|
1
|
Consonni SV, Maurice MM and Bos JL: DEP
domains: Structurally similar but functionally different. Nat Rev
Mol Cell Biol. 15:357–362. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kanehira M, Harada Y, Takata R, Shuin T,
Miki T, Fujioka T, Nakamura Y and Katagiri T: Involvement of
upregulation of DEPDC1 (DEP domain containing 1) in bladder
carcinogenesis. Oncogene. 26:6448–6455. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Harada Y, Kanehira M, Fujisawa Y, Takata
R, Shuin T, Miki T, Fujioka T, Nakamura Y and Katagiri T:
Cell-permeable peptide DEPDC1-ZNF224 interferes with
transcriptional repression and oncogenicity in bladder cancer
cells. Cancer Res. 70:5829–5839. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kassambara A, Schoenhals M, Moreaux J,
Veyrune JL, Rème T, Goldschmidt H, Hose D and Klein B: Inhibition
of DEPDC1A, a bad prognostic marker in multiple myeloma, delays
growth and induces mature plasma cell markers in malignant plasma
cells. PLoS One. 8:e627522013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Okayama H, Kohno T, Ishii Y, Shimada Y,
Shiraishi K, Iwakawa R, Furuta K, Tsuta K, Shibata T, Yamamoto S,
et al: Identification of genes upregulated in ALK-positive and
EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res.
72:100–111. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sendoel A, Maida S, Zheng X, Teo Y,
Stergiou L, Rossi CA, Subasic D, Pinto SM, Kinchen JM, Shi M, et
al: DEPDC1/LET-99 participates in an evolutionarily conserved
pathway for anti-tubulin drug-induced apoptosis. Nat Cell Biol.
16:812–820. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yang Y, Jiang Y, Jiang M, Zhang J, Yang B,
She Y, Wang W, Deng Y and Ye Y: Protocadherin 10 inhibits cell
proliferation and induces apoptosis via regulation of DEP domain
containing 1 in endometrial endometrioid carcinoma. Exp Mol Pathol.
100:344–352. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Huang L, Chen K, Cai ZP, Chen FC, Shen HY,
Zhao WH, Yang SJ, Chen XB, Tang GX and Lin X: DEPDC1 promotes cell
proliferation and tumor growth via activation of E2F signaling in
prostate cancer. Biochem Biophys Res Commun. 490:707–712. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang Q, Li A, Jin J and Huang G: Targeted
interfering DEP domain containing 1 protein induces apoptosis in
A549 lung adenocarcinoma cells through the NF-κB signaling pathway.
Onco Targets Ther. 10:4443–4454. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Johannsdottir HK, Jonsson G,
Johannesdottir G, Agnarsson BA, Eerola H, Arason A, Heikkila P,
Egilsson V, Olsson H, Johannsson OT, et al: Chromosome 5 imbalance
mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and
sporadic breast tumors. Int J Cancer. 119:1052–1060. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zuo X, Wang D, Tao C, Dou X, Zhao Z, Zhang
J, Huang S, Li Y, Zhang X, Bu Y and Wang Y: DEPDC1B is a novel
direct target of B-Myb and contributes to malignant progression and
immune infiltration in lung adenocarcinoma. Front Biosci (Landmark
Ed). 29:2042024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen D, Ito S, Hyodo T, Asano-Inami E,
Yuan H and Senga T: Phosphorylation of DEPDC1 at Ser110 is required
to maintain centrosome organization during mitosis. Exp Cell Res.
358:101–110. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mi Y, Zhang C, Bu Y, Zhang Y, He L, Li H,
Zhu H, Li Y, Lei Y and Zhu J: DEPDC1 is a novel cell cycle related
gene that regulates mitotic progression. BMB Rep. 48:413–418. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Guo W, Li H, Liu H, Ma X, Yang S and Wang
Z: DEPDC1 drives hepatocellular carcinoma cell proliferation,
invasion and angiogenesis by regulating the CCL20/CCR6 signaling
pathway. Oncol Rep. 42:1075–1089. 2019.PubMed/NCBI
|
|
15
|
Wang W, Li A, Han X, Wang Q, Guo J, Wu Y,
Wang C and Huang G: DEPDC1 up-regulates RAS expression to inhibit
autophagy in lung adenocarcinoma cells. J Cell Mol Med.
24:13303–13313. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Amisaki M, Yagyu T, Uchinaka EI, Morimoto
M, Hanaki T, Watanabe J, Tokuyasu N, Sakamoto T, Honjo S and
Fujiwara Y: Prognostic value of DEPDC1 expression in tumor and
non-tumor tissue of patients with hepatocellular carcinoma.
Anticancer Res. 39:4423–4430. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yuan SG, Liao WJ, Yang JJ, Huang GJ and
Huang ZQ: DEP domain containing 1 is a novel diagnostic marker and
prognostic predictor for hepatocellular carcinoma. Asian Pac J
Cancer Prev. 15:10917–10922. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bin X, Luo Z, Wang J and Zhou S:
Identification of a five immune term signature for prognosis and
therapy options (immunotherapy versus targeted therapy) for
patients with hepatocellular carcinoma. Comput Math Methods Med.
2023:89589622023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhang L, Li Y, Dai Y, Wang D, Wang X, Cao
Y, Liu W and Tao Z: Glycolysis-related gene expression profiling
serves as a novel prognosis risk predictor for human hepatocellular
carcinoma. Sci Rep. 11:188752021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Pu Z, Zhu Y, Wang X, Zhong Y, Peng F and
Zhang Y: Identification of prognostic biomarkers and correlation
with immune infiltrates in hepatocellular carcinoma based on a
competing endogenous RNA network. Front Genet. 12:5916232021.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Zhang J, Liu X, Zhou W, Lu S, Wu C, Wu Z,
Liu R, Li X, Wu J, Liu Y, et al: Identification of key genes
associated with the process of hepatitis B inflammation and cancer
transformation by integrated bioinformatics analysis. Front Genet.
12:6545172021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Shao F, Ling L, Li C, Huang X, Ye Y, Zhang
M, Huang K, Pan J, Chen J and Wang Y: Establishing a
metastasis-related diagnosis and prognosis model for lung
adenocarcinoma through CRISPR library and TCGA database. J Cancer
Res Clin Oncol. 149:885–899. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shen J and Xi M: DEPDC1 is highly
expressed in lung adenocarcinoma and promotes tumor cell
proliferation. Zhongguo Fei Ai Za Zhi. 24:453–460. 2021.(In
Chinese). PubMed/NCBI
|
|
24
|
Zhu Y, Sun L, Yu J, Xiang Y, Shen M, Wasan
HS, Ruan S and Qiu S: Identification of biomarkers in colon cancer
based on bioinformatic analysis. Transl Cancer Res. 9:4879–4895.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shen X and Han J: Overexpression of gene
DEP domain containing 1 and its clinical prognostic significance in
colorectal cancer. J Clin Lab Anal. 34:e236342020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Miyata Y, Kumagai K, Nagaoka T, Kitaura K,
Kaneda G, Kanazawa H, Suzuki S, Hamada Y and Suzuki R:
Clinicopathological significance and prognostic value of Wilms'
tumor gene expression in colorectal cancer. Cancer Biomark.
15:789–797. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Colak D, Nofal A, Albakheet A, Nirmal M,
Jeprel H, Eldali A, Al-Tweigeri T, Tulbah A, Ajarim D, Malik OA, et
al: Age-specific gene expression signatures for breast tumors and
cross-species conserved potential cancer progression markers in
young women. PLoS One. 8:e632042013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kretschmer C, Sterner-Kock A, Siedentopf
F, Schoenegg W, Schlag PM and Kemmner W: Identification of early
molecular markers for breast cancer. Mol Cancer. 10:152011.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sang M, Wu M, Meng L, Zheng Y, Gu L, Liu F
and Sang M: Identification of epithelial-mesenchymal
transition-related circRNA-miRNA-mRNA ceRNA regulatory network in
breast cancer. Pathol Res Pract. 216:1530882020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kim J: In silico analysis of
differentially expressed genesets in metastatic breast cancer
identifies potential prognostic biomarkers. World J Surg Oncol.
19:1882021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ke Y, Zhuang X and You L: Identification
of core genes shared by endometrial cancer and ovarian cancer using
an integrated approach. Cell Mol Biol (Noisy-le-grand). 68:140–145.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xu F, Guan Y, Xue L, Huang S, Gao K, Yang
Z and Chong T: The effect of a novel glycolysis-related gene
signature on progression, prognosis and immune microenvironment of
renal cell carcinoma. BMC Cancer. 20:12072020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ma Y, Guo J, Li D and Cai X:
Identification of potential key genes and functional role of CENPF
in osteosarcoma using bioinformatics and experimental analysis. Exp
Ther Med. 23:802022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shen L, Li H, Liu R, Zhou C, Bretches M,
Gong X, Lu L, Zhang Y, Zhao K, Ning B, et al: DEPDC1 as a crucial
factor in the progression of human osteosarcoma. Cancer Med.
12:5798–5808. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang Z, Zou Z, Dai H, Ye R, Di X, Li R,
Ha Y, Sun Y and Gan S: Key genes involved in cell cycle arrest and
DNA damage repair identified in anaplastic thyroid carcinoma using
integrated bioinformatics analysis. Transl Cancer Res. 9:4188–4203.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Gong Z, Chu H, Chen J, Jiang L, Gong B,
Zhu P, Zhang C, Wang Z, Zhang W, Wang J, et al: DEPDC1 upregulation
promotes cell proliferation and predicts poor prognosis in patients
with gastric cancer. Cancer Biomark. 30:299–307. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Mishra NK, Niu M, Southekal S, Bajpai P,
Elkholy A, Manne U and Guda C: Identification of prognostic markers
in cholangiocarcinoma using altered DNA methylation and gene
expression profiles. Front Genet. 11:5221252020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang J, Lin H, Jiang H, Jiang H, Xie T,
Wang B, Huang X, Lin J, Xu A, Li R, et al: A key genomic signature
associated with lymphovascular invasion in head and neck squamous
cell carcinoma. BMC Cancer. 20:2662020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zheng L, Li L, Xie J, Jin H and Zhu N: Six
novel biomarkers for diagnosis and prognosis of esophageal squamous
cell carcinoma: Validated by scRNA-seq and qPCR. J Cancer.
12:899–911. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu J, Wu Z, Sun R, Nie S, Meng H, Zhong
Y, Nie X and Cheng W: Using mRNAsi to identify prognostic-related
genes in endometrial carcinoma based on WGCNA. Life Sci.
258:1182312020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Noll JE, Vandyke K, Hewett DR, Mrozik KM,
Bala RJ, Williams SA, Kok CH and Zannettino AC: PTTG1 expression is
associated with hyperproliferative disease and poor prognosis in
multiple myeloma. J Hematol Oncol. 8:1062015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Stangeland B, Mughal AA, Grieg Z, Sandberg
CJ, Joel M, Nygård S, Meling T, Murrell W, Vik Mo EO and Langmoen
IA: Combined expressional analysis, bioinformatics and targeted
proteomics identify new potential therapeutic targets in
glioblastoma stem cells. Oncotarget. 6:26192–26215. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhu QY: Bioinformatics analysis of the
pathogenic link between Epstein-Barr virus infection, systemic
lupus erythematosus and diffuse large B cell lymphoma. Sci Rep.
13:63102023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Pollino S, Benassi MS, Pazzaglia L, Conti
A, Bertani N, Righi A, Piccinni-Leopardi M, Picci P and Perris R:
Prognostic role of XTP1/DEPDC1B and SDP35/DEPDC1A in high grade
soft-tissue sarcomas. Histol Histopathol. 33:597–608.
2018.PubMed/NCBI
|
|
45
|
Jia B, Liu J, Hu X, Xia L and Han Y:
Pan-cancer analysis of DEPDC1 as a candidate prognostic biomarker
and associated with immune infiltration. Ann Transl Med.
10:13552022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Guo J, Zhou S, Huang P, Xu S, Zhang G, He
H, Zeng Y, Xu CX, Kim H and Tan Y: NNK-mediated upregulation of
DEPDC1 stimulates the progression of oral squamous cell carcinoma
by inhibiting CYP27B1 expression. Am J Cancer Res. 10:1745–1760.
2020.PubMed/NCBI
|
|
47
|
Hao S, Tian W, Chen Y, Wang L, Jiang Y,
Gao B and Luo D: MicroRNA-374c-5p inhibits the development of
breast cancer through TATA-box binding protein associated factor
7-mediated transcriptional regulation of DEP domain containing 1. J
Cell Biochem. 120:15360–15368. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang Q, Jiang S, Liu J, Ma G, Zheng J and
Zhang Y: DEP domain containing 1 promotes proliferation, invasion,
and epithelial-mesenchymal transition in colorectal cancer by
enhancing expression of suppressor of zest 12. Cancer Biother
Radiopharm. 36:36–44. 2021.PubMed/NCBI
|
|
49
|
Tian C, Abudoureyimu M, Lin X, Chu X and
Wang R: Linc-ROR facilitates progression and angiogenesis of
hepatocellular carcinoma by modulating DEPDC1 expression. Cell
Death Dis. 12:10472021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang L, Wang Y, Wang J, Li L and Bi J:
Identification of a prognosis-related risk signature for bladder
cancer to predict survival and immune landscapes. J Immunol Res.
2021:32363842021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang Y, Wu J, Luo W, Zhang H, Shi G, Shen
Y and Zhu Y, Ma C, Dai B, Ye D and Zhu Y: ALPK2 acts as tumor
promotor in development of bladder cancer through targeting
DEPDC1A. Cell Death Dis. 12:6612021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Barta JA, Powell CA and Wisnivesky JP:
Global epidemiology of lung cancer. Ann Glob Health. 85:82019.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Nakano I, Paucar AA, Bajpai R, Dougherty
JD, Zewail A, Kelly TK, Kim KJ, Ou J, Groszer M, Imura T, et al:
Maternal embryonic leucine zipper kinase (MELK) regulates
multipotent neural progenitor proliferation. J Cell Biol.
170:413–427. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ganguly R, Hong CS, Smith LGF, Kornblum HI
and Nakano I: Maternal embryonic leucine zipper kinase: Key kinase
for stem cell phenotype in glioma and other cancers. Mol Cancer
Ther. 13:1393–1398. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chung S, Kijima K, Kudo A, Fujisawa Y,
Harada Y, Taira A, Takamatsu N, Miyamoto T, Matsuo Y and Nakamura
Y: Preclinical evaluation of biomarkers associated with antitumor
activity of MELK inhibitor. Oncotarget. 7:18171–18182. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bolomsky A, Heusschen R, Schlangen K,
Stangelberger K, Muller J, Schreiner W, Zojer N, Caers J and Ludwig
H: Maternal embryonic leucine zipper kinase is a novel target for
proliferation-associated high-risk myeloma. Haematologica.
103:325–335. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu C, Li X, Hao Y, Wang F, Cheng Z, Geng
H and Geng D: STAT1-induced upregulation of lncRNA KTN1-AS1
predicts poor prognosis and facilitates non-small cell lung cancer
progression via miR-23b/DEPDC1 axis. Aging (Albany NY).
12:8680–8701. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Johnson P, Zhou Q, Dao DY and Lo YMD:
Circulating biomarkers in the diagnosis and management of
hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol.
19:670–681. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li Y, Tian Y, Zhong W, Wang N, Wang Y,
Zhang Y, Zhang Z, Li J, Ma F, Zhao Z and Peng Y: Artemisia argyi
essential oil inhibits hepatocellular carcinoma metastasis via
suppression of DEPDC1 dependent Wnt/β-catenin signaling pathway.
Front Cell Dev Biol. 9:6647912021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Qu D, Cui F, Lu D, Yang Y and Xu Y: DEP
domain containing 1 predicts prognosis of hepatocellular carcinoma
patients and regulates tumor proliferation and metastasis. Cancer
Sci. 110:157–165. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhou C, Wang P, Tu M, Huang Y, Xiong F and
Wu Y: DEPDC1 promotes cell proliferation and suppresses sensitivity
to chemotherapy in human hepatocellular carcinoma. Biosci Rep.
39:BSR201909462019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Xu C, Luo L, Yu Y, Zhang Z, Zhang Y, Li H,
Cheng Y, Qin H, Zhang X, Ma H and Li Y: Screening therapeutic
targets of ribavirin in hepatocellular carcinoma. Oncol Lett.
15:9625–9632. 2018.PubMed/NCBI
|
|
63
|
Lewandowski M, Lipiński P, Bednarski I,
Mik M and Dziki A: Knowledge and awareness of colorectal cancer.
Pol Przegl Chir. 92:34–41. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sharen G, Li X, Sun J, Zhang L, Xi W, Zhao
X, Han F, Jia L, A R, Cheng H and Hou M: Silencing eL31 suppresses
the progression of colorectal cancer via targeting DEPDC1. J Transl
Med. 20:4932022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhao B, Wang Y, Zhao X, Ni J, Zhu X, Fu Y
and Yang F: SIRT1 enhances oxaliplatin resistance in colorectal
cancer through microRNA-20b-3p/DEPDC1 axis. Cell Biol Int.
46:2107–2117. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lou T, Zhang L, Jin Z, Miao C, Wang J and
Ke K: miR-455-5p enhances 5-fluorouracil sensitivity in colorectal
cancer cells by targeting PIK3R1 and DEPDC1. Open Med (Wars).
17:847–856. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wilkinson L and Gathani T: Understanding
breast cancer as a global health concern. Br J Radiol.
95:202110332022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhao H, Yu M, Sui L, Gong B, Zhou B, Chen
J, Gong Z and Hao C: High expression of DEPDC1 promotes malignant
phenotypes of breast cancer cells and predicts poor prognosis in
patients with breast cancer. Front Oncol. 9:2622019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang L, Du Y, Xu S, Jiang Y, Yuan C, Zhou
L, Ma X, Bai Y, Lu J and Ma J: DEPDC1, negatively regulated by
miR-26b, facilitates cell proliferation via the up-regulation of
FOXM1 expression in TNBC. Cancer Lett. 442:242–251. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sekhoacha M, Riet K, Motloung P, Gumenku
L, Adegoke A and Mashele S: Prostate cancer review: Genetics,
diagnosis, treatment options, and alternative approaches.
Molecules. 27:57302022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ramalho-Carvalho J, Martins JB, Cekaite L,
Sveen A, Torres-Ferreira J, Graça I, Costa-Pinheiro P, Eilertsen
IA, Antunes L, Oliveira J, et al: Epigenetic disruption of miR-130a
promotes prostate cancer by targeting SEC23B and DEPDC1. Cancer
Lett. 385:150–159. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Badwelan M, Muaddi H, Ahmed A, Lee KT and
Tran SD: Oral squamous cell carcinoma and concomitant primary
tumors, what do we know? A review of the literature. Curr Oncol.
30:3721–3734. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Qiu J, Tang Y, Liu L, Yu J, Chen Z, Chen H
and Yuan R: FOXM1 is regulated by DEPDC1 to facilitate development
and metastasis of oral squamous cell carcinoma. Front Oncol.
12:8159982022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Huang G, Chen S, Washio J, Paka Lubamba G,
Takahashi N and Li C: Glycolysis-related gene analyses indicate
that DEPDC1 promotes the malignant progression of oral squamous
cell carcinoma via the WNT/β-catenin signaling pathway. Int J Mol
Sci. 24:19922023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pietras W: Advances and changes in the
treatment of children with nephroblastoma. Adv Clin Exp Med.
21:809–820. 2012.PubMed/NCBI
|
|
76
|
Geng G, Li Q, Guo X, Ni Q, Xu Y, Ma Z,
Wang Y and Ming M: FOXO3a-modulated DEPDC1 promotes malignant
progression of nephroblastoma via the Wnt/β-catenin signaling
pathway. Mol Med Rep. 26:7272022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Geng G, Xu Y, Li Q, Li Q, Yuan L, Dong M
and Ming M: S100A16 cooperates with DEPDC1 to promote the
progression and angiogenesis of nephroblastoma through
PI3K/Akt/mTOR pathway. Pol J Pathol. 74:182–193. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Feng X, Zhang C, Zhu L, Zhang L, Li H, He
L, Mi Y, Wang Y, Zhu J and Bu Y: DEPDC1 is required for cell cycle
progression and motility in nasopharyngeal carcinoma. Oncotarget.
8:63605–63619. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kikuchi R, Sampetrean O, Saya H, Yoshida K
and Toda M: Functional analysis of the DEPDC1 oncoantigen in
malignant glioma and brain tumor initiating cells. J Neurooncol.
133:297–307. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yang M, Zhang H, Gao S and Huang W: DEPDC1
and KIF4A synergistically inhibit the malignant biological behavior
of osteosarcoma cells through Hippo signaling pathway. J Orthop
Surg Res. 18:1452023. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Peng WX, Koirala P and Mo YY:
LncRNA-mediated regulation of cell signaling in cancer. Oncogene.
36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Cui XY, Zhan JK and Liu YS: Roles and
functions of antisense lncRNA in vascular aging. Ageing Res Rev.
72:1014802021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yang L, Wu Y, Xu H, Zhang J, Zheng X,
Zhang L, Wang Y, Chen W and Wang K: Identification and validation
of a novel six-lncRNA-based prognostic model for lung
adenocarcinoma. Front Oncol. 11:7755832022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li N, Yu K, Huang D, Li S, Zeng D, Li J
and Fan L: Molecular characterization of cuproptosis-related
lncRNAs: Defining molecular subtypes and a prognostic signature of
ovarian cancer. Biol Trace Elem Res. 202:1428–1445. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lu L, Liu LP, Zhao QQ, Gui R and Zhao QY:
Identification of a ferroptosis-related LncRNA signature as a novel
prognosis model for lung adenocarcinoma. Front Oncol.
11:6755452021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Xu W, Wang J, Xu J, Li S, Zhang R, Shen C,
Xie M, Zheng B and Gu M: Long non-coding RNA DEPDC1-AS1 promotes
proliferation and migration of human gastric cancer cells HGC-27
via the human antigen R-F11R pathway. J Int Med Res.
50:30006052210931352022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Mattick JS, Amaral PP, Carninci P,
Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME,
Fitzgerald KA, et al: Long non-coding RNAs: Definitions, functions,
challenges and recommendations. Nat Rev Mol Cell Biol. 24:430–447.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Arumugam P, Ramesh V, Sampathkumar B,
Perumalsamy H, Balusamy SR, Suganya K, Balraj S, Nachimuthu SK and
Sundaravadivelu S: Integrative transcriptome analysis of triple
negative breast cancer profiles for identification of druggable
targets. J Biomol Struct Dyn. 41:12106–12119. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wertz IE, Kusam S, Lam C, Okamoto T,
Sandoval W, Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, et al:
Sensitivity to antitubulin chemotherapeutics is regulated by MCL1
and FBW7. Nature. 471:110–114. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Xiang Y, Zhang Q, Wei S, Huang C, Li Z and
Gao Y: Paeoniflorin: A monoterpene glycoside from plants of
Paeoniaceae family with diverse anticancer activities. J Pharm
Pharmacol. 72:483–495. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Xie L, Zhao YX, Zheng Y and Li XF: The
pharmacology and mechanisms of platycodin D, an active triterpenoid
saponin from Platycodon grandiflorus. Front Pharmacol.
14:11488532023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Nelde A, Rammensee HG and Walz JS: The
peptide vaccine of the future. Mol Cell Proteomics. 20:1000222021.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Obara W, Ohsawa R, Kanehira M, Takata R,
Tsunoda T, Yoshida K, Takeda K, Katagiri T, Nakamura Y and Fujioka
T: Cancer peptide vaccine therapy developed from oncoantigens
identified through genome-wide expression profile analysis for
bladder cancer. Jpn J Clin Oncol. 42:591–600. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Obara W, Eto M, Mimata H, Kohri K,
Mitsuhata N, Miura I, Shuin T, Miki T, Koie T, Fujimoto H, et al: A
phase I/II study of cancer peptide vaccine S-288310 in patients
with advanced urothelial carcinoma of the bladder. Ann Oncol.
28:798–803. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Obara W, Hara I, Kato Y, Kato R, Inoue K,
Sato F, Mimata H, Nakamura Y and Fujioka T: Immunotherapy with
cancer peptides in combination with intravesical bacillus
Calmette-Guerin for patients with non-muscle invasive bladder
cancer. Cancer Immunol Immunother. 67:1371–1380. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Fujiwara Y, Okada K, Omori T, Sugimura K,
Miyata H, Ohue M, Kobayashi S, Takahashi H, Nakano H, Mochizuki C,
et al: Multiple therapeutic peptide vaccines for patients with
advanced gastric cancer. Int J Oncol. 50:1655–1662. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Fujiwara Y, Sugimura K, Miyata H, Omori T,
Nakano H, Mochizuki C, Shimizu K, Saito H, Ashida K, Honjyo S, et
al: A pilot study of post-operative adjuvant vaccine for advanced
gastric cancer. Yonago Acta Med. 60:101–105. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Daiko H, Marafioti T, Fujiwara T,
Shirakawa Y, Nakatsura T, Kato K, Puccio I, Hikichi T, Yoshimura S,
Nakagawa T, et al: Exploratory open-label clinical study to
determine the S-588410 cancer peptide vaccine-induced
tumor-infiltrating lymphocytes and changes in the tumor
microenvironment in esophageal cancer patients. Cancer Immunol
Immunother. 69:2247–2257. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Murahashi M, Hijikata Y, Yamada K, Tanaka
Y, Kishimoto J, Inoue H, Marumoto T, Takahashi A, Okazaki T, Takeda
K, et al: Phase I clinical trial of a five-peptide cancer vaccine
combined with cyclophosphamide in advanced solid tumors. Clin
Immunol. 166–167. 48–58. 2016.
|
|
100
|
Jonker DJ, O'Callaghan CJ, Karapetis CS,
Zalcberg JR, Tu D, Au HJ, Berry SR, Krahn M, Price T, Simes RJ, et
al: Cetuximab for the treatment of colorectal cancer. N Engl J Med.
357:2040–2048. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kikuchi R, Ueda R, Saito K, Shibao S,
Nagashima H, Tamura R, Morimoto Y, Sasaki H, Noji S, Kawakami Y, et
al: A pilot study of vaccine therapy with multiple glioma
oncoantigen/glioma angiogenesis-associated antigen peptides for
patients with recurrent/progressive high-grade glioma. J Clin Med.
8:2632019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Tsuruta M, Ueda S, Yew PY, Fukuda I,
Yoshimura S, Kishi H, Hamana H, Hirayama M, Yatsuda J, Irie A, et
al: Bladder cancer-associated cancer-testis antigen-derived long
peptides encompassing both CTL and promiscuous HLA class
II-restricted Th cell epitopes induced CD4+ T cells
expressing converged T-cell receptor genes in vitro.
Oncoimmunology. 7:e14156872018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Tosi A, Dalla Santa S, Cappuzzello E,
Marotta C, Walerych D, Del Sal G, Zanovello P, Sommaggio R and
Rosato A: Identification of a HLA-A*0201-restricted immunogenic
epitope from the universal tumor antigen DEPDC1. Oncoimmunology.
6:e13133712017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Yatsuda J, Irie A, Harada K, Michibata Y,
Tsukamoto H, Senju S, Tomita Y, Yuno A, Hirayama M, Abu Sayem M, et
al: Establishment of HLA-DR4 transgenic mice for the identification
of CD4+ T cell epitopes of tumor-associated antigens. PLoS One.
8:e849082013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Slingluff CL Jr, Lee S, Zhao F,
Chianese-Bullock KA, Olson WC, Butterfield LH, Whiteside TL, Leming
PD and Kirkwood JM: A randomized phase II trial of multiepitope
vaccination with melanoma peptides for cytotoxic T cells and helper
T cells for patients with metastatic melanoma (E1602). Clin Cancer
Res. 19:4228–4238. 2013. View Article : Google Scholar : PubMed/NCBI
|