|
1
|
Chao MP, Weissman IL and Majeti R: The
CD47-SIRPα pathway in cancer immune evasion and potential
therapeutic implications. Curr Opin Immunol. 24:225–232. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Khandelwal S, van Rooijen N and Saxena RK:
Reduced expression of CD47 during murine red blood cell (RBC)
senescence and its role in RBC clearance from the circulation.
Transfusion. 47:1725–1732. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Matlung HL, Szilagyi K, Barclay NA and van
den Berg TK: The CD47-SIRPα signaling axis as an innate immune
checkpoint in cancer. Immunol Rev. 276:145–164. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jia X, Yan B, Tian X, Liu Q, Jin J, Shi J
and Hou Y: CD47/SIRPα pathway mediates cancer immune escape and
immunotherapy. Int J Biol Sci. 17:3281–3287. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Lin F, Xiong M, Hao W, Song Y, Liu R, Yang
Y, Yuan X, Fan D, Zhang Y, Hao M, et al: A novel blockade CD47
antibody with therapeutic potential for cancer. Front Oncol.
10:6155342020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chen Q, Guo X and Ma W: Opportunities and
challenges of CD47-targeted therapy in cancer immunotherapy. Oncol
Res. 32:49–60. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Liu J, Meng Z, Xu T, Kuerban K, Wang S,
Zhang X, Fan J, Ju D, Tian W, Huang X, et al: A SIRPαFc fusion
protein conjugated with the Collagen-Binding domain for targeted
immunotherapy of non-small cell lung cancer. Front Immunol.
13:8452172022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ozaniak A, Smetanova J, Bartolini R, Rataj
M, Capkova L, Hacek J, Fialova M, Krupickova L, Striz I, Lischke R,
et al: A novel anti-CD47-targeted blockade promotes immune
activation in human soft tissue sarcoma but does not potentiate
anti-PD-1 blockade. J Cancer Res Clin Oncol. 149:3789–3801. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hao Y, Zhou X, Li Y, Li B and Cheng L: The
CD47-SIRPα axis is a promising target for cancer immunotherapies.
Int Immunopharmacol. 120:1102552023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Brown E, Hooper L, Ho T and Gresham H:
Integrin-associated protein: A 50-kD plasma membrane antigen
physically and functionally associated with integrins. J Cell Biol.
111:2785–2794. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lindberg FP, Bullard DC, Caver TE, Gresham
HD, Beaudet AL and Brown EJ: Decreased resistance to bacterial
infection and granulocyte defects in IAP-deficient mice. Science.
274:795–798. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
van Helden MJ, Zwarthoff SA, Arends RJ,
Reinieren-Beeren IMJ, Paradé MCBC, Driessen-Engels L, de Laat-Arts
K, Damming D, Santegoeds-Lenssen EWH, van Kuppeveld DWJ, et al:
BYON4228 is a pan-allelic antagonistic SIRPα antibody that
potentiates destruction of antibody-opsonized tumor cells and lacks
binding to SIRPγ on T cells. J Immunother Cancer. 11:e0065672023.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Navarro-Alvarez N and Yang YG: CD47: A new
player in phagocytosis and xenograft rejection. Cell Mol Immunol.
8:285–288. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Deng H, Wang G, Zhao S, Tao Y, Zhang Z,
Yang J and Lei Y: New hope for tumor immunotherapy: The
macrophage-related ‘do not eat me’ signaling pathway. Front
Pharmacol. 14:12289622023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hatherley D, Graham SC, Turner J, Harlos
K, Stuart DI and Barclay AN: Paired receptor specificity explained
by structures of signal regulatory proteins alone and complexed
with CD47. Mol Cell. 31:266–277. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hatherley D, Harlos K, Dunlop DC, Stuart
DI and Barclay AN: The structure of the macrophage signal
regulatory protein alpha (SIRPalpha) inhibitory receptor reveals a
binding face reminiscent of that used by T cell receptors. J Biol
Chem. 282:14567–14575. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lymn JS, Patel MK, Clunn GF, Rao SJ,
Gallagher KL and Hughes AD: Thrombospondin-1 differentially induces
chemotaxis and DNA synthesis of human venous smooth muscle cells at
the receptor-binding level. J Cell Sci. 115:4353–4360. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chung J, Gao AG and Frazier WA:
Thrombspondin acts via integrin-associated protein to activate the
platelet integrin alphaIIbbeta3. J Biol Chem. 272:14740–14746.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hayat SMG, Bianconi V, Pirro M, Jaafari
MR, Hatamipour M and Sahebkar A: CD47: Role in the immune system
and application to cancer therapy. Cell Oncol (Dordr). 43:19–30.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang T, Wang F, Xu L and Yang YG:
Structural-functional diversity of CD47 proteoforms. Front Immunol.
15:13295622024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sadallah S, Eken C, Martin PJ and
Schifferli JA: Microparticles (ectosomes) shed by stored human
platelets downregulate macrophages and modify the development of
dendritic cells. J Immunol. 186:6543–6552. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Aversa R, Sorrentino A, Esposito R,
Ambrosio MR, Amato A, Zambelli A, Ciccodicola A, D'Apice L and
Costa V: Alternative splicing in adhesion- and motility-related
genes in breast cancer. Int J Mol Sci. 17:1212016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Reinhold MI, Lindberg FP, Plas D, Reynolds
S, Peters MG and Brown EJ: In vivo expression of alternatively
spliced forms of integrin-associated protein (CD47). J Cell Sci.
108:3419–3425. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Barclay AN and Van den Berg TK: The
interaction between signal regulatory protein alpha (SIRPα) and
CD47: Structure, function, and therapeutic target. Annu Rev
Immunol. 32:25–50. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lee EH, Hsieh YP, Yang CL, Tsai KJ and Liu
CH: Induction of integrin-associated protein (IAP) mRNA expression
during memory consolidation in rat hippocampus. Eur J Neurosci.
12:1105–1112. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ratnikova NM, Lezhnin YN, Frolova EI,
Kravchenko JE and Chumakov SP: CD47 receptor as a primary target
for cancer therapy. Mol Biol (Mosk). 51:251–261. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Frazier WA, Gao AG, Dimitry J, Chung J,
Brown EJ, Lindberg FP and Linder ME: The thrombospondin receptor
integrin-associated protein (CD47) functionally couples to
heterotrimeric Gi. J Biol Chem. 274:8554–8560. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
N'Diaye EN and Brown EJ: The
ubiquitin-related protein PLIC-1 regulates heterotrimeric G protein
function through association with Gbetagamma. J Cell Biol.
163:1157–1165. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sick E, Boukhari A, Deramaudt T, Rondé P,
Bucher B, André P, Gies JP and Takeda K: Activation of CD47
receptors causes proliferation of human astrocytoma but not normal
astrocytes via an Akt-dependent pathway. Glia. 59:308–319. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mateo V, Brown EJ, Biron G, Rubio M,
Fischer A, Deist FL and Sarfati M: Mechanisms of CD47-induced
caspase-independent cell death in normal and leukemic cells: Link
between phosphatidylserine exposure and cytoskeleton organization.
Blood. 100:2882–2890. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Soto-Pantoja DR, Kaur S and Roberts DD:
CD47 signaling pathways controlling cellular differentiation and
responses to stress. Crit Rev Biochem Mol Biol. 50:212–230. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Brown EJ and Frazier WA:
Integrin-associated protein (CD47) and its ligands. Trends Cell
Biol. 11:130–135. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Murata Y, Saito Y, Kotani T and Matozaki
T: Blockade of CD47 or SIRPα: A new cancer immunotherapy. Expert
Opin Ther Targets. 24:945–951. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Manna PP and Frazier WA: The mechanism of
CD47-dependent killing of T cells: Heterotrimeric Gi-dependent
inhibition of protein kinase A. J Immunol. 170:3544–3553. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lindberg FP, Gresham HD, Reinhold MI and
Brown EJ: Integrin-associated protein immunoglobulin domain is
necessary for efficient vitronectin bead binding. J Cell Biol.
134:1313–1322. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Brittain JE, Han J, Ataga KI, Orringer EP
and Parise LV: Mechanism of CD47-induced alpha4beta1 integrin
activation and adhesion in sickle reticulocytes. J Biol Chem.
279:42393–42402. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Orazizadeh M, Lee HS, Groenendijk B,
Sadler SJ, Wright MO, Lindberg FP and Salter DM: CD47 associates
with alpha 5 integrin and regulates responses of human articular
chondrocytes to mechanical stimulation in an in vitro model.
Arthritis Res Ther. 10:R42008. View
Article : Google Scholar : PubMed/NCBI
|
|
38
|
Koenigsknecht J and Landreth G: Microglial
phagocytosis of fibrillar beta-amyloid through a beta1
integrin-dependent mechanism. J Neurosci. 24:9838–9846. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang K, Li M, Yin L, Fu G and Liu Z: Role
of thrombospondin-1 and thrombospondin-2 in cardiovascular diseases
(Review). Int J Mol Med. 45:1275–1293. 2020.PubMed/NCBI
|
|
40
|
Adams JC and Lawler J: The
thrombospondins. Cold Spring Harb Perspect Biol. 3:a0097122011.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Leclair P and Lim CJ: CD47-independent
effects mediated by the TSP-derived 4N1K peptide. PLoS One.
9:e983582014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Isenberg JS, Romeo MJ, Yu C, Yu CK, Nghiem
K, Monsale J, Rick ME, Wink DA, Frazier WA and Roberts DD:
Thrombospondin-1 stimulates platelet aggregation by blocking the
antithrombotic activity of nitric oxide/cGMP signaling. Blood.
111:613–623. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Jeanne A, Sarazin T, Charlé M, Moali C,
Fichel C, Boulagnon-Rombi C, Callewaert M, Andry MC, Diesis E,
Delolme F, et al: Targeting ovarian carcinoma with TSP-1: CD47
antagonist TAX2 activates Anti-Tumor immunity. Cancers (Basel).
13:50192021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kharitonenkov A, Chen Z, Sures I, Wang H,
Schilling J and Ullrich A: A family of proteins that inhibit
signalling through tyrosine kinase receptors. Nature. 386:181–186.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Advani R, Flinn I, Popplewell L, Forero A,
Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP,
et al: CD47 Blockade by Hu5F9-G4 and rituximab in Non-Hodgkin's
lymphoma. N Engl J Med. 379:1711–1721. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Barclay AN and Brown MH: The SIRP family
of receptors and immune regulation. Nat Rev Immunol. 6:457–464.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX
and Weissman IL: Phagocytosis checkpoints as new targets for cancer
immunotherapy. Nat Rev Cancer. 19:568–586. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhao H, Song S, Ma J, Yan Z, Xie H, Feng Y
and Che S: CD47 as a promising therapeutic target in oncology.
Front Immunol. 13:7574802022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Nakaishi A, Hirose M, Yoshimura M, Oneyama
C, Saito K, Kuki N, Matsuda M, Honma N, Ohnishi H, Matozaki T, et
al: Structural insight into the specific interaction between murine
SHPS-1/SIRP alpha and its ligand CD47. J Mol Biol. 375:650–660.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Vernon-Wilson EF, Kee WJ, Willis AC,
Barclay AN, Simmons DL and Brown MH: CD47 is a ligand for rat
macrophage membrane signal regulatory protein SIRP (OX41) and human
SIRPalpha 1. Eur J Immunol. 30:2130–2137. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Han X, Sterling H, Chen Y, Saginario C,
Brown EJ, Frazier WA, Lindberg FP and Vignery A: CD47, a ligand for
the macrophage fusion receptor, participates in macrophage
multinucleation. J Biol Chem. 275:37984–37992. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Rebres RA, Vaz LE, Green JM and Brown EJ:
Normal ligand binding and signaling by CD47 (integrin-associated
protein) requires a long range disulfide bond between the
extracellular and membrane-spanning domains. J Biol Chem.
276:34607–34616. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hatherley D, Graham SC, Harlos K, Stuart
DI and Barclay AN: Structure of signal-regulatory protein alpha: A
link to antigen receptor evolution. J Biol Chem. 284:26613–26619.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Takada T, Matozaki T, Takeda H, Fukunaga
K, Noguchi T, Fujioka Y, Okazaki I, Tsuda M, Yamao T, Ochi F and
Kasuga M: Roles of the complex formation of SHPS-1 with SHP-2 in
insulin-stimulated mitogen-activated protein kinase activation. J
Biol Chem. 273:9234–9242. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tsai RK and Discher DE: Inhibition of
‘self’ engulfment through deactivation of myosin-II at the
phagocytic synapse between human cells. J Cell Biol. 180:989–1003.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sato-Hashimoto M, Saito Y, Ohnishi H,
Iwamura H, Kanazawa Y, Kaneko T, Kusakari S, Kotani T, Mori M,
Murata Y, et al: Signal regulatory protein α regulates the
homeostasis of T lymphocytes in the spleen. J Immunol. 187:291–297.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Latour S, Tanaka H, Demeure C, Mateo V,
Rubio M, Brown EJ, Maliszewski C, Lindberg FP, Oldenborg A, Ullrich
A, et al: Bidirectional negative regulation of human T and
dendritic cells by CD47 and its cognate receptor signal-regulator
protein-alpha: Down-regulation of IL-12 responsiveness and
inhibition of dendritic cell activation. J Immunol. 67:2547–2554.
2001. View Article : Google Scholar
|
|
58
|
Saito Y, Iwamura H, Kaneko T, Ohnishi H,
Murata Y, Okazawa H, Kanazawa Y, Sato-Hashimoto M, Kobayashi H,
Oldenborg PA, et al: Regulation by SIRPα of dendritic cell
homeostasis in lymphoid tissues. Blood. 116:3517–3525. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Maile LA, DeMambro VE, Wai C, Lotinun S,
Aday AW, Capps BE, Beamer WG, Rosen CJ and Clemmons DR: An
essential role for the association of CD47 to SHPS-1 in skeletal
remodeling. J Bone Miner Res. 26:2068–2081. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Oldenborg PA, Zheleznyak A, Fang YF,
Lagenaur CF, Gresham HD and Lindberg FP: Role of CD47 as a marker
of self on red blood cells. Science. 288:2051–2054. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Clevers H, Loh KM and Nusse R: Stem cell
signaling. An integral program for tissue renewal and regeneration:
Wnt signaling and stem cell control. Science. 346:12480122014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Murata Y, Kotani T, Ohnishi H and Matozaki
T: The CD47-SIRPα signalling system: Its physiological roles and
therapeutic application. J Biochem. 155:335–344. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ferrari D, Gorini S, Callegari G and la
Sala A: Shaping immune responses through the activation of
dendritic cells' P2 receptors. Purinergic Signal. 3:99–107. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Logtenberg MEW, Scheeren FA and Schumacher
TN: The CD47-SIRPα Immune Checkpoint. Immunity. 52:742–752. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Okazawa H, Motegi S, Ohyama N, Ohnishi H,
Tomizawa T, Kaneko Y, Oldenborg PA, Ishikawa O and Matozaki T:
Negative regulation of phagocytosis in macrophages by the
CD47-SHPS-1 system. J Immunol. 174:2004–2011. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ishikawa-Sekigami T, Kaneko Y, Okazawa H,
Tomizawa T, Okajo J, Saito Y, Okuzawa C, Sugawara-Yokoo M,
Nishiyama U, Ohnishi H, et al: SHPS-1 promotes the survival of
circulating erythrocytes through inhibition of phagocytosis by
splenic macrophages. Blood. 107:341–348. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yamao T, Noguchi T, Takeuchi O, Nishiyama
U, Morita H, Hagiwara T, Akahori H, Kato T, Inagaki K, Okazawa H,
et al: Negative regulation of platelet clearance and of the
macrophage phagocytic response by the transmembrane glycoprotein
SHPS-1. J Biol Chem. 277:39833–39839. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang C, Wang H, Ide K, Wang Y, Van Rooijen
N, Ohdan H and Yang YG: Human CD47 expression permits survival of
porcine cells in immunodeficient mice that express SIRPα capable of
binding to human CD47. Cell Transplant. 20:1915–1920. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Griesemer A, Yamada K and Sykes M:
Xenotransplantation: Immunological hurdles and progress toward
tolerance. Immunol Rev. 258:241–258. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Takenaka K, Prasolava TK, Wang JC,
Mortin-Toth SM, Khalouei S, Gan OI, Dick JE and Danska JS:
Polymorphism in Sirpa modulates engraftment of human hematopoietic
stem cells. Nat Immunol. 8:1313–1323. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kwong LS, Brown MH, Barclay AN and
Hatherley D: Signal-regulatory protein α from the NOD mouse binds
human CD47 with an exceptionally high affinity-implications for
engraftment of human cells. Immunology. 143:61–67. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Theocharides AP, Jin L, Cheng PY,
Prasolava TK, Malko AV, Ho JM, Poeppl AG, van Rooijen N, Minden MD,
Danska JS, et al: Disruption of SIRPα signaling in macrophages
eliminates human acute myeloid leukemia stem cells in xenografts. J
Exp Med. 209:1883–1899. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Rodriguez PL, Harada T, Christian DA,
Pantano DA, Tsai RK and Discher DE: Minimal ‘Self’ peptides that
inhibit phagocytic clearance and enhance delivery of nanoparticles.
Science. 339:971–975. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Iwamoto C, Takenaka K, Urata S, Yamauchi
T, Shima T, Kuriyama T, Daitoku S, Saito Y, Miyamoto T, Iwasaki H,
et al: The BALB/c-specific polymorphic SIRPA enhances its affinity
for human CD47, inhibiting phagocytosis against human cells to
promote xenogeneic engraftment. Exp Hematol. 42:163–171.e1. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ishikawa-Sekigami T, Kaneko Y, Saito Y,
Murata Y, Okazawa H, Ohnishi H, Oldenborg PA, Nojima Y and Matozaki
T: Enhanced phagocytosis of CD47-deficient red blood cells by
splenic macrophages requires SHPS-1. Biochem Biophys Res Commun.
343:1197–1200. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chao MP, Alizadeh AA, Tang C, Myklebust
JH, Varghese B, Gill S, Jan M, Cha AC, Chan CK, Tan BT, et al:
Anti-CD47 antibody synergizes with rituximab to promote
phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 142:699–713.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Xiao Z, Chung H, Banan B, Manning PT, Ott
KC, Lin S, Capoccia BJ, Subramanian V, Hiebsch RR, Upadhya GA, et
al: Antibody mediated therapy targeting CD47 inhibits tumor
progression of hepatocellular carcinoma. Cancer Lett. 360:302–309.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang H, Lu H, Xiang L, Bullen JW, Zhang
C, Samanta D, Gilkes DM, He J and Semenza GL: HIF-1 regulates CD47
expression in breast cancer cells to promote evasion of
phagocytosis and maintenance of cancer stem cells. Proc Natl Acad
Sci USA. 112:E6215–6223. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Liu L, Zhang L, Yang L, Li H, Li R, Yu J,
Yang L, Wei F, Yan C, Sun Q, et al: Anti-CD47 antibody as a
targeted therapeutic agent for human lung cancer and cancer stem
cells. Front Immunol. 8:4042017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Russ A, Hua AB, Montfort WR, Rahman B,
Riaz IB, Khalid MU, Carew JS, Nawrocki ST, Persky D and Anwer F:
Blocking ‘don't eat me’ signal of CD47-SIRPα in hematological
malignancies, an in-depth review. Blood Rev. 32:480–489. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yang K, Xu J, Liu Q, Li J and Xi Y:
Expression and significance of CD47, PD1 and PDL1 in T-cell acute
lymphoblastic lymphoma/leukemia. Pathol Res Pract. 215:265–271.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Abe H, Saito R, Ichimura T, Iwasaki A,
Yamazawa S, Shinozaki-Ushiku A, Morikawa T, Ushiku T, Yamashita H,
Seto Y and Fukayama M: CD47 expression in Epstein-Barr
virus-associated gastric carcinoma: Coexistence with tumor immunity
lowering the ratio of CD8+/Foxp3+ T cells.
Virchows Arch. 472:643–651. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yu L, Ding Y, Wan T, Deng T, Huang H and
Liu J: Significance of CD47 and its association with tumor immune
microenvironment heterogeneity in ovarian cancer. Front Immunol.
12:7681152021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Casey SC, Tong L, Li Y, Do R, Walz S,
Fitzgerald KN, Gouw AM, Baylot V, Gütgemann I, Eilers M and Felsher
DW: MYC regulates the antitumor immune response through CD47 and
PD-L1. Science. 352:227–231. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Betancur PA, Abraham BJ, Yiu YY,
Willingham SB, Khameneh F, Zarnegar M, Kuo AH, McKenna K, Kojima Y,
Leeper NJ, et al: A CD47-associated super-enhancer links
pro-inflammatory signalling to CD47 upregulation in breast cancer.
Nat Commun. 8:148022017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Suzuki S, Yokobori T, Tanaka N, Sakai M,
Sano A, Inose T, Sohda M, Nakajima M, Miyazaki T, Kato H and Kuwano
H: CD47 expression regulated by the miR-133a tumor suppressor is a
novel prognostic marker in esophageal squamous cell carcinoma.
Oncol Rep. 28:465–472. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Rastgoo N, Wu J, Liu A, Pourabdollah M,
Atenafu EG, Reece D, Chen W and Chang H: Targeting CD47/TNFAIP8 by
miR-155 overcomes drug resistance and inhibits tumor growth through
induction of phagocytosis and apoptosis in multiple myeloma.
Haematologica. 105:2813–2823. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Huang CY, Ye ZH, Huang MY and Lu JJ:
Regulation of CD47 expression in cancer cells. Transl Oncol.
13:1008622020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ma R, Ortiz Serrano TP, Davis J, Prigge AD
and Ridge KM: The cGAS-STING pathway: The role of self-DNA sensing
in inflammatory lung disease. FASEB J. 34:13156–13170. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
von Roemeling CA, Wang Y, Qie Y, Yuan H,
Zhao H, Liu X, Yang Z, Yang M, Deng W, Bruno KA, et al: Therapeutic
modulation of phagocytosis in glioblastoma can activate both innate
and adaptive antitumour immunity. Nat Commun. 11:15082020.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Xu MM, Pu Y, Han D, Shi Y, Cao X, Liang H,
Chen X, Li XD, Deng L, Chen ZJ, et al: Dendritic cells but not
macrophages sense tumor mitochondrial DNA for cross-priming through
signal regulatory protein α signaling. Immunity. 47:363–373.e5.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chen J, Zhong MC, Guo H, Davidson D,
Mishel S, Lu Y, Rhee I, Pérez-Quintero LA, Zhang S, Cruz-Munoz ME,
et al: SLAMF7 is critical for phagocytosis of haematopoietic tumour
cells via Mac-1 integrin. Nature. 544:493–497. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
He Y, Bouwstra R, Wiersma VR, de Jong M,
Jan Lourens H, Fehrmann R, de Bruyn M, Ammatuna E, Huls G, van
Meerten T and Bremer E: Cancer cell-expressed SLAMF7 is not
required for CD47-mediated phagocytosis. Nat Commun. 10:5332019.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yang Y, Yang Z and Yang Y: Potential role
of CD47-directed bispecific antibodies in cancer immunotherapy.
Front Immunol. 12:6860312021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang W, Huang Q, Xiao W, Zhao Y, Pi J, Xu
H, Zhao H, Xu J, Evans CE and Jin H: Advances in anti-tumor
treatments targeting the CD47/SIRPα axis. Front Immunol. 11:182020.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Narla RK, Modi H, Bauer D, Abbasian M,
Leisten J, Piccotti JR, Kopytek S, Eckelman BP, Deveraux Q, Timmer
J, et al: Modulation of CD47-SIRPα innate immune checkpoint axis
with Fc-function detuned anti-CD47 therapeutic antibody. Cancer
Immunol Immunother. 71:473–489. 202 View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kuo TC, Chen A, Harrabi O, Sockolosky JT,
Zhang A, Sangalang E, Doyle LV, Kauder SE, Fontaine D, Bollini S,
et al: Targeting the myeloid checkpoint receptor SIRPα potentiates
innate and adaptive immune responses to promote anti-tumor
activity. J Hematol Oncol. 13:1602020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Bian HT, Shen YW, Zhou YD, Nagle DG, Guan
YY, Zhang WD and Luan X: CD47: Beyond an immune checkpoint in
cancer treatment. Biochim Biophys Acta Rev Cancer. 1877:1887712022.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Luo X, Shen Y, Huang W, Bao Y, Mo J, Yao L
and Yuan L: Blocking CD47-SIRPα signal axis as promising
immunotherapy in ovarian cancer. Cancer Control.
30:107327482311597062023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liu Y, Wang Y, Yang Y, Weng L, Wu Q, Zhang
J, Zhao P, Fang L, Shi Y and Wang P: Emerging phagocytosis
checkpoints in cancer immunotherapy. Signal Transduct Target Ther.
8:1042023. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Maute R, Xu J and Weissman IL:
CD47-SIRPα-targeted therapeutics: Status and prospects. Immunooncol
Technol. 13:1000702022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Kayser S and Levis MJ: The clinical impact
of the molecular landscape of acute myeloid leukemia.
Haematologica. 108:308–320. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Berlin J, Harb W, Adjei A, Xing Y,
Swiecicki P, Seetharam M, Nandagopal L, Gopal A, Xu C, Meng Y, et
al: 385 A first-in-human study of lemzoparlimab, a differentiated
anti-CD47 antibody, in subjects with relapsed/refractory
malignancy: Initial monotherapy results. J Immuno Ther Res Cancer.
8 (Suppl 3):A233–A234. 2020.
|
|
104
|
Qi J, Li J, Jiang B, Jiang B, Liu H, Cao
X, Zhang M, Meng Y, MA X, Jia Y, et al: A Phase I/IIa study of
lemzoparlimab, a monoclonal antibody targeting CD47, in patients
with relapsed and/or refractory acute myeloid leukemia (AML) and
myelodysplastic syndrome (MDS): Initial phase I results. Blood.
136:30–31. 2020. View Article : Google Scholar
|
|
105
|
Gan HK, Coward J, Mislang A, Cosman R,
Nagrial A, Jin X, Li B, Wang ZM, Kwek KY, Xia D and Xia Y: Safety
of AK117, an anti-CD47 monoclonal antibody, in patients with
advanced or metastatic solid tumors in a phase I study. J Clini
Oncol. 39 (Suppl 15):S26302021. View Article : Google Scholar
|
|
106
|
Jiang Z, Sun H, Yu J, Tian W and Song Y:
Targeting CD47 for cancer immunotherapy. J Hematol Oncol.
14:1802021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Qu T, Li B and Wang Y: Targeting
CD47/SIRPα as a therapeutic strategy, where we are and where we are
headed. Biomark Res. 10:202022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Puro RJ, Bouchlaka MN, Hiebsch RR,
Capoccia BJ, Donio MJ, Manning PT, Frazier WA, Karr RW and Pereira
DS: Development of AO-176, a Next-Generation Humanized Anti-CD47
antibody with novel anticancer properties and negligible red blood
cell binding. Mol Cancer Ther. 19:835–846. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
III HAB, Spira AI, Taylor MH, Yeku OO, Liu
JF, Munster P, Hamilton EP, Thomas JS, Gatlin F, Penson RT, et al:
A first-in-human study of AO-176, a highly differentiated anti-CD47
antibody, in patients with advanced solid tumors. J Clin Oncol. 39
(15_Suppl):S25162021. View Article : Google Scholar
|
|
110
|
Zeidan AM, DeAngelo DJ, Palmer J, Seet CS,
Tallman MS, Wei X, Raymon H, Sriraman P, Kopytek S, Bewersdorf JP,
et al: Phase 1 study of anti-CD47 monoclonal antibody CC-90002 in
patients with relapsed/refractory acute myeloid leukemia and
high-risk myelodysplastic syndromes. Ann Hematol. 101:557–569.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zeidan AM, DeAngelo DJ, Palmer JM,
DeAngelo DJ, Palmer JM, Seet CS, Tallman MS, Wei X, Li YF, Hock R,
et al: A Phase I study of CC-90002, a monoclonal antibody targeting
CD47, in patients with relapsed and/or refractory (R/R) acute
myeloid leukemia (AML) and High-risk myelodysplastic syndromes
(MDS): Final results. Blood. 134:13202019. View Article : Google Scholar
|
|
112
|
Velliquette RW, Aeschlimann J, Kirkegaard
J, Shakarian G, Lomas-Francis C and Westhoff CM: Monoclonal
anti-CD47 interference in red cell and platelet testing.
Transfusion. 59:730–737. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ansell SM, Maris MB, Lesokhin AM, Chen RW,
Flinn IW, Sawas A, Minden MD, Villa D, Percival MM, Advani AS, et
al: Phase I study of the CD47 Blocker TTI-621 in patients with
relapsed or refractory hematologic malignancies. Clin Cancer Res.
27:2190–2199. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Patel K, Maris MB, Cheson BD, Zonder JA,
Lesokhin AM, Keudell GV, Seymour EK, Lin GHY, Catalano T, Shou Y,
et al: Ongoing, first-in-human, phase I dose escalation study of
the investigational CD47-blocker TTI-622 in patients with advanced
relapsed or refractory lymphoma. J Clin Oncol. 38
(15_Suppl):S30302020. View Article : Google Scholar
|
|
115
|
Yang H, Xun Y and You H: The landscape
overview of CD47-based immunotherapy for hematological
malignancies. Biomark Res. 11:152023. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Chow LQ, Gainor J, Lakhani N, Chunget HC,
Lee KW, Lee J, Lorusso P, Bang YJ, Hodi FS, Fanning P, et al: A
phase 1 study of ALX148, a CD47 blocker, in combination with
established anticancer antibodies in patients with advanced
malignancy. Safety. 1:362019.
|
|
117
|
Piccione EC, Juarez S, Liu J, Tseng S,
Ryan CE, Narayanan C, Wang L, Weiskopf K and Majeti R: A bispecific
antibody targeting CD47 and CD20 selectively binds and eliminates
dual antigen expressing lymphoma cells. MAbs. 7:946–956. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yu J, Li S, Chen D, Guo H, Yang C, Zhang
W, Zhang L, Zhao G, Tu X, Peng L, et al: IMM0306, a fusion protein
of CD20 mAb with the CD47 binding domain of SIRPα, exerts excellent
cancer killing efficacy by activating both macrophages and NK cells
via blockade of CD47-SIRPα interaction and FcɣR engagement by
simultaneously binding to CD47 and CD20 of B cells. Leukemia.
37:695–698. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wang Y, Ni H, Zhou S, He K, Gao Y, Wu W,
Wu M, Wu Z, Qiu X, Zhou Y, et al: Tumor-selective blockade of CD47
signaling with a CD47/PD-L1 bispecific antibody for enhanced
anti-tumor activity and limited toxicity. Cancer Immunol
Immunother. 70:365–376. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Ke H, Zhang F, Wang J, Xiong L, An X, Tu
X, Chen C, Wang Y, Mao M, Guo S, et al: HX009, a novel BsAb dual
targeting PD1 × CD47, demonstrates potent anti-lymphoma activity in
preclinical models. Sci Rep. 13:54192023. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Roohullah A, Ganju V, Zhang F, Zhang L, Yu
T, Wilkinson K, Cooper A and de Souza P: First-in-human phase 1
dose escalation study of HX009, a novel recombinant humanized
anti-PD-1 and CD47 bispecific antibody, in patients with advanced
malignancies. J Clin Oncol. 39:2517. 2021. View Article : Google Scholar
|
|
122
|
Dheilly E, Moine V, Broyer L,
Salgado-Pires S, Johnson Z, Papaioannou A, Cons L, Calloud S,
Majocchi S, Rousseau F, et al: Selective blockade of the ubiquitous
checkpoint receptor CD47 is enabled by dual-targeting bispecific
antibodies. Mol Ther. 25:523–533. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Buatois V, Johnson Z, Salgado-Pires S,
Papaioannou A, Hatterer E, Chauchet X, Richard F, Barba L, Daubeuf
B, Cons L, et al: Preclinical development of a bispecific antibody
that safely and effectively targets CD19 and CD47 for the treatment
of B-Cell lymphoma and leukemia. Mol Cancer Ther. 17:1739–1751.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
de Silva S, Fromm G, Shuptrine CW,
Johannes K, Patel A, Yoo KJ, Huang K and Schreiber TH: CD40
enhances type I interferon responses downstream of CD47 blockade,
bridging innate and adaptive immunity. Cancer Immunol Res.
8:230–245. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Golubovskaya V: CAR-T cells targeting
immune checkpoint pathway players. Front Biosci (Landmark Ed).
27:1212022. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Feins S, Kong W, Williams EF, Milone MC
and Fraietta JA: An introduction to chimeric antigen receptor (CAR)
T-cell immunotherapy for human cancer. Am J Hematol. 94
(Suppl):S3–S9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Beckett AN, Chockley P, Pruett-Miller SM,
Nguyen P, Vogel P, Sheppard H, Krenciute G, Gottschalk S and
DeRenzo C: CD47 expression is critical for CAR T-cell survival in
vivo. J Immunother Cancer. 11:e0058572023. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Golubovskaya V, Berahovich R, Zhou H, Xu
S, Harto H, Li L, Chao CC, Mao MM and Wu L: CD47-CAR-T cells
effectively kill target cancer cells and block pancreatic tumor
growth. Cancers (Basel). 9:1392017. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Shu R, Evtimov VJ, Hammett MV, Nguyen NN,
Zhuang J, Hudson PJ, Howard MC, Pupovac A, Trounson AO and Boyd RL:
Engineered CAR-T cells targeting TAG-72 and CD47 in ovarian cancer.
Mol Ther Oncolytics. 20:325–341. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Chen H, Yang Y, Deng Y, Wei F, Zhao Q, Liu
Y, Liu Z, Yu B and Huang Z: Delivery of CD47 blocker SIRPα-Fc by
CAR-T cells enhances antitumor efficacy. J Immunother Cancer.
10:e0037372022. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Sloas C, Gill S and Klichinsky M:
Engineered CAR-macrophages as adoptive immunotherapies for solid
tumors. Front Immunol. 12:7833052021. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Chen Y, Yu Z, Tan X, Jiang H, Xu Z, Fang
Y, Han D, Hong W, Wei W and Tu J: CAR-macrophage: A new
immunotherapy candidate against solid tumors. Biomed Pharmacother.
139:1116052021. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Klichinsky M, Ruella M, Shestova O, Lu XM,
Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty
NE, et al: Human chimeric antigen receptor macrophages for cancer
immunotherapy. Nat Biotechnol. 38:947–953. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Zhang L, Tian L, Dai X, Yu H, Wang J, Lei
A, Zhu M, Xu J, Zhao W, Zhu Y, et al: Pluripotent stem cell-derived
CAR-macrophage cells with antigen-dependent anti-cancer cell
functions. J Hematol Oncol. 13:1532020. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Abdel-Bar HM, Walters AA, Lim Y, Rouatbi
N, Qin Y, Gheidari F, Han S, Osman R, Wang JT and Al-Jamal KT: An
‘eat me’ combinatory nano-formulation for systemic immunotherapy of
solid tumors. Theranostics. 11:8738–8754. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Chen YC, Shi W, Shi JJ and Lu JJ: Progress
of CD47 immune checkpoint blockade agents in anticancer therapy: A
hematotoxic perspective. J Cancer Res Clin Oncol. 148:1–14. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Yan X, Lai B, Zhou X, Yang S, Ge Q, Zhou
M, Shi C, Xu Z and Ouyang G: The differential expression of CD47
may be related to the pathogenesis from myelodysplastic syndromes
to acute myeloid leukemia. Front Oncol. 12:8729992022. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Shi M, Gu Y, Jin K, Fang H, Chen Y, Cao Y,
Liu X, Lv K, He X, Lin C, et al: CD47 expression in gastric cancer
clinical correlates and association with macrophage infiltration.
Cancer Immunol Immunother. 70:1831–1840. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y,
Shu P, Li D and Wang Y: Myeloid-derived suppressor cells as
immunosuppressive regulators and therapeutic targets in cancer.
Signal Transduct Target Ther. 6:3622021. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Xu S, Wang C, Yang L, Wu J, Li M, Xiao P,
Xu Z, Xu Y and Wang K: Targeting immune checkpoints on
tumor-associated macrophages in tumor immunotherapy. Front Immunol.
14:11996312023. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan
W, Sun Z, Liu Y and Wang C: Roles of tumor-associated macrophages
in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer.
22:582023. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Torres ETR and Emens LA: Emerging
combination immunotherapy strategies for breast cancer: Dual immune
checkpoint modulation, antibody-drug conjugates and bispecific
antibodies. Breast Cancer Res Treat. 191:291–302. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Chen SH, Dominik PK, Stanfield J, Ding S,
Yang W, Kurd N, Llewellyn R, Heyen J, Wang C, Melton Z, et al: Dual
checkpoint blockade of CD47 and PD-L1 using an affinity-tuned
bispecific antibody maximizes antitumor immunity. J Immunother
Cancer. 9:e0034642021. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
van de Donk N and Zweegman S:
T-cell-engaging bispecific antibodies in cancer. Lancet.
402:142–158. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Zhang T, Lin Y and Gao Q: Bispecific
antibodies targeting immunomodulatory checkpoints for cancer
therapy. Cancer Biol Med. 20:181–195. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Olaoba OT, Ayinde KS, Lateef OM,
Akintubosun MO, Lawal KA and Adelusi TI: Is the new angel better
than the old devil? Challenges and opportunities in
CD47-SIRPα-based cancer therapy. Crit Rev Oncol Hematol.
184:1039392023. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Cao A, Yi J, Tang X, Szeto CW, Wu R, Wan
B, Fang X, Li S, Wang L, Wang L, et al: CD47-blocking antibody
ZL-1201 promotes Tumor-associated macrophage phagocytic activity
and enhances the efficacy of the therapeutic antibodies and
chemotherapy. Cancer Res Commun. 2:1404–1417. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Chen Q, Sun L and Chen ZJ: Regulation and
function of the cGAS-STING pathway of cytosolic DNA sensing. Nat
Immunol. 17:1142–1149. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Brierley CK, Staves J, Roberts C, Johnson
H, Vyas P, Goodnough LT and Murphy MF: The effects of monoclonal
anti-CD47 on RBCs, compatibility testing, and transfusion
requirements in refractory acute myeloid leukemia. Transfusion.
59:2248–2254. 2019. View Article : Google Scholar : PubMed/NCBI
|