Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
June-2024 Volume 27 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 27 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review)

  • Authors:
    • Fan Wu
    • Hongyuan Pang
    • Fan Li
    • Mengqing Hua
    • Chuanwang Song
    • Jie Tang
  • View Affiliations / Copyright

    Affiliations: Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 256
    |
    Published online on: April 9, 2024
       https://doi.org/10.3892/ol.2024.14389
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cluster of differentiation 47 (CD47) is a transmembrane protein that is widely and moderately expressed on the surface of various cells and can have an essential role in mediating cell proliferation, migration, phagocytosis, apoptosis, immune homeostasis and other related responses by binding to its ligands, integrins, thrombospondin‑1 and signal regulatory protein α. The poor prognosis of cancer patients is closely associated with high expression of CD47 in glioblastoma, ovarian cancer, breast cancer, bladder cancer, colon cancer and hepatocellular carcinoma. Upregulation of CD47 expression facilitates the growth of numerous types of tumor cells, while downregulation of its expression promotes phagocytosis of tumor cells by macrophages, thereby limiting tumor growth. In addition, blocking CD47 activates the cyclic GMP‑AMP (cGAMP) synthase/cGAMP/interferon gene stimulating factor signaling pathway and initiates an adaptive immune response that kills tumor cells. The present review describes the structure, function and interactions of CD47 with its ligands, as well as its regulation of phagocytosis and tumor cell fate. It summarizes the therapeutics, mechanisms of action, research advances and challenges of targeting CD47. In addition, this paper provides an overview of the latest therapeutic options for targeting CD47, such as chimeric antigen receptor (CAR) T‑cells, CAR macrophages and nanotechnology‑based delivery systems, which are essential for future clinical research on targeting CD47.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Chao MP, Weissman IL and Majeti R: The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 24:225–232. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Khandelwal S, van Rooijen N and Saxena RK: Reduced expression of CD47 during murine red blood cell (RBC) senescence and its role in RBC clearance from the circulation. Transfusion. 47:1725–1732. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Matlung HL, Szilagyi K, Barclay NA and van den Berg TK: The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol Rev. 276:145–164. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Jia X, Yan B, Tian X, Liu Q, Jin J, Shi J and Hou Y: CD47/SIRPα pathway mediates cancer immune escape and immunotherapy. Int J Biol Sci. 17:3281–3287. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Lin F, Xiong M, Hao W, Song Y, Liu R, Yang Y, Yuan X, Fan D, Zhang Y, Hao M, et al: A novel blockade CD47 antibody with therapeutic potential for cancer. Front Oncol. 10:6155342020. View Article : Google Scholar : PubMed/NCBI

6 

Chen Q, Guo X and Ma W: Opportunities and challenges of CD47-targeted therapy in cancer immunotherapy. Oncol Res. 32:49–60. 2023. View Article : Google Scholar : PubMed/NCBI

7 

Liu J, Meng Z, Xu T, Kuerban K, Wang S, Zhang X, Fan J, Ju D, Tian W, Huang X, et al: A SIRPαFc fusion protein conjugated with the Collagen-Binding domain for targeted immunotherapy of non-small cell lung cancer. Front Immunol. 13:8452172022. View Article : Google Scholar : PubMed/NCBI

8 

Ozaniak A, Smetanova J, Bartolini R, Rataj M, Capkova L, Hacek J, Fialova M, Krupickova L, Striz I, Lischke R, et al: A novel anti-CD47-targeted blockade promotes immune activation in human soft tissue sarcoma but does not potentiate anti-PD-1 blockade. J Cancer Res Clin Oncol. 149:3789–3801. 2023. View Article : Google Scholar : PubMed/NCBI

9 

Hao Y, Zhou X, Li Y, Li B and Cheng L: The CD47-SIRPα axis is a promising target for cancer immunotherapies. Int Immunopharmacol. 120:1102552023. View Article : Google Scholar : PubMed/NCBI

10 

Brown E, Hooper L, Ho T and Gresham H: Integrin-associated protein: A 50-kD plasma membrane antigen physically and functionally associated with integrins. J Cell Biol. 111:2785–2794. 1990. View Article : Google Scholar : PubMed/NCBI

11 

Lindberg FP, Bullard DC, Caver TE, Gresham HD, Beaudet AL and Brown EJ: Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science. 274:795–798. 1996. View Article : Google Scholar : PubMed/NCBI

12 

van Helden MJ, Zwarthoff SA, Arends RJ, Reinieren-Beeren IMJ, Paradé MCBC, Driessen-Engels L, de Laat-Arts K, Damming D, Santegoeds-Lenssen EWH, van Kuppeveld DWJ, et al: BYON4228 is a pan-allelic antagonistic SIRPα antibody that potentiates destruction of antibody-opsonized tumor cells and lacks binding to SIRPγ on T cells. J Immunother Cancer. 11:e0065672023. View Article : Google Scholar : PubMed/NCBI

13 

Navarro-Alvarez N and Yang YG: CD47: A new player in phagocytosis and xenograft rejection. Cell Mol Immunol. 8:285–288. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Deng H, Wang G, Zhao S, Tao Y, Zhang Z, Yang J and Lei Y: New hope for tumor immunotherapy: The macrophage-related ‘do not eat me’ signaling pathway. Front Pharmacol. 14:12289622023. View Article : Google Scholar : PubMed/NCBI

15 

Hatherley D, Graham SC, Turner J, Harlos K, Stuart DI and Barclay AN: Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Mol Cell. 31:266–277. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Hatherley D, Harlos K, Dunlop DC, Stuart DI and Barclay AN: The structure of the macrophage signal regulatory protein alpha (SIRPalpha) inhibitory receptor reveals a binding face reminiscent of that used by T cell receptors. J Biol Chem. 282:14567–14575. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Lymn JS, Patel MK, Clunn GF, Rao SJ, Gallagher KL and Hughes AD: Thrombospondin-1 differentially induces chemotaxis and DNA synthesis of human venous smooth muscle cells at the receptor-binding level. J Cell Sci. 115:4353–4360. 2002. View Article : Google Scholar : PubMed/NCBI

18 

Chung J, Gao AG and Frazier WA: Thrombspondin acts via integrin-associated protein to activate the platelet integrin alphaIIbbeta3. J Biol Chem. 272:14740–14746. 1997. View Article : Google Scholar : PubMed/NCBI

19 

Hayat SMG, Bianconi V, Pirro M, Jaafari MR, Hatamipour M and Sahebkar A: CD47: Role in the immune system and application to cancer therapy. Cell Oncol (Dordr). 43:19–30. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Zhang T, Wang F, Xu L and Yang YG: Structural-functional diversity of CD47 proteoforms. Front Immunol. 15:13295622024. View Article : Google Scholar : PubMed/NCBI

21 

Sadallah S, Eken C, Martin PJ and Schifferli JA: Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J Immunol. 186:6543–6552. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Aversa R, Sorrentino A, Esposito R, Ambrosio MR, Amato A, Zambelli A, Ciccodicola A, D'Apice L and Costa V: Alternative splicing in adhesion- and motility-related genes in breast cancer. Int J Mol Sci. 17:1212016. View Article : Google Scholar : PubMed/NCBI

23 

Reinhold MI, Lindberg FP, Plas D, Reynolds S, Peters MG and Brown EJ: In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). J Cell Sci. 108:3419–3425. 1995. View Article : Google Scholar : PubMed/NCBI

24 

Barclay AN and Van den Berg TK: The interaction between signal regulatory protein alpha (SIRPα) and CD47: Structure, function, and therapeutic target. Annu Rev Immunol. 32:25–50. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Lee EH, Hsieh YP, Yang CL, Tsai KJ and Liu CH: Induction of integrin-associated protein (IAP) mRNA expression during memory consolidation in rat hippocampus. Eur J Neurosci. 12:1105–1112. 2000. View Article : Google Scholar : PubMed/NCBI

26 

Ratnikova NM, Lezhnin YN, Frolova EI, Kravchenko JE and Chumakov SP: CD47 receptor as a primary target for cancer therapy. Mol Biol (Mosk). 51:251–261. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Frazier WA, Gao AG, Dimitry J, Chung J, Brown EJ, Lindberg FP and Linder ME: The thrombospondin receptor integrin-associated protein (CD47) functionally couples to heterotrimeric Gi. J Biol Chem. 274:8554–8560. 1999. View Article : Google Scholar : PubMed/NCBI

28 

N'Diaye EN and Brown EJ: The ubiquitin-related protein PLIC-1 regulates heterotrimeric G protein function through association with Gbetagamma. J Cell Biol. 163:1157–1165. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Sick E, Boukhari A, Deramaudt T, Rondé P, Bucher B, André P, Gies JP and Takeda K: Activation of CD47 receptors causes proliferation of human astrocytoma but not normal astrocytes via an Akt-dependent pathway. Glia. 59:308–319. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Mateo V, Brown EJ, Biron G, Rubio M, Fischer A, Deist FL and Sarfati M: Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: Link between phosphatidylserine exposure and cytoskeleton organization. Blood. 100:2882–2890. 2002. View Article : Google Scholar : PubMed/NCBI

31 

Soto-Pantoja DR, Kaur S and Roberts DD: CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol. 50:212–230. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Brown EJ and Frazier WA: Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11:130–135. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Murata Y, Saito Y, Kotani T and Matozaki T: Blockade of CD47 or SIRPα: A new cancer immunotherapy. Expert Opin Ther Targets. 24:945–951. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Manna PP and Frazier WA: The mechanism of CD47-dependent killing of T cells: Heterotrimeric Gi-dependent inhibition of protein kinase A. J Immunol. 170:3544–3553. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Lindberg FP, Gresham HD, Reinhold MI and Brown EJ: Integrin-associated protein immunoglobulin domain is necessary for efficient vitronectin bead binding. J Cell Biol. 134:1313–1322. 1996. View Article : Google Scholar : PubMed/NCBI

36 

Brittain JE, Han J, Ataga KI, Orringer EP and Parise LV: Mechanism of CD47-induced alpha4beta1 integrin activation and adhesion in sickle reticulocytes. J Biol Chem. 279:42393–42402. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Orazizadeh M, Lee HS, Groenendijk B, Sadler SJ, Wright MO, Lindberg FP and Salter DM: CD47 associates with alpha 5 integrin and regulates responses of human articular chondrocytes to mechanical stimulation in an in vitro model. Arthritis Res Ther. 10:R42008. View Article : Google Scholar : PubMed/NCBI

38 

Koenigsknecht J and Landreth G: Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci. 24:9838–9846. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Zhang K, Li M, Yin L, Fu G and Liu Z: Role of thrombospondin-1 and thrombospondin-2 in cardiovascular diseases (Review). Int J Mol Med. 45:1275–1293. 2020.PubMed/NCBI

40 

Adams JC and Lawler J: The thrombospondins. Cold Spring Harb Perspect Biol. 3:a0097122011. View Article : Google Scholar : PubMed/NCBI

41 

Leclair P and Lim CJ: CD47-independent effects mediated by the TSP-derived 4N1K peptide. PLoS One. 9:e983582014. View Article : Google Scholar : PubMed/NCBI

42 

Isenberg JS, Romeo MJ, Yu C, Yu CK, Nghiem K, Monsale J, Rick ME, Wink DA, Frazier WA and Roberts DD: Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling. Blood. 111:613–623. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Jeanne A, Sarazin T, Charlé M, Moali C, Fichel C, Boulagnon-Rombi C, Callewaert M, Andry MC, Diesis E, Delolme F, et al: Targeting ovarian carcinoma with TSP-1: CD47 antagonist TAX2 activates Anti-Tumor immunity. Cancers (Basel). 13:50192021. View Article : Google Scholar : PubMed/NCBI

44 

Kharitonenkov A, Chen Z, Sures I, Wang H, Schilling J and Ullrich A: A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature. 386:181–186. 1997. View Article : Google Scholar : PubMed/NCBI

45 

Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP, et al: CD47 Blockade by Hu5F9-G4 and rituximab in Non-Hodgkin's lymphoma. N Engl J Med. 379:1711–1721. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Barclay AN and Brown MH: The SIRP family of receptors and immune regulation. Nat Rev Immunol. 6:457–464. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX and Weissman IL: Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer. 19:568–586. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Zhao H, Song S, Ma J, Yan Z, Xie H, Feng Y and Che S: CD47 as a promising therapeutic target in oncology. Front Immunol. 13:7574802022. View Article : Google Scholar : PubMed/NCBI

49 

Nakaishi A, Hirose M, Yoshimura M, Oneyama C, Saito K, Kuki N, Matsuda M, Honma N, Ohnishi H, Matozaki T, et al: Structural insight into the specific interaction between murine SHPS-1/SIRP alpha and its ligand CD47. J Mol Biol. 375:650–660. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Vernon-Wilson EF, Kee WJ, Willis AC, Barclay AN, Simmons DL and Brown MH: CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPalpha 1. Eur J Immunol. 30:2130–2137. 2000. View Article : Google Scholar : PubMed/NCBI

51 

Han X, Sterling H, Chen Y, Saginario C, Brown EJ, Frazier WA, Lindberg FP and Vignery A: CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J Biol Chem. 275:37984–37992. 2000. View Article : Google Scholar : PubMed/NCBI

52 

Rebres RA, Vaz LE, Green JM and Brown EJ: Normal ligand binding and signaling by CD47 (integrin-associated protein) requires a long range disulfide bond between the extracellular and membrane-spanning domains. J Biol Chem. 276:34607–34616. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Hatherley D, Graham SC, Harlos K, Stuart DI and Barclay AN: Structure of signal-regulatory protein alpha: A link to antigen receptor evolution. J Biol Chem. 284:26613–26619. 2009. View Article : Google Scholar : PubMed/NCBI

54 

Takada T, Matozaki T, Takeda H, Fukunaga K, Noguchi T, Fujioka Y, Okazaki I, Tsuda M, Yamao T, Ochi F and Kasuga M: Roles of the complex formation of SHPS-1 with SHP-2 in insulin-stimulated mitogen-activated protein kinase activation. J Biol Chem. 273:9234–9242. 1998. View Article : Google Scholar : PubMed/NCBI

55 

Tsai RK and Discher DE: Inhibition of ‘self’ engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol. 180:989–1003. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Sato-Hashimoto M, Saito Y, Ohnishi H, Iwamura H, Kanazawa Y, Kaneko T, Kusakari S, Kotani T, Mori M, Murata Y, et al: Signal regulatory protein α regulates the homeostasis of T lymphocytes in the spleen. J Immunol. 187:291–297. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Latour S, Tanaka H, Demeure C, Mateo V, Rubio M, Brown EJ, Maliszewski C, Lindberg FP, Oldenborg A, Ullrich A, et al: Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-alpha: Down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J Immunol. 67:2547–2554. 2001. View Article : Google Scholar

58 

Saito Y, Iwamura H, Kaneko T, Ohnishi H, Murata Y, Okazawa H, Kanazawa Y, Sato-Hashimoto M, Kobayashi H, Oldenborg PA, et al: Regulation by SIRPα of dendritic cell homeostasis in lymphoid tissues. Blood. 116:3517–3525. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Maile LA, DeMambro VE, Wai C, Lotinun S, Aday AW, Capps BE, Beamer WG, Rosen CJ and Clemmons DR: An essential role for the association of CD47 to SHPS-1 in skeletal remodeling. J Bone Miner Res. 26:2068–2081. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD and Lindberg FP: Role of CD47 as a marker of self on red blood cells. Science. 288:2051–2054. 2000. View Article : Google Scholar : PubMed/NCBI

61 

Clevers H, Loh KM and Nusse R: Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 346:12480122014. View Article : Google Scholar : PubMed/NCBI

62 

Murata Y, Kotani T, Ohnishi H and Matozaki T: The CD47-SIRPα signalling system: Its physiological roles and therapeutic application. J Biochem. 155:335–344. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Ferrari D, Gorini S, Callegari G and la Sala A: Shaping immune responses through the activation of dendritic cells' P2 receptors. Purinergic Signal. 3:99–107. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Logtenberg MEW, Scheeren FA and Schumacher TN: The CD47-SIRPα Immune Checkpoint. Immunity. 52:742–752. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Okazawa H, Motegi S, Ohyama N, Ohnishi H, Tomizawa T, Kaneko Y, Oldenborg PA, Ishikawa O and Matozaki T: Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J Immunol. 174:2004–2011. 2005. View Article : Google Scholar : PubMed/NCBI

66 

Ishikawa-Sekigami T, Kaneko Y, Okazawa H, Tomizawa T, Okajo J, Saito Y, Okuzawa C, Sugawara-Yokoo M, Nishiyama U, Ohnishi H, et al: SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages. Blood. 107:341–348. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Yamao T, Noguchi T, Takeuchi O, Nishiyama U, Morita H, Hagiwara T, Akahori H, Kato T, Inagaki K, Okazawa H, et al: Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1. J Biol Chem. 277:39833–39839. 2002. View Article : Google Scholar : PubMed/NCBI

68 

Wang C, Wang H, Ide K, Wang Y, Van Rooijen N, Ohdan H and Yang YG: Human CD47 expression permits survival of porcine cells in immunodeficient mice that express SIRPα capable of binding to human CD47. Cell Transplant. 20:1915–1920. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Griesemer A, Yamada K and Sykes M: Xenotransplantation: Immunological hurdles and progress toward tolerance. Immunol Rev. 258:241–258. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, Gan OI, Dick JE and Danska JS: Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat Immunol. 8:1313–1323. 2007. View Article : Google Scholar : PubMed/NCBI

71 

Kwong LS, Brown MH, Barclay AN and Hatherley D: Signal-regulatory protein α from the NOD mouse binds human CD47 with an exceptionally high affinity-implications for engraftment of human cells. Immunology. 143:61–67. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Theocharides AP, Jin L, Cheng PY, Prasolava TK, Malko AV, Ho JM, Poeppl AG, van Rooijen N, Minden MD, Danska JS, et al: Disruption of SIRPα signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts. J Exp Med. 209:1883–1899. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK and Discher DE: Minimal ‘Self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science. 339:971–975. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Iwamoto C, Takenaka K, Urata S, Yamauchi T, Shima T, Kuriyama T, Daitoku S, Saito Y, Miyamoto T, Iwasaki H, et al: The BALB/c-specific polymorphic SIRPA enhances its affinity for human CD47, inhibiting phagocytosis against human cells to promote xenogeneic engraftment. Exp Hematol. 42:163–171.e1. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Ishikawa-Sekigami T, Kaneko Y, Saito Y, Murata Y, Okazawa H, Ohnishi H, Oldenborg PA, Nojima Y and Matozaki T: Enhanced phagocytosis of CD47-deficient red blood cells by splenic macrophages requires SHPS-1. Biochem Biophys Res Commun. 343:1197–1200. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S, Jan M, Cha AC, Chan CK, Tan BT, et al: Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell. 142:699–713. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Xiao Z, Chung H, Banan B, Manning PT, Ott KC, Lin S, Capoccia BJ, Subramanian V, Hiebsch RR, Upadhya GA, et al: Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma. Cancer Lett. 360:302–309. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Zhang H, Lu H, Xiang L, Bullen JW, Zhang C, Samanta D, Gilkes DM, He J and Semenza GL: HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci USA. 112:E6215–6223. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Liu L, Zhang L, Yang L, Li H, Li R, Yu J, Yang L, Wei F, Yan C, Sun Q, et al: Anti-CD47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells. Front Immunol. 8:4042017. View Article : Google Scholar : PubMed/NCBI

80 

Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, Carew JS, Nawrocki ST, Persky D and Anwer F: Blocking ‘don't eat me’ signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 32:480–489. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Yang K, Xu J, Liu Q, Li J and Xi Y: Expression and significance of CD47, PD1 and PDL1 in T-cell acute lymphoblastic lymphoma/leukemia. Pathol Res Pract. 215:265–271. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Abe H, Saito R, Ichimura T, Iwasaki A, Yamazawa S, Shinozaki-Ushiku A, Morikawa T, Ushiku T, Yamashita H, Seto Y and Fukayama M: CD47 expression in Epstein-Barr virus-associated gastric carcinoma: Coexistence with tumor immunity lowering the ratio of CD8+/Foxp3+ T cells. Virchows Arch. 472:643–651. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Yu L, Ding Y, Wan T, Deng T, Huang H and Liu J: Significance of CD47 and its association with tumor immune microenvironment heterogeneity in ovarian cancer. Front Immunol. 12:7681152021. View Article : Google Scholar : PubMed/NCBI

84 

Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw AM, Baylot V, Gütgemann I, Eilers M and Felsher DW: MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 352:227–231. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Betancur PA, Abraham BJ, Yiu YY, Willingham SB, Khameneh F, Zarnegar M, Kuo AH, McKenna K, Kojima Y, Leeper NJ, et al: A CD47-associated super-enhancer links pro-inflammatory signalling to CD47 upregulation in breast cancer. Nat Commun. 8:148022017. View Article : Google Scholar : PubMed/NCBI

86 

Suzuki S, Yokobori T, Tanaka N, Sakai M, Sano A, Inose T, Sohda M, Nakajima M, Miyazaki T, Kato H and Kuwano H: CD47 expression regulated by the miR-133a tumor suppressor is a novel prognostic marker in esophageal squamous cell carcinoma. Oncol Rep. 28:465–472. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Rastgoo N, Wu J, Liu A, Pourabdollah M, Atenafu EG, Reece D, Chen W and Chang H: Targeting CD47/TNFAIP8 by miR-155 overcomes drug resistance and inhibits tumor growth through induction of phagocytosis and apoptosis in multiple myeloma. Haematologica. 105:2813–2823. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Huang CY, Ye ZH, Huang MY and Lu JJ: Regulation of CD47 expression in cancer cells. Transl Oncol. 13:1008622020. View Article : Google Scholar : PubMed/NCBI

89 

Ma R, Ortiz Serrano TP, Davis J, Prigge AD and Ridge KM: The cGAS-STING pathway: The role of self-DNA sensing in inflammatory lung disease. FASEB J. 34:13156–13170. 2020. View Article : Google Scholar : PubMed/NCBI

90 

von Roemeling CA, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, Yang Z, Yang M, Deng W, Bruno KA, et al: Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 11:15082020. View Article : Google Scholar : PubMed/NCBI

91 

Xu MM, Pu Y, Han D, Shi Y, Cao X, Liang H, Chen X, Li XD, Deng L, Chen ZJ, et al: Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity. 47:363–373.e5. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Chen J, Zhong MC, Guo H, Davidson D, Mishel S, Lu Y, Rhee I, Pérez-Quintero LA, Zhang S, Cruz-Munoz ME, et al: SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature. 544:493–497. 2017. View Article : Google Scholar : PubMed/NCBI

93 

He Y, Bouwstra R, Wiersma VR, de Jong M, Jan Lourens H, Fehrmann R, de Bruyn M, Ammatuna E, Huls G, van Meerten T and Bremer E: Cancer cell-expressed SLAMF7 is not required for CD47-mediated phagocytosis. Nat Commun. 10:5332019. View Article : Google Scholar : PubMed/NCBI

94 

Yang Y, Yang Z and Yang Y: Potential role of CD47-directed bispecific antibodies in cancer immunotherapy. Front Immunol. 12:6860312021. View Article : Google Scholar : PubMed/NCBI

95 

Zhang W, Huang Q, Xiao W, Zhao Y, Pi J, Xu H, Zhao H, Xu J, Evans CE and Jin H: Advances in anti-tumor treatments targeting the CD47/SIRPα axis. Front Immunol. 11:182020. View Article : Google Scholar : PubMed/NCBI

96 

Narla RK, Modi H, Bauer D, Abbasian M, Leisten J, Piccotti JR, Kopytek S, Eckelman BP, Deveraux Q, Timmer J, et al: Modulation of CD47-SIRPα innate immune checkpoint axis with Fc-function detuned anti-CD47 therapeutic antibody. Cancer Immunol Immunother. 71:473–489. 202 View Article : Google Scholar : PubMed/NCBI

97 

Kuo TC, Chen A, Harrabi O, Sockolosky JT, Zhang A, Sangalang E, Doyle LV, Kauder SE, Fontaine D, Bollini S, et al: Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity. J Hematol Oncol. 13:1602020. View Article : Google Scholar : PubMed/NCBI

98 

Bian HT, Shen YW, Zhou YD, Nagle DG, Guan YY, Zhang WD and Luan X: CD47: Beyond an immune checkpoint in cancer treatment. Biochim Biophys Acta Rev Cancer. 1877:1887712022. View Article : Google Scholar : PubMed/NCBI

99 

Luo X, Shen Y, Huang W, Bao Y, Mo J, Yao L and Yuan L: Blocking CD47-SIRPα signal axis as promising immunotherapy in ovarian cancer. Cancer Control. 30:107327482311597062023. View Article : Google Scholar : PubMed/NCBI

100 

Liu Y, Wang Y, Yang Y, Weng L, Wu Q, Zhang J, Zhao P, Fang L, Shi Y and Wang P: Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther. 8:1042023. View Article : Google Scholar : PubMed/NCBI

101 

Maute R, Xu J and Weissman IL: CD47-SIRPα-targeted therapeutics: Status and prospects. Immunooncol Technol. 13:1000702022. View Article : Google Scholar : PubMed/NCBI

102 

Kayser S and Levis MJ: The clinical impact of the molecular landscape of acute myeloid leukemia. Haematologica. 108:308–320. 2023. View Article : Google Scholar : PubMed/NCBI

103 

Berlin J, Harb W, Adjei A, Xing Y, Swiecicki P, Seetharam M, Nandagopal L, Gopal A, Xu C, Meng Y, et al: 385 A first-in-human study of lemzoparlimab, a differentiated anti-CD47 antibody, in subjects with relapsed/refractory malignancy: Initial monotherapy results. J Immuno Ther Res Cancer. 8 (Suppl 3):A233–A234. 2020.

104 

Qi J, Li J, Jiang B, Jiang B, Liu H, Cao X, Zhang M, Meng Y, MA X, Jia Y, et al: A Phase I/IIa study of lemzoparlimab, a monoclonal antibody targeting CD47, in patients with relapsed and/or refractory acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS): Initial phase I results. Blood. 136:30–31. 2020. View Article : Google Scholar

105 

Gan HK, Coward J, Mislang A, Cosman R, Nagrial A, Jin X, Li B, Wang ZM, Kwek KY, Xia D and Xia Y: Safety of AK117, an anti-CD47 monoclonal antibody, in patients with advanced or metastatic solid tumors in a phase I study. J Clini Oncol. 39 (Suppl 15):S26302021. View Article : Google Scholar

106 

Jiang Z, Sun H, Yu J, Tian W and Song Y: Targeting CD47 for cancer immunotherapy. J Hematol Oncol. 14:1802021. View Article : Google Scholar : PubMed/NCBI

107 

Qu T, Li B and Wang Y: Targeting CD47/SIRPα as a therapeutic strategy, where we are and where we are headed. Biomark Res. 10:202022. View Article : Google Scholar : PubMed/NCBI

108 

Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, Manning PT, Frazier WA, Karr RW and Pereira DS: Development of AO-176, a Next-Generation Humanized Anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther. 19:835–846. 2020. View Article : Google Scholar : PubMed/NCBI

109 

III HAB, Spira AI, Taylor MH, Yeku OO, Liu JF, Munster P, Hamilton EP, Thomas JS, Gatlin F, Penson RT, et al: A first-in-human study of AO-176, a highly differentiated anti-CD47 antibody, in patients with advanced solid tumors. J Clin Oncol. 39 (15_Suppl):S25162021. View Article : Google Scholar

110 

Zeidan AM, DeAngelo DJ, Palmer J, Seet CS, Tallman MS, Wei X, Raymon H, Sriraman P, Kopytek S, Bewersdorf JP, et al: Phase 1 study of anti-CD47 monoclonal antibody CC-90002 in patients with relapsed/refractory acute myeloid leukemia and high-risk myelodysplastic syndromes. Ann Hematol. 101:557–569. 2022. View Article : Google Scholar : PubMed/NCBI

111 

Zeidan AM, DeAngelo DJ, Palmer JM, DeAngelo DJ, Palmer JM, Seet CS, Tallman MS, Wei X, Li YF, Hock R, et al: A Phase I study of CC-90002, a monoclonal antibody targeting CD47, in patients with relapsed and/or refractory (R/R) acute myeloid leukemia (AML) and High-risk myelodysplastic syndromes (MDS): Final results. Blood. 134:13202019. View Article : Google Scholar

112 

Velliquette RW, Aeschlimann J, Kirkegaard J, Shakarian G, Lomas-Francis C and Westhoff CM: Monoclonal anti-CD47 interference in red cell and platelet testing. Transfusion. 59:730–737. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Ansell SM, Maris MB, Lesokhin AM, Chen RW, Flinn IW, Sawas A, Minden MD, Villa D, Percival MM, Advani AS, et al: Phase I study of the CD47 Blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 27:2190–2199. 2021. View Article : Google Scholar : PubMed/NCBI

114 

Patel K, Maris MB, Cheson BD, Zonder JA, Lesokhin AM, Keudell GV, Seymour EK, Lin GHY, Catalano T, Shou Y, et al: Ongoing, first-in-human, phase I dose escalation study of the investigational CD47-blocker TTI-622 in patients with advanced relapsed or refractory lymphoma. J Clin Oncol. 38 (15_Suppl):S30302020. View Article : Google Scholar

115 

Yang H, Xun Y and You H: The landscape overview of CD47-based immunotherapy for hematological malignancies. Biomark Res. 11:152023. View Article : Google Scholar : PubMed/NCBI

116 

Chow LQ, Gainor J, Lakhani N, Chunget HC, Lee KW, Lee J, Lorusso P, Bang YJ, Hodi FS, Fanning P, et al: A phase 1 study of ALX148, a CD47 blocker, in combination with established anticancer antibodies in patients with advanced malignancy. Safety. 1:362019.

117 

Piccione EC, Juarez S, Liu J, Tseng S, Ryan CE, Narayanan C, Wang L, Weiskopf K and Majeti R: A bispecific antibody targeting CD47 and CD20 selectively binds and eliminates dual antigen expressing lymphoma cells. MAbs. 7:946–956. 2015. View Article : Google Scholar : PubMed/NCBI

118 

Yu J, Li S, Chen D, Guo H, Yang C, Zhang W, Zhang L, Zhao G, Tu X, Peng L, et al: IMM0306, a fusion protein of CD20 mAb with the CD47 binding domain of SIRPα, exerts excellent cancer killing efficacy by activating both macrophages and NK cells via blockade of CD47-SIRPα interaction and FcɣR engagement by simultaneously binding to CD47 and CD20 of B cells. Leukemia. 37:695–698. 2023. View Article : Google Scholar : PubMed/NCBI

119 

Wang Y, Ni H, Zhou S, He K, Gao Y, Wu W, Wu M, Wu Z, Qiu X, Zhou Y, et al: Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother. 70:365–376. 2021. View Article : Google Scholar : PubMed/NCBI

120 

Ke H, Zhang F, Wang J, Xiong L, An X, Tu X, Chen C, Wang Y, Mao M, Guo S, et al: HX009, a novel BsAb dual targeting PD1 × CD47, demonstrates potent anti-lymphoma activity in preclinical models. Sci Rep. 13:54192023. View Article : Google Scholar : PubMed/NCBI

121 

Roohullah A, Ganju V, Zhang F, Zhang L, Yu T, Wilkinson K, Cooper A and de Souza P: First-in-human phase 1 dose escalation study of HX009, a novel recombinant humanized anti-PD-1 and CD47 bispecific antibody, in patients with advanced malignancies. J Clin Oncol. 39:2517. 2021. View Article : Google Scholar

122 

Dheilly E, Moine V, Broyer L, Salgado-Pires S, Johnson Z, Papaioannou A, Cons L, Calloud S, Majocchi S, Rousseau F, et al: Selective blockade of the ubiquitous checkpoint receptor CD47 is enabled by dual-targeting bispecific antibodies. Mol Ther. 25:523–533. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Buatois V, Johnson Z, Salgado-Pires S, Papaioannou A, Hatterer E, Chauchet X, Richard F, Barba L, Daubeuf B, Cons L, et al: Preclinical development of a bispecific antibody that safely and effectively targets CD19 and CD47 for the treatment of B-Cell lymphoma and leukemia. Mol Cancer Ther. 17:1739–1751. 2018. View Article : Google Scholar : PubMed/NCBI

124 

de Silva S, Fromm G, Shuptrine CW, Johannes K, Patel A, Yoo KJ, Huang K and Schreiber TH: CD40 enhances type I interferon responses downstream of CD47 blockade, bridging innate and adaptive immunity. Cancer Immunol Res. 8:230–245. 2020. View Article : Google Scholar : PubMed/NCBI

125 

Golubovskaya V: CAR-T cells targeting immune checkpoint pathway players. Front Biosci (Landmark Ed). 27:1212022. View Article : Google Scholar : PubMed/NCBI

126 

Feins S, Kong W, Williams EF, Milone MC and Fraietta JA: An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 94 (Suppl):S3–S9. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Beckett AN, Chockley P, Pruett-Miller SM, Nguyen P, Vogel P, Sheppard H, Krenciute G, Gottschalk S and DeRenzo C: CD47 expression is critical for CAR T-cell survival in vivo. J Immunother Cancer. 11:e0058572023. View Article : Google Scholar : PubMed/NCBI

128 

Golubovskaya V, Berahovich R, Zhou H, Xu S, Harto H, Li L, Chao CC, Mao MM and Wu L: CD47-CAR-T cells effectively kill target cancer cells and block pancreatic tumor growth. Cancers (Basel). 9:1392017. View Article : Google Scholar : PubMed/NCBI

129 

Shu R, Evtimov VJ, Hammett MV, Nguyen NN, Zhuang J, Hudson PJ, Howard MC, Pupovac A, Trounson AO and Boyd RL: Engineered CAR-T cells targeting TAG-72 and CD47 in ovarian cancer. Mol Ther Oncolytics. 20:325–341. 2021. View Article : Google Scholar : PubMed/NCBI

130 

Chen H, Yang Y, Deng Y, Wei F, Zhao Q, Liu Y, Liu Z, Yu B and Huang Z: Delivery of CD47 blocker SIRPα-Fc by CAR-T cells enhances antitumor efficacy. J Immunother Cancer. 10:e0037372022. View Article : Google Scholar : PubMed/NCBI

131 

Sloas C, Gill S and Klichinsky M: Engineered CAR-macrophages as adoptive immunotherapies for solid tumors. Front Immunol. 12:7833052021. View Article : Google Scholar : PubMed/NCBI

132 

Chen Y, Yu Z, Tan X, Jiang H, Xu Z, Fang Y, Han D, Hong W, Wei W and Tu J: CAR-macrophage: A new immunotherapy candidate against solid tumors. Biomed Pharmacother. 139:1116052021. View Article : Google Scholar : PubMed/NCBI

133 

Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty NE, et al: Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol. 38:947–953. 2020. View Article : Google Scholar : PubMed/NCBI

134 

Zhang L, Tian L, Dai X, Yu H, Wang J, Lei A, Zhu M, Xu J, Zhao W, Zhu Y, et al: Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions. J Hematol Oncol. 13:1532020. View Article : Google Scholar : PubMed/NCBI

135 

Abdel-Bar HM, Walters AA, Lim Y, Rouatbi N, Qin Y, Gheidari F, Han S, Osman R, Wang JT and Al-Jamal KT: An ‘eat me’ combinatory nano-formulation for systemic immunotherapy of solid tumors. Theranostics. 11:8738–8754. 2021. View Article : Google Scholar : PubMed/NCBI

136 

Chen YC, Shi W, Shi JJ and Lu JJ: Progress of CD47 immune checkpoint blockade agents in anticancer therapy: A hematotoxic perspective. J Cancer Res Clin Oncol. 148:1–14. 2022. View Article : Google Scholar : PubMed/NCBI

137 

Yan X, Lai B, Zhou X, Yang S, Ge Q, Zhou M, Shi C, Xu Z and Ouyang G: The differential expression of CD47 may be related to the pathogenesis from myelodysplastic syndromes to acute myeloid leukemia. Front Oncol. 12:8729992022. View Article : Google Scholar : PubMed/NCBI

138 

Shi M, Gu Y, Jin K, Fang H, Chen Y, Cao Y, Liu X, Lv K, He X, Lin C, et al: CD47 expression in gastric cancer clinical correlates and association with macrophage infiltration. Cancer Immunol Immunother. 70:1831–1840. 2021. View Article : Google Scholar : PubMed/NCBI

139 

Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D and Wang Y: Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther. 6:3622021. View Article : Google Scholar : PubMed/NCBI

140 

Xu S, Wang C, Yang L, Wu J, Li M, Xiao P, Xu Z, Xu Y and Wang K: Targeting immune checkpoints on tumor-associated macrophages in tumor immunotherapy. Front Immunol. 14:11996312023. View Article : Google Scholar : PubMed/NCBI

141 

Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, Sun Z, Liu Y and Wang C: Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer. 22:582023. View Article : Google Scholar : PubMed/NCBI

142 

Torres ETR and Emens LA: Emerging combination immunotherapy strategies for breast cancer: Dual immune checkpoint modulation, antibody-drug conjugates and bispecific antibodies. Breast Cancer Res Treat. 191:291–302. 2022. View Article : Google Scholar : PubMed/NCBI

143 

Chen SH, Dominik PK, Stanfield J, Ding S, Yang W, Kurd N, Llewellyn R, Heyen J, Wang C, Melton Z, et al: Dual checkpoint blockade of CD47 and PD-L1 using an affinity-tuned bispecific antibody maximizes antitumor immunity. J Immunother Cancer. 9:e0034642021. View Article : Google Scholar : PubMed/NCBI

144 

van de Donk N and Zweegman S: T-cell-engaging bispecific antibodies in cancer. Lancet. 402:142–158. 2023. View Article : Google Scholar : PubMed/NCBI

145 

Zhang T, Lin Y and Gao Q: Bispecific antibodies targeting immunomodulatory checkpoints for cancer therapy. Cancer Biol Med. 20:181–195. 2023. View Article : Google Scholar : PubMed/NCBI

146 

Olaoba OT, Ayinde KS, Lateef OM, Akintubosun MO, Lawal KA and Adelusi TI: Is the new angel better than the old devil? Challenges and opportunities in CD47-SIRPα-based cancer therapy. Crit Rev Oncol Hematol. 184:1039392023. View Article : Google Scholar : PubMed/NCBI

147 

Cao A, Yi J, Tang X, Szeto CW, Wu R, Wan B, Fang X, Li S, Wang L, Wang L, et al: CD47-blocking antibody ZL-1201 promotes Tumor-associated macrophage phagocytic activity and enhances the efficacy of the therapeutic antibodies and chemotherapy. Cancer Res Commun. 2:1404–1417. 2022. View Article : Google Scholar : PubMed/NCBI

148 

Chen Q, Sun L and Chen ZJ: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 17:1142–1149. 2016. View Article : Google Scholar : PubMed/NCBI

149 

Brierley CK, Staves J, Roberts C, Johnson H, Vyas P, Goodnough LT and Murphy MF: The effects of monoclonal anti-CD47 on RBCs, compatibility testing, and transfusion requirements in refractory acute myeloid leukemia. Transfusion. 59:2248–2254. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu F, Pang H, Li F, Hua M, Song C and Tang J: Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review). Oncol Lett 27: 256, 2024.
APA
Wu, F., Pang, H., Li, F., Hua, M., Song, C., & Tang, J. (2024). Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review). Oncology Letters, 27, 256. https://doi.org/10.3892/ol.2024.14389
MLA
Wu, F., Pang, H., Li, F., Hua, M., Song, C., Tang, J."Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review)". Oncology Letters 27.6 (2024): 256.
Chicago
Wu, F., Pang, H., Li, F., Hua, M., Song, C., Tang, J."Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review)". Oncology Letters 27, no. 6 (2024): 256. https://doi.org/10.3892/ol.2024.14389
Copy and paste a formatted citation
x
Spandidos Publications style
Wu F, Pang H, Li F, Hua M, Song C and Tang J: Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review). Oncol Lett 27: 256, 2024.
APA
Wu, F., Pang, H., Li, F., Hua, M., Song, C., & Tang, J. (2024). Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review). Oncology Letters, 27, 256. https://doi.org/10.3892/ol.2024.14389
MLA
Wu, F., Pang, H., Li, F., Hua, M., Song, C., Tang, J."Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review)". Oncology Letters 27.6 (2024): 256.
Chicago
Wu, F., Pang, H., Li, F., Hua, M., Song, C., Tang, J."Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review)". Oncology Letters 27, no. 6 (2024): 256. https://doi.org/10.3892/ol.2024.14389
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team