher KL and Hughes AD: Thrombospondin-1 differentially induces chemotaxis and DNA synthesis of human venous smooth muscle cells at the receptor-binding level. J Cell Sci. 115:4353–4360. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chung J, Gao AG and Frazier WA: Thrombspondin acts via integrin-associated protein to activate the platelet integrin alphaIIbbeta3. J Biol Chem. 272:14740–14746. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hayat SMG, Bianconi V, Pirro M, Jaafari MR, Hatamipour M and Sahebkar A: CD47: Role in the immune system and application to cancer therapy. Cell Oncol (Dordr). 43:19–30. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Wang F, Xu L and Yang YG: Structural-functional diversity of CD47 proteoforms. Front Immunol. 15:13295622024. View Article : Google Scholar : PubMed/NCBI | |
Sadallah S, Eken C, Martin PJ and Schifferli JA: Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J Immunol. 186:6543–6552. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aversa R, Sorrentino A, Esposito R, Ambrosio MR, Amato A, Zambelli A, Ciccodicola A, D'Apice L and Costa V: Alternative splicing in adhesion- and motility-related genes in breast cancer. Int J Mol Sci. 17:1212016. View Article : Google Scholar : PubMed/NCBI | |
Reinhold MI, Lindberg FP, Plas D, Reynolds S, Peters MG and Brown EJ: In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). J Cell Sci. 108:3419–3425. 1995. View Article : Google Scholar : PubMed/NCBI | |
Barclay AN and Van den Berg TK: The interaction between signal regulatory protein alpha (SIRPα) and CD47: Structure, function, and therapeutic target. Annu Rev Immunol. 32:25–50. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee EH, Hsieh YP, Yang CL, Tsai KJ and Liu CH: Induction of integrin-associated protein (IAP) mRNA expression during memory consolidation in rat hippocampus. Eur J Neurosci. 12:1105–1112. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ratnikova NM, Lezhnin YN, Frolova EI, Kravchenko JE and Chumakov SP: CD47 receptor as a primary target for cancer therapy. Mol Biol (Mosk). 51:251–261. 2017. View Article : Google Scholar : PubMed/NCBI | |
Frazier WA, Gao AG, Dimitry J, Chung J, Brown EJ, Lindberg FP and Linder ME: The thrombospondin receptor integrin-associated protein (CD47) functionally couples to heterotrimeric Gi. J Biol Chem. 274:8554–8560. 1999. View Article : Google Scholar : PubMed/NCBI | |
N'Diaye EN and Brown EJ: The ubiquitin-related protein PLIC-1 regulates heterotrimeric G protein function through association with Gbetagamma. J Cell Biol. 163:1157–1165. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sick E, Boukhari A, Deramaudt T, Rondé P, Bucher B, André P, Gies JP and Takeda K: Activation of CD47 receptors causes proliferation of human astrocytoma but not normal astrocytes via an Akt-dependent pathway. Glia. 59:308–319. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mateo V, Brown EJ, Biron G, Rubio M, Fischer A, Deist FL and Sarfati M: Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: Link between phosphatidylserine exposure and cytoskeleton organization. Blood. 100:2882–2890. 2002. View Article : Google Scholar : PubMed/NCBI | |
Soto-Pantoja DR, Kaur S and Roberts DD: CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol. 50:212–230. 2015. View Article : Google Scholar : PubMed/NCBI | |
Brown EJ and Frazier WA: Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11:130–135. 2001. View Article : Google Scholar : PubMed/NCBI | |
Murata Y, Saito Y, Kotani T and Matozaki T: Blockade of CD47 or SIRPα: A new cancer immunotherapy. Expert Opin Ther Targets. 24:945–951. 2020. View Article : Google Scholar : PubMed/NCBI | |
Manna PP and Frazier WA: The mechanism of CD47-dependent killing of T cells: Heterotrimeric Gi-dependent inhibition of protein kinase A. J Immunol. 170:3544–3553. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lindberg FP, Gresham HD, Reinhold MI and Brown EJ: Integrin-associated protein immunoglobulin domain is necessary for efficient vitronectin bead binding. J Cell Biol. 134:1313–1322. 1996. View Article : Google Scholar : PubMed/NCBI | |
Brittain JE, Han J, Ataga KI, Orringer EP and Parise LV: Mechanism of CD47-induced alpha4beta1 integrin activation and adhesion in sickle reticulocytes. J Biol Chem. 279:42393–42402. 2004. View Article : Google Scholar : PubMed/NCBI | |
Orazizadeh M, Lee HS, Groenendijk B, Sadler SJ, Wright MO, Lindberg FP and Salter DM: CD47 associates with alpha 5 integrin and regulates responses of human articular chondrocytes to mechanical stimulation in an in vitro model. Arthritis Res Ther. 10:R42008. View Article : Google Scholar : PubMed/NCBI | |
Koenigsknecht J and Landreth G: Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci. 24:9838–9846. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Li M, Yin L, Fu G and Liu Z: Role of thrombospondin-1 and thrombospondin-2 in cardiovascular diseases (Review). Int J Mol Med. 45:1275–1293. 2020.PubMed/NCBI | |
Adams JC and Lawler J: The thrombospondins. Cold Spring Harb Perspect Biol. 3:a0097122011. View Article : Google Scholar : PubMed/NCBI | |
Leclair P and Lim CJ: CD47-independent effects mediated by the TSP-derived 4N1K peptide. PLoS One. 9:e983582014. View Article : Google Scholar : PubMed/NCBI | |
Isenberg JS, Romeo MJ, Yu C, Yu CK, Nghiem K, Monsale J, Rick ME, Wink DA, Frazier WA and Roberts DD: Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling. Blood. 111:613–623. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jeanne A, Sarazin T, Charlé M, Moali C, Fichel C, Boulagnon-Rombi C, Callewaert M, Andry MC, Diesis E, Delolme F, et al: Targeting ovarian carcinoma with TSP-1: CD47 antagonist TAX2 activates Anti-Tumor immunity. Cancers (Basel). 13:50192021. View Article : Google Scholar : PubMed/NCBI | |
Kharitonenkov A, Chen Z, Sures I, Wang H, Schilling J and Ullrich A: A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature. 386:181–186. 1997. View Article : Google Scholar : PubMed/NCBI | |
Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP, et al: CD47 Blockade by Hu5F9-G4 and rituximab in Non-Hodgkin's lymphoma. N Engl J Med. 379:1711–1721. 2018. View Article : Google Scholar : PubMed/NCBI | |
Barclay AN and Brown MH: The SIRP family of receptors and immune regulation. Nat Rev Immunol. 6:457–464. 2006. View Article : Google Scholar : PubMed/NCBI | |
Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX and Weissman IL: Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer. 19:568–586. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Song S, Ma J, Yan Z, Xie H, Feng Y and Che S: CD47 as a promising therapeutic target in oncology. Front Immunol. 13:7574802022. View Article : Google Scholar : PubMed/NCBI | |
Nakaishi A, Hirose M, Yoshimura M, Oneyama C, Saito K, Kuki N, Matsuda M, Honma N, Ohnishi H, Matozaki T, et al: Structural insight into the specific interaction between murine SHPS-1/SIRP alpha and its ligand CD47. J Mol Biol. 375:650–660. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vernon-Wilson EF, Kee WJ, Willis AC, Barclay AN, Simmons DL and Brown MH: CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPalpha 1. Eur J Immunol. 30:2130–2137. 2000. View Article : Google Scholar : PubMed/NCBI | |
Han X, Sterling H, Chen Y, Saginario C, Brown EJ, Frazier WA, Lindberg FP and Vignery A: CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J Biol Chem. 275:37984–37992. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rebres RA, Vaz LE, Green JM and Brown EJ: Normal ligand binding and signaling by CD47 (integrin-associated protein) requires a long range disulfide bond between the extracellular and membrane-spanning domains. J Biol Chem. 276:34607–34616. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hatherley D, Graham SC, Harlos K, Stuart DI and Barclay AN: Structure of signal-regulatory protein alpha: A link to antigen receptor evolution. J Biol Chem. 284:26613–26619. 2009. View Article : Google Scholar : PubMed/NCBI | |
Takada T, Matozaki T, Takeda H, Fukunaga K, Noguchi T, Fujioka Y, Okazaki I, Tsuda M, Yamao T, Ochi F and Kasuga M: Roles of the complex formation of SHPS-1 with SHP-2 in insulin-stimulated mitogen-activated protein kinase activation. J Biol Chem. 273:9234–9242. 1998. View Article : Google Scholar : PubMed/NCBI | |
Tsai RK and Discher DE: Inhibition of ‘self’ engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol. 180:989–1003. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sato-Hashimoto M, Saito Y, Ohnishi H, Iwamura H, Kanazawa Y, Kaneko T, Kusakari S, Kotani T, Mori M, Murata Y, et al: Signal regulatory protein α regulates the homeostasis of T lymphocytes in the spleen. J Immunol. 187:291–297. 2011. View Article : Google Scholar : PubMed/NCBI | |
Latour S, Tanaka H, Demeure C, Mateo V, Rubio M, Brown EJ, Maliszewski C, Lindberg FP, Oldenborg A, Ullrich A, et al: Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-alpha: Down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J Immunol. 67:2547–2554. 2001. View Article : Google Scholar | |
Saito Y, Iwamura H, Kaneko T, Ohnishi H, Murata Y, Okazawa H, Kanazawa Y, Sato-Hashimoto M, Kobayashi H, Oldenborg PA, et al: Regulation by SIRPα of dendritic cell homeostasis in lymphoid tissues. Blood. 116:3517–3525. 2010. View Article : Google Scholar : PubMed/NCBI | |
Maile LA, DeMambro VE, Wai C, Lotinun S, Aday AW, Capps BE, Beamer WG, Rosen CJ and Clemmons DR: An essential role for the association of CD47 to SHPS-1 in skeletal remodeling. J Bone Miner Res. 26:2068–2081. 2011. View Article : Google Scholar : PubMed/NCBI | |
Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD and Lindberg FP: Role of CD47 as a marker of self on red blood cells. Science. 288:2051–2054. 2000. View Article : Google Scholar : PubMed/NCBI | |
Clevers H, Loh KM and Nusse R: Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 346:12480122014. View Article : Google Scholar : PubMed/NCBI | |
Murata Y, Kotani T, Ohnishi H and Matozaki T: The CD47-SIRPα signalling system: Its physiological roles and therapeutic application. J Biochem. 155:335–344. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ferrari D, Gorini S, Callegari G and la Sala A: Shaping immune responses through the activation of dendritic cells' P2 receptors. Purinergic Signal. 3:99–107. 2007. View Article : Google Scholar : PubMed/NCBI | |
Logtenberg MEW, Scheeren FA and Schumacher TN: The CD47-SIRPα Immune Checkpoint. Immunity. 52:742–752. 2020. View Article : Google Scholar : PubMed/NCBI | |
Okazawa H, Motegi S, Ohyama N, Ohnishi H, Tomizawa T, Kaneko Y, Oldenborg PA, Ishikawa O and Matozaki T: Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol. 174:2004–2011. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa-Sekigami T, Kaneko Y, Okazawa H, Tomizawa T, Okajo J, Saito Y, Okuzawa C, Sugawara-Yokoo M, Nishiyama U, Ohnishi H, et al: SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood. 107:341–348. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yamao T, Noguchi T, Takeuchi O, Nishiyama U, Morita H, Hagiwara T, Akahori H, Kato T, Inagaki K, Okazawa H, et al: Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J Biol Chem. 277:39833–39839. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Wang H, Ide K, Wang Y, Van Rooijen N, Ohdan H and Yang YG: Human CD47 expression permits survival of porcine cells in immunodeficient mice that express SIRPα capable of binding to human CD47. Cell Transplant. 20:1915–1920. 2011. View Article : Google Scholar : PubMed/NCBI | |
Griesemer A, Yamada K and Sykes M: Xenotransplantation: Immunological hurdles and progress toward tolerance. Immunol Rev. 258:241–258. 2014. View Article : Google Scholar : PubMed/NCBI | |
Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI, Dick JE and Danska JS: Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol. 8:1313–1323. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kwong LS, Brown MH, Barclay AN and Hatherley D: Signal-regulatory protein α from the NOD mouse binds human CD47 with an exceptionally high affinity-implications for engraftment of human cells. Immunology. 143:61–67. 2014. View Article : Google Scholar : PubMed/NCBI | |
Theocharides AP, Jin L, Cheng PY, Prasolava TK, Malko AV, Ho JM, Poeppl AG, van Rooijen N, Minden MD, Danska JS, et al: Disruption of SIRPα signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. J Exp Med. 209:1883–1899. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK and Discher DE: Minimal ‘Self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 339:971–975. 2013. View Article : Google Scholar : PubMed/NCBI | |
Iwamoto C, Takenaka K, Urata S, Yamauchi T, Shima T, Kuriyama T, Daitoku S, Saito Y, Miyamoto T, Iwasaki H, et al: The BALB/c-specific polymorphic SIRPA enhances its affinity for human CD47, inhibiting phagocytosis against human cells to promote xenogeneic engraftment. Exp Hematol. 42:163–171.e1. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa-Sekigami T, Kaneko Y, Saito Y, Murata Y, Okazawa H, Ohnishi H, Oldenborg PA, Nojima Y and Matozaki T: Enhanced phagocytosis of CD47-deficient red blood cells by splenic macrophages requires SHPS-1. Biochem Biophys Res Commun. 343:1197–1200. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S, Jan M, Cha AC, Chan CK, Tan BT, et al: Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 142:699–713. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Chung H, Banan B, Manning PT, Ott KC, Lin S, Capoccia BJ, Subramanian V, Hiebsch RR, Upadhya GA, et al: Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma. Cancer Lett. 360:302–309. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, Samanta D, Gilkes DM, He J and Semenza GL: HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci USA. 112:E6215–6223. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Zhang L, Yang L, Li H, Li R, Yu J, Yang L, Wei F, Yan C, Sun Q, et al: Anti-CD47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells. Front Immunol. 8:4042017. View Article : Google Scholar : PubMed/NCBI | |
Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, Carew JS, Nawrocki ST, Persky D and Anwer F: Blocking ‘don't eat me’ signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 32:480–489. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Xu J, Liu Q, Li J and Xi Y: Expression and significance of CD47, PD1 and PDL1 in T-cell acute lymphoblastic lymphoma/leukemia. Pathol Res Pract. 215:265–271. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abe H, Saito R, Ichimura T, Iwasaki A, Yamazawa S, Shinozaki-Ushiku A, Morikawa T, Ushiku T, Yamashita H, Seto Y and Fukayama M: CD47 expression in Epstein-Barr virus-associated gastric carcinoma: Coexistence with tumor immunity lowering the ratio of CD8+/Foxp3+ T cells. Virchows Arch. 472:643–651. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Ding Y, Wan T, Deng T, Huang H and Liu J: Significance of CD47 and its association with tumor immune microenvironment heterogeneity in ovarian cancer. Front Immunol. 12:7681152021. View Article : Google Scholar : PubMed/NCBI | |
Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw AM, Baylot V, Gütgemann I, Eilers M and Felsher DW: MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 352:227–231. 2016. View Article : Google Scholar : PubMed/NCBI | |
Betancur PA, Abraham BJ, Yiu YY, Willingham SB, Khameneh F, Zarnegar M, Kuo AH, McKenna K, Kojima Y, Leeper NJ, et al: A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat Commun. 8:148022017. View Article : Google Scholar : PubMed/NCBI | |
Suzuki S, Yokobori T, Tanaka N, Sakai M, Sano A, Inose T, Sohda M, Nakajima M, Miyazaki T, Kato H and Kuwano H: CD47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. Oncol Rep. 28:465–472. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rastgoo N, Wu J, Liu A, Pourabdollah M, Atenafu EG, Reece D, Chen W and Chang H: Targeting CD47/TNFAIP8 by miR-155 overcomes drug resistance and inhibits tumor growth through induction of phagocytosis and apoptosis in multiple myeloma. Haematologica. 105:2813–2823. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang CY, Ye ZH, Huang MY and Lu JJ: Regulation of CD47 expression in cancer cells. Transl Oncol. 13:1008622020. View Article : Google Scholar : PubMed/NCBI | |
Ma R, Ortiz Serrano TP, Davis J, Prigge AD and Ridge KM: The cGAS-STING pathway: The role of self-DNA sensing in inflammatory lung disease. FASEB J. 34:13156–13170. 2020. View Article : Google Scholar : PubMed/NCBI | |
von Roemeling CA, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, Yang Z, Yang M, Deng W, Bruno KA, et al: Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 11:15082020. View Article : Google Scholar : PubMed/NCBI | |
Xu MM, Pu Y, Han D, Shi Y, Cao X, Liang H, Chen X, Li XD, Deng L, Chen ZJ, et al: Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity. 47:363–373.e5. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhong MC, Guo H, Davidson D, Mishel S, Lu Y, Rhee I, Pérez-Quintero LA, Zhang S, Cruz-Munoz ME, et al: SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature. 544:493–497. 2017. View Article : Google Scholar : PubMed/NCBI | |
He Y, Bouwstra R, Wiersma VR, de Jong M, Jan Lourens H, Fehrmann R, de Bruyn M, Ammatuna E, Huls G, van Meerten T and Bremer E: Cancer cell-expressed SLAMF7 is not required for CD47-mediated phagocytosis. Nat Commun. 10:5332019. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Yang Z and Yang Y: Potential role of CD47-directed bispecific antibodies in cancer immunotherapy. Front Immunol. 12:6860312021. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Huang Q, Xiao W, Zhao Y, Pi J, Xu H, Zhao H, Xu J, Evans CE and Jin H: Advances in anti-tumor treatments targeting the CD47/SIRPα axis. Front Immunol. 11:182020. View Article : Google Scholar : PubMed/NCBI | |
Narla RK, Modi H, Bauer D, Abbasian M, Leisten J, Piccotti JR, Kopytek S, Eckelman BP, Deveraux Q, Timmer J, et al: Modulation of CD47-SIRPα innate immune checkpoint axis with Fc-function detuned anti-CD47 therapeutic antibody. Cancer Immunol Immunother. 71:473–489. 202 View Article : Google Scholar : PubMed/NCBI | |
Kuo TC, Chen A, Harrabi O, Sockolosky JT, Zhang A, Sangalang E, Doyle LV, Kauder SE, Fontaine D, Bollini S, et al: Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity. J Hematol Oncol. 13:1602020. View Article : Google Scholar : PubMed/NCBI | |
Bian HT, Shen YW, Zhou YD, Nagle DG, Guan YY, Zhang WD and Luan X: CD47: Beyond an immune checkpoint in cancer treatment. Biochim Biophys Acta Rev Cancer. 1877:1887712022. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Shen Y, Huang W, Bao Y, Mo J, Yao L and Yuan L: Blocking CD47-SIRPα signal axis as promising immunotherapy in ovarian cancer. Cancer Control. 30:107327482311597062023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang Y, Yang Y, Weng L, Wu Q, Zhang J, Zhao P, Fang L, Shi Y and Wang P: Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther. 8:1042023. View Article : Google Scholar : PubMed/NCBI | |
Maute R, Xu J and Weissman IL: CD47-SIRPα-targeted therapeutics: Status and prospects. Immunooncol Technol. 13:1000702022. View Article : Google Scholar : PubMed/NCBI | |
Kayser S and Levis MJ: The clinical impact of the molecular landscape of acute myeloid leukemia. Haematologica. 108:308–320. 2023. View Article : Google Scholar : PubMed/NCBI | |
Berlin J, Harb W, Adjei A, Xing Y, Swiecicki P, Seetharam M, Nandagopal L, Gopal A, Xu C, Meng Y, et al: 385 A first-in-human study of lemzoparlimab, a differentiated anti-CD47 antibody, in subjects with relapsed/refractory malignancy: Initial monotherapy results. J Immuno Ther Res Cancer. 8 (Suppl 3):A233–A234. 2020. | |
Qi J, Li J, Jiang B, Jiang B, Liu H, Cao X, Zhang M, Meng Y, MA X, Jia Y, et al: A Phase I/IIa study of lemzoparlimab, a monoclonal antibody targeting CD47, in patients with relapsed and/or refractory acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS): Initial phase I results. Blood. 136:30–31. 2020. View Article : Google Scholar | |
Gan HK, Coward J, Mislang A, Cosman R, Nagrial A, Jin X, Li B, Wang ZM, Kwek KY, Xia D and Xia Y: Safety of AK117, an anti-CD47 monoclonal antibody, in patients with advanced or metastatic solid tumors in a phase I study. J Clini Oncol. 39 (Suppl 15):S26302021. View Article : Google Scholar | |
Jiang Z, Sun H, Yu J, Tian W and Song Y: Targeting CD47 for cancer immunotherapy. J Hematol Oncol. 14:1802021. View Article : Google Scholar : PubMed/NCBI | |
Qu T, Li B and Wang Y: Targeting CD47/SIRPα as a therapeutic strategy, where we are and where we are headed. Biomark Res. 10:202022. View Article : Google Scholar : PubMed/NCBI | |
Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, Manning PT, Frazier WA, Karr RW and Pereira DS: Development of AO-176, a Next-Generation Humanized Anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther. 19:835–846. 2020. View Article : Google Scholar : PubMed/NCBI | |
III HAB, Spira AI, Taylor MH, Yeku OO, Liu JF, Munster P, Hamilton EP, Thomas JS, Gatlin F, Penson RT, et al: A first-in-human study of AO-176, a highly differentiated anti-CD47 antibody, in patients with advanced solid tumors. J Clin Oncol. 39 (15_Suppl):S25162021. View Article : Google Scholar | |
Zeidan AM, DeAngelo DJ, Palmer J, Seet CS, Tallman MS, Wei X, Raymon H, Sriraman P, Kopytek S, Bewersdorf JP, et al: Phase 1 study of anti-CD47 monoclonal antibody CC-90002 in patients with relapsed/refractory acute myeloid leukemia and high-risk myelodysplastic syndromes. Ann Hematol. 101:557–569. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zeidan AM, DeAngelo DJ, Palmer JM, DeAngelo DJ, Palmer JM, Seet CS, Tallman MS, Wei X, Li YF, Hock R, et al: A Phase I study of CC-90002, a monoclonal antibody targeting CD47, in patients with relapsed and/or refractory (R/R) acute myeloid leukemia (AML) and High-risk myelodysplastic syndromes (MDS): Final results. Blood. 134:13202019. View Article : Google Scholar | |
Velliquette RW, Aeschlimann J, Kirkegaard J, Shakarian G, Lomas-Francis C and Westhoff CM: Monoclonal anti-CD47 interference in red cell and platelet testing. Transfusion. 59:730–737. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ansell SM, Maris MB, Lesokhin AM, Chen RW, Flinn IW, Sawas A, Minden MD, Villa D, Percival MM, Advani AS, et al: Phase I study of the CD47 Blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 27:2190–2199. 2021. View Article : Google Scholar : PubMed/NCBI | |
Patel K, Maris MB, Cheson BD, Zonder JA, Lesokhin AM, Keudell GV, Seymour EK, Lin GHY, Catalano T, Shou Y, et al: Ongoing, first-in-human, phase I dose escalation study of the investigational CD47-blocker TTI-622 in patients with advanced relapsed or refractory lymphoma. J Clin Oncol. 38 (15_Suppl):S30302020. View Article : Google Scholar | |
Yang H, Xun Y and You H: The landscape overview of CD47-based immunotherapy for hematological malignancies. Biomark Res. 11:152023. View Article : Google Scholar : PubMed/NCBI | |
Chow LQ, Gainor J, Lakhani N, Chunget HC, Lee KW, Lee J, Lorusso P, Bang YJ, Hodi FS, Fanning P, et al: A phase 1 study of ALX148, a CD47 blocker, in combination with established anticancer antibodies in patients with advanced malignancy. Safety. 1:362019. | |
Piccione EC, Juarez S, Liu J, Tseng S, Ryan CE, Narayanan C, Wang L, Weiskopf K and Majeti R: A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. MAbs. 7:946–956. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Li S, Chen D, Guo H, Yang C, Zhang W, Zhang L, Zhao G, Tu X, Peng L, et al: IMM0306, a fusion protein of CD20 mAb with the CD47 binding domain of SIRPα, exerts excellent cancer killing efficacy by activating both macrophages and NK cells via blockade of CD47-SIRPα interaction and FcɣR engagement by simultaneously binding to CD47 and CD20 of B cells. Leukemia. 37:695–698. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Ni H, Zhou S, He K, Gao Y, Wu W, Wu M, Wu Z, Qiu X, Zhou Y, et al: Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother. 70:365–376. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ke H, Zhang F, Wang J, Xiong L, An X, Tu X, Chen C, Wang Y, Mao M, Guo S, et al: HX009, a novel BsAb dual targeting PD1 × CD47, demonstrates potent anti-lymphoma activity in preclinical models. Sci Rep. 13:54192023. View Article : Google Scholar : PubMed/NCBI | |
Roohullah A, Ganju V, Zhang F, Zhang L, Yu T, Wilkinson K, Cooper A and de Souza P: First-in-human phase 1 dose escalation study of HX009, a novel recombinant humanized anti-PD-1 and CD47 bispecific antibody, in patients with advanced malignancies. J Clin Oncol. 39:2517. 2021. View Article : Google Scholar | |
Dheilly E, Moine V, Broyer L, Salgado-Pires S, Johnson Z, Papaioannou A, Cons L, Calloud S, Majocchi S, Rousseau F, et al: Selective blockade of the ubiquitous checkpoint receptor CD47 is enabled by dual-targeting bispecific antibodies. Mol Ther. 25:523–533. 2017. View Article : Google Scholar : PubMed/NCBI | |
Buatois V, Johnson Z, Salgado-Pires S, Papaioannou A, Hatterer E, Chauchet X, Richard F, Barba L, Daubeuf B, Cons L, et al: Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the treatment of B-Cell lymphoma and leukemia. Mol Cancer Ther. 17:1739–1751. 2018. View Article : Google Scholar : PubMed/NCBI | |
de Silva S, Fromm G, Shuptrine CW, Johannes K, Patel A, Yoo KJ, Huang K and Schreiber TH: CD40 enhances type I interferon responses downstream of CD47 blockade, bridging innate and adaptive immunity. Cancer Immunol Res. 8:230–245. 2020. View Article : Google Scholar : PubMed/NCBI | |
Golubovskaya V: CAR-T cells targeting immune checkpoint pathway players. Front Biosci (Landmark Ed). 27:1212022. View Article : Google Scholar : PubMed/NCBI | |
Feins S, Kong W, Williams EF, Milone MC and Fraietta JA: An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 94 (Suppl):S3–S9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Beckett AN, Chockley P, Pruett-Miller SM, Nguyen P, Vogel P, Sheppard H, Krenciute G, Gottschalk S and DeRenzo C: CD47 expression is critical for CAR T-cell survival in vivo. J Immunother Cancer. 11:e0058572023. View Article : Google Scholar : PubMed/NCBI | |
Golubovskaya V, Berahovich R, Zhou H, Xu S, Harto H, Li L, Chao CC, Mao MM and Wu L: CD47-CAR-T cells effectively kill target cancer cells and block pancreatic tumor growth. Cancers (Basel). 9:1392017. View Article : Google Scholar : PubMed/NCBI | |
Shu R, Evtimov VJ, Hammett MV, Nguyen NN, Zhuang J, Hudson PJ, Howard MC, Pupovac A, Trounson AO and Boyd RL: Engineered CAR-T cells targeting TAG-72 and CD47 in ovarian cancer. Mol Ther Oncolytics. 20:325–341. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Yang Y, Deng Y, Wei F, Zhao Q, Liu Y, Liu Z, Yu B and Huang Z: Delivery of CD47 blocker SIRPα-Fc by CAR-T cells enhances antitumor efficacy. J Immunother Cancer. 10:e0037372022. View Article : Google Scholar : PubMed/NCBI | |
Sloas C, Gill S and Klichinsky M: Engineered CAR-macrophages as adoptive immunotherapies for solid tumors. Front Immunol. 12:7833052021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yu Z, Tan X, Jiang H, Xu Z, Fang Y, Han D, Hong W, Wei W and Tu J: CAR-macrophage: A new immunotherapy candidate against solid tumors. Biomed Pharmacother. 139:1116052021. View Article : Google Scholar : PubMed/NCBI | |
Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty NE, et al: Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 38:947–953. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Tian L, Dai X, Yu H, Wang J, Lei A, Zhu M, Xu J, Zhao W, Zhu Y, et al: Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol. 13:1532020. View Article : Google Scholar : PubMed/NCBI | |
Abdel-Bar HM, Walters AA, Lim Y, Rouatbi N, Qin Y, Gheidari F, Han S, Osman R, Wang JT and Al-Jamal KT: An ‘eat me’ combinatory nano-formulation for systemic immunotherapy of solid tumors. Theranostics. 11:8738–8754. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen YC, Shi W, Shi JJ and Lu JJ: Progress of CD47 immune checkpoint blockade agents in anticancer therapy: A hematotoxic perspective. J Cancer Res Clin Oncol. 148:1–14. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Lai B, Zhou X, Yang S, Ge Q, Zhou M, Shi C, Xu Z and Ouyang G: The differential expression of CD47 may be related to the pathogenesis from myelodysplastic syndromes to acute myeloid leukemia. Front Oncol. 12:8729992022. View Article : Google Scholar : PubMed/NCBI | |
Shi M, Gu Y, Jin K, Fang H, Chen Y, Cao Y, Liu X, Lv K, He X, Lin C, et al: CD47 expression in gastric cancer clinical correlates and association with macrophage infiltration. Cancer Immunol Immunother. 70:1831–1840. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D and Wang Y: Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther. 6:3622021. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Wang C, Yang L, Wu J, Li M, Xiao P, Xu Z, Xu Y and Wang K: Targeting immune checkpoints on tumor-associated macrophages in tumor immunotherapy. Front Immunol. 14:11996312023. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, Sun Z, Liu Y and Wang C: Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer. 22:582023. View Article : Google Scholar : PubMed/NCBI | |
Torres ETR and Emens LA: Emerging combination immunotherapy strategies for breast cancer: Dual immune checkpoint modulation, antibody-drug conjugates and bispecific antibodies. Breast Cancer Res Treat. 191:291–302. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen SH, Dominik PK, Stanfield J, Ding S, Yang W, Kurd N, Llewellyn R, Heyen J, Wang C, Melton Z, et al: Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity. J Immunother Cancer. 9:e0034642021. View Article : Google Scholar : PubMed/NCBI | |
van de Donk N and Zweegman S: T-cell-engaging bispecific antibodies in cancer. Lancet. 402:142–158. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Lin Y and Gao Q: Bispecific antibodies targeting immunomodulatory checkpoints for cancer therapy. Cancer Biol Med. 20:181–195. 2023. View Article : Google Scholar : PubMed/NCBI | |
Olaoba OT, Ayinde KS, Lateef OM, Akintubosun MO, Lawal KA and Adelusi TI: Is the new angel better than the old devil? Challenges and opportunities in CD47-SIRPα-based cancer therapy. Crit Rev Oncol Hematol. 184:1039392023. View Article : Google Scholar : PubMed/NCBI | |
Cao A, Yi J, Tang X, Szeto CW, Wu R, Wan B, Fang X, Li S, Wang L, Wang L, et al: CD47-blocking antibody ZL-1201 promotes Tumor-associated macrophage phagocytic activity and enhances the efficacy of the therapeutic antibodies and chemotherapy. Cancer Res Commun. 2:1404–1417. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Sun L and Chen ZJ: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 17:1142–1149. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brierley CK, Staves J, Roberts C, Johnson H, Vyas P, Goodnough LT and Murphy MF: The effects of monoclonal anti-CD47 on RBCs, compatibility testing, and transfusion requirements in refractory acute myeloid leukemia. Transfusion. 59:2248–2254. 2019. View Article : Google Scholar : PubMed/NCBI |