|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Guggenheim DE and Shah MA: Gastric cancer
epidemiology and risk factors. J Surg Oncol. 107:230–236. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lauren P: The two histological main types
of gastric carcinoma: Diffuse and so-called intestinal-type
carcinoma. An attempt at a histoclinical classification. Acta
Pathol Microb Scand. 64:31–49. 1965. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Cisło M, Filip AA, Offerhaus GJA, Ciseł B,
Rawicz-Pruszyński K, Skierucha M and Polkowski WP: Distinct
molecular subtypes of gastric cancer: From Laurén to molecular
pathology. Oncotarget. 9:19427–19442. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ma J, Shen H, Kapesa L and Zeng S: Lauren
classification and individualized chemotherapy in gastric cancer.
Oncol Lett. 11:2959–2964. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Silvestris N, Pantano F, Ibrahim T,
Gamucci T, De Vita F, Di Palma T, Pedrazzoli P, Barni S, Bernardo
A, Febbraro A, et al: Natural history of malignant bone disease in
gastric cancer: Final results of a multicenter bone metastasis
survey. PLoS One. 8:e744022013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Riihimäki M, Hemminki A, Sundquist K,
Sundquist J and Hemminki K: Metastatic spread in patients with
gastric cancer. Oncotarget. 7:52307–52316. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Apicella M, Corso S and Giordano S:
Targeted therapies for gastric cancer: Failures and hopes from
clinical trials. Oncotarget. 8:57654–57669. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Drebber U, Baldus SE, Nolden B, Grass G,
Bollschweiler E, Dienes HP, Hölscher AH and Mönig SP: The
overexpression of c-met as a prognostic indicator for gastric
carcinoma compared to p53 and p21 nuclear accumulation. Oncol Rep.
19:1477–1483. 2008.PubMed/NCBI
|
|
10
|
Morgan E, Arnold M, Camargo MC, Gini A,
Kunzmann AT, Matsuda T, Meheus F, Verhoeven RHA, Vignat J,
Laversanne M, et al: The current and future incidence and mortality
of gastric cancer in 185 countries, 2020-40: A population-based
modelling study. EClinicalMedicine. 47:1014042022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Marin JJGG, Perez-Silva L, Macias RIRR,
Asensio M, Peleteiro-Vigil A, Sanchez-Martin A, Cives-Losada C,
Sanchon-Sanchez P, De Blas BS and Herraez E: Molecular bases of
mechanisms accounting for drug resistance in gastric
adenocarcinoma. Cancers (Basel). 12:21162020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Okines A, Verheij M, Allum W, Cunningham D
and Cervantes A; ESMO Guidelines Working Group, : Gastric cancer:
ESMO clinical practice guidelines for diagnosis, treatment and
follow-up. Ann Oncol. 21 (Suppl 5):v50–v54. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Leite de Oliveira R, Deschoemaeker S,
Henze AT, Debackere K, Finisguerra V, Takeda Y, Roncal C, Dettori
D, Tack E, Jönsson Y, et al: Gene-targeting of Phd2 improves tumor
response to chemotherapy and prevents side-toxicity. Cancer Cell.
22:263–277. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yamaguchi K, Boku N, Muro K, Yoshida K,
Baba H, Tanaka S, Akamatsu A and Sano T: Real-world safety and
effectiveness of nivolumab in Japanese patients with unresectable
advanced or recurrent gastric/gastroesophageal junction cancer that
has progressed after chemotherapy: A postmarketing surveillance
study. Gastric Cancer. 25:245–253. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Araújo D, Ribeiro E, Amorim I and Vale N:
Repurposed drugs in gastric cancer. Molecules. 28:3192023.
View Article : Google Scholar
|
|
16
|
Shitara K, Bang YJ, Iwasa S, Sugimoto N,
Ryu MH, Sakai D, Chung HC, Kawakami H, Yabusaki H, Lee J, et al:
Trastuzumab deruxtecan in previously treated HER2-positive gastric
cancer. N Engl J Med. 382:2419–2430. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Janjigian YY, Kawazoe A, Yañez P, Li N,
Lonardi S, Kolesnik O, Barajas O, Bai Y, Shen L, Tang Y, et al: The
KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive
gastric cancer. Nature. 600:727–730. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Shitara K, Rha SY, Wyrwicz LS, Oshima T,
Karaseva N, Osipov M, Yasui H, Yabusaki H, Afanasyev S, Park YK, et
al: Neoadjuvant and adjuvant pembrolizumab plus chemotherapy in
locally advanced gastric or gastro-oesophageal cancer
(KEYNOTE-585): An interim analysis of the multicentre,
double-blind, randomised phase 3 study. Lancet Oncol. 25:212–224.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Masetti M, Al-Batran SE, Goetze TO,
Thuss-Patience P, Knorrenschild JR, Goekkurt E, Folprecht G,
Ettrich TJ, Lindig U, Luley KB, et al: Efficacy of ramucirumab
combination chemotherapy as second-line treatment in patients with
advanced adenocarcinoma of the stomach or gastroesophageal junction
after exposure to checkpoint inhibitors and chemotherapy as
first-line therapy. Int J Cancer. 154:2142–2150. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Guven DC, Sahin TK, Erul E, Rizzo A, Ricci
AD, Aksoy S and Yalcin S: The association between albumin levels
and survival in patients treated with immune checkpoint inhibitors:
A systematic review and meta-analysis. Front Mol Biosci.
9:10391212022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Sahin TK, Rizzo A, Aksoy S and Guven DC:
prognostic significance of the royal marsden hospital (RMH) score
in patients with cancer: A systematic review and meta-analysis.
Cancers (Basel). 16:18352024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Dall'Olio FG, Rizzo A, Mollica V, Massucci
M, Maggio I and Massari F: Immortal time bias in the association
between toxicity and response for immune checkpoint inhibitors: A
meta-analysis. Immunotherapy. 13:257–270. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Rizzo A, Mollica V, Tateo V, Tassinari E,
Marchetti A, Rosellini M, De Luca R, Santoni M and Massari F:
Hypertransaminasemia in cancer patients receiving immunotherapy and
immune-based combinations: The MOUSEION-05 study. Cancer Immunol
Immunother. 72:1381–1394. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ricci AD, Rizzo A and Brandi G: DNA damage
response alterations in gastric cancer: Knocking down a new wall.
Future Oncol. 17:865–868. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chung HC, Bang YJ, Fuchs CS, Qin SK, Satoh
T, Shitara K, Tabernero J, Van Cutsem E, Alsina M, Cao ZA, et al:
First-line pembrolizumab/placebo plus trastuzumab and chemotherapy
in HER2-positive advanced gastric cancer: KEYNOTE-811. Future
Oncol. 17:491–501. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Boku N, Satoh T, Ryu MH, Chao Y, Kato K,
Chung HC, Chen JS, Muro K, Kang WK, Yeh KH, et al: Nivolumab in
previously treated advanced gastric cancer (ATTRACTION-2): 3-year
update and outcome of treatment beyond progression with nivolumab.
Gastric Cancer. 24:946–958. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jabbar N, Khayyam N, Arshad U, Maqsood S,
Hamid SA and Mansoor N: An outcome analysis of childhood acute
promyelocytic leukemia treated with ATRA and arsenic trioxide, and
limited dose anthracycline. Indian J Hematol Blood Transfus.
37:569–575. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kutny MA, Alonzo TA, Abla O, Rajpurkar M,
Gerbing RB, Wang YC, Hirsch BA, Raimondi S, Kahwash S, Hardy KK, et
al: Assessment of arsenic trioxide and all-trans retinoic acid for
the treatment of pediatric acute promyelocytic leukemia: A report
from the Children's oncology group AAML1331 trial. JAMA Oncol.
8:79–87. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ramchatesingh B, Villarreal AM, Arcuri D,
Lagacé F, Setah SA, Touma F, Al-Badarin F and Litvinov IV: The use
of retinoids for the prevention and treatment of skin cancers: An
updated review. Int J Mol Sci. 23:126222022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Giuli MV, Hanieh PN, Giuliani E, Rinaldi
F, Marianecci C, Screpanti I, Checquolo S and Carafa M: Current
trends in ATRA delivery for cancer therapy. Pharmaceutics.
12:7072020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ferreira R, Napoli J, Enver T, Bernardino
L and Ferreira L: Advances and challenges in retinoid delivery
systems in regenerative and therapeutic medicine. Nat Commun.
11:42652020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Veronesi U, Mariani L, Decensi A, Formelli
F, Camerini T, Miceli R, Di Mauro MG, Costa A, Marubini E, Sporn MB
and De Palo G: Fifteen-year results of a randomized phase III trial
of fenretinide to prevent second breast cancer. Ann Oncol.
17:1065–1071. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Xie H, Zhu F, Huang Z, Lee MH, Kim DJ, Li
X, Lim DY, Jung SK, Kang S, Li H, et al: Identification of
mammalian target of rapamycin as a direct target of fenretinide
both in vitro and in vivo. Carcinogenesis. 33:1814–1821. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Mittal N, Malpani S, Dyson M, Ono M, Coon
JS, Kim JJ, Schink JC, Bulun SE and Pavone ME: Fenretinide: A novel
treatment for endometrial cancer. PLoS One. 9:e1104102014.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cooper JP, Reynolds CP, Cho H and Kang MH:
Clinical development of fenretinide as an antineoplastic drug:
Pharmacology perspectives. Exp Biol Med (Maywood). 242:1178–1184.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hail N, Kim HJ and Lotan R: Mechanisms of
fenretinide-induced apoptosis. Apoptosis. 11:1677–1694. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Corazzari M, Lovat PE, Armstrong JL, Fimia
GM, Hill DS, Birch-Machin M, Redfern CP and Piacentini M: Targeting
homeostatic mechanisms of endoplasmic reticulum stress to increase
susceptibility of cancer cells to fenretinide-induced apoptosis:
The role of stress proteins ERdj5 and ERp57. Br J Cancer.
96:1062–1071. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fazi B, Bursch W, Fimia GM, Nardacci R,
Piacentini M, Di Sano F and Piredda L: Fenretinide induces
autophagic cell death in caspase-defective breast cancer cells.
Autophagy. 4:435–441. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Garaventa A, Luksch R, Lo Piccolo MS,
Cavadini E, Montaldo PG, Pizzitola MR, Boni L, Ponzoni M, Decensi
A, De Bernardi B, et al: Phase I trial and pharmacokinetics of
fenretinide in children with neuroblastoma. Clin Cancer Res.
9:2032–2039. 2003.PubMed/NCBI
|
|
40
|
Sabichi AL, Lerner SP, Atkinson EN,
Grossman HB, Caraway NP, Dinney CP, Penson DF, Matin S, Kamat A,
Pisters LL, et al: Phase III prevention trial of fenretinide in
patients with resected non-muscle-invasive bladder cancer. Clin
Cancer Res. 14:224–229. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Schneider BJ, Worden FP, Gadgeel SM,
Parchment RE, Hodges CM, Zwiebel J, Dunn RL, Wozniak AJ, Kraut MJ
and Kalemkerian GP: Phase II trial of fenretinide (NSC 374551) in
patients with recurrent small cell lung cancer. Invest New Drugs.
27:571–578. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Moore MM, Stockler M, Lim R, Mok TSK,
Millward M and Boyer MJ: A phase II study of fenretinide in
patients with hormone refractory prostate cancer: A trial of the
cancer therapeutics research group. Cancer Chemother Pharmacol.
66:845–850. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Villabanca JG, London WB, Naranjo A,
McGrady P, Ames MM, Reid JM, McGovern RM, Buhrow SA, Jackson H,
Stranzinger E, et al: Phase II study of oral capsular
4-hydroxyphenylretinamide (4-HPR/Fenretinide) in pediatric patients
with refractory or recurrent neuroblastoma: A report from the
Children's oncology group. Clin Cancer Res. 17:6858–6866. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Aristarco V, Serrano D, Maisonneuve P,
Guerrieri-Gonzaga A, Lazzeroni M, Feroce I, Macis D, Cavadini E,
Albertazzi E, Jemos C, et al: Fenretinide in young women at genetic
or familial risk of breast cancer: A placebo-controlled biomarker
trial. Cancer Prev Res (Phila). 17:255–263. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Orienti I, Salvati V, Sette G, Zucchetti
M, Bongiorno-Borbone L, Peschiaroli A, Zolla L, Francescangeli F,
Ferrari M, Matteo C, et al: A novel oral micellar fenretinide
formulation with enhanced bioavailability and antitumour activity
against multiple tumours from cancer stem cells. J Exp Clin Cancer
Res. 38:3732019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Matteo C, Orienti I, Eramo A, Zeuner A,
Ferrari M, Passoni A, Bagnati R, Ponzo M, Bello E, Zucchetti M and
Frapolli R: Validated LC-MS/MS assay for the quantitative
determination of fenretinide in plasma and tumor and its
application in a pharmacokinetic study in mice of a novel oral
nanoformulation of fenretinide. Pharmaceutics. 16:3872024.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Barranco SC, Townsend CM, Casartelli C,
Macik BG, Burger NL, Boerwinkle WR and Gourley WK: Establishment
and characterization of an in vitro model system for human
adenocarcinoma of the stomach. Cancer Res. 43:1703–1709.
1983.PubMed/NCBI
|
|
48
|
Park JG, Frucht H, LaRocca RV, Bliss DP,
Kurita Y, Chen TR, Henslee JG, Trepel JB, Jensen RT and Johnson BE:
Characteristics of cell lines established from human gastric
carcinoma. Cancer Res. 50:2773–2780. 1990.PubMed/NCBI
|
|
49
|
Chou TC: Drug combination studies and
their synergy quantification using the chou-talalay method. Cancer
Res. 70:440–446. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ortiz N, Delgado-carazo JC and Díaz C:
Importance of mevalonate pathway lipids on the growth and survival
of primary and metastatic gastric carcinoma cells. Clin Exp
Gastroenterol. 14:217–228. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Main KA, Mikelis CM and Doçi CL: In vitro
wound healing assays to investigate epidermal migration. Methods
Mol Biol. 2109:147–154. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Trump DL, Smith DC, Stiff D, Adedoyin A,
Day R, Bahnson RR, Hofacker J and Branch RA: A phase II trial of
all-trans-retinoic acid in hormone-refractory prostate cancer: A
clinical trial with detailed pharmacokinetic analysis. Cancer
Chemother Pharmacol. 39:349–356. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Adan A, Kiraz Y and Baran Y: Cell
proliferation and cytotoxicity assays. Curr Pharm Biotechnol.
17:1213–1221. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ghasemi M, Turnbull T, Sebastian S and
Kempson I: The mtt assay: Utility, limitations, pitfalls, and
interpretation in bulk and single-cell analysis. Int J Mol Sci.
22:128272021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Vichai V and Kirtikara K: Sulforhodamine B
colorimetric assay for cytotoxicity screening. Nat Protoc.
1:1112–1116. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Koay DC, Zerillo C, Narayan M, Harris LN
and Digiovanna MP: Anti-tumor effects of retinoids combined with
trastuzumab or tamoxifen in breast cancer cells: Induction of
apoptosis by retinoid/trastuzumab combinations. Breast Cancer Res.
12:R622010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lordick F, Carneiro F, Cascinu S, Fleitas
T, Haustermans K, Piessen G, Vogel A and Smyth EC; ESMO Guidelines
Committee. Electronic address, : simpleclinicalguidelines@esmo.org:
Gastric cancer: ESMO clinical practice guideline for diagnosis,
treatment and follow-up. Ann Oncol. 33:1005–1020. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Raza MH, Siraj S, Arshad A, Waheed U,
Aldakheel F, Alduraywish S and Arshad M: ROS-modulated therapeutic
approaches in cancer treatment. J Cancer Res Clin Oncol.
143:1789–1809. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Parveen SM, Reddy KR and Ummanni R:
Dimethylarginine Dimethylaminohydrolase-1 expression is increased
under tBHP-induced oxidative stress regulates nitric oxide
production in PCa cells attenuates mitochondrial ROS-mediated
apoptosis. Nitric Oxide. 138–139. 70–84. 2023.
|
|
60
|
Xu C and Fan J: Links between autophagy
and lipid droplet dynamics. J Exp Bot. 73:2848–2858. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhu Y, Chen CY, Li J, Cheng JX, Jang M and
Kim KH: In vitro exploration of ACAT contributions to lipid droplet
formation during adipogenesis. J Lipid Res. 59:820–829. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Seo JH, Jeong ES and Choi YK: Therapeutic
effects of lentivirus-mediated shRNA targeting of cyclin D1 in
human gastric cancer. BMC Cancer. 14:1752014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Park JH, Seo JH, Jeon HY, Seo SM, Lee HK,
Park J, Kim JY and Choi YK: Lentivirus-mediated VEGF knockdown
suppresses gastric cancer cell proliferation and tumor growth in
vitro and in vivo lentivirus-mediated VEGF knockdown suppresses
gastric cancer cell proliferation and tumor growth in vitro and in
vivo. Onco Targets Ther. 13:1331–1341. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xia P, Liang J, Jin D and Jin Z: Reversine
inhibits proliferation, invasion and migration and induces cell
apoptosis in gastric cancer cells by downregulating TTK. Exp Ther
Med. 22:9292021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Basque JRÂ, Chénard M, Chailler P and
Ménard D: Gastric cancer cell lines as models to study human
digestive functions. J Cell Biochem. 81:241–251. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Patel TH and Cecchini M: Targeted
therapies in advanced gastric cancer. Curr Treat Options Oncol.
21:702020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Katuri V, Tang Y, Marshall B, Rashid A,
Jogunoori W, Volpe EA, Sidawy AN, Evans S, Blay J, Gallicano GI, et
al: Inactivation of ELF/TGF-b signaling in human gastrointestinal
cancer. Oncogene. 24:8012–8024. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Jang M, Koh I, Lee SJ, Cheong JH and Kim
P: Droplet-based microtumor model to assess cell-ECM interactions
and drug resistance of gastric cancer cells. Sci Rep. 7:415412017.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang YG, Xu L, Jia RR, Wu Q, Wang T, Wei
J, Ma JL, Shi M and Li ZS: DDR2 induces gastric cancer cell
activities via activating mTORC2 signaling and is associated with
clinicopathological characteristics of gastric cancer. Dig Dis Sci.
61:2272–2283. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Espelin CW, Leonard SC, Geretti E, Wickham
TJ and Hendriks BS: Dual HER2 targeting with trastuzumab and
demonstrates synergistic antitumor activity in breast and gastric
cancer. Cancer Res. 76:1517–1527. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Simeone A, Broemeling L, Rosenblum J and
Tari AM: HER2/neu reduces the apoptotic effects of
N-(4-hydroxyphenyl)retinamide (4-HPR) in breast cancer cells by
decreasing nitric oxide production. Onocogene. 22:6739–6747. 2003.
View Article : Google Scholar
|
|
72
|
Guarrera L, Kurosaki M, Garattini SK,
Gianni M, Fasola G, Rossit L, Prisciandaro M, Di Bartolomeo M,
Bolis M, Rizzo P, et al: Anti-tumor activity of all-trans retinoic
acid in gastric-cancer: Gene-networks and molecular mechanisms. J
Exp Clin Cancer Res. 42:2982023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Alfei S and Zuccari G: Attempts to improve
lipophilic drugs' solubility and bioavailability: A focus on
fenretinide. Pharmaceutics. 16:5792024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu G, Wu M, Levi G and Ferrari N:
Inhibition of cancer cell growth by all-trans retinoic acid and its
analog N-(4-hydroxyphenyl) retinamide: A possible mechanism of
action via regulation of retinoid receptors expression. Int J
Cancer. 78:248–254. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lin SR, Chang CH, Hsu CF, Tsai MJ, Cheng
H, Leong MK, Sung PJ, Chen JC and Weng CF: Natural compounds as
potential adjuvants to cancer therapy: Preclinical evidence. Br J
Pharmacol. 177:1409–1423. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Dasari S, Njiki S, Mbemi A, Yedjou CG and
Tchounwou PB: Pharmacological effects of cisplatin combination with
natural products in cancer chemotherapy. Int J Mol Sci.
23:15322022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Mohrbacher AM, Yang AS, Groshen S, Kummar
S, Martin E, Kang MH, Tsao-Wei D, Reynolds CP, Newman EM and Maurer
BJ: Phase I study of fenretinide deliverded intravenously in
patients with relapsed or refractory hematologic malignancies: A
California cancer consortium trial. Clin Cancer Res. 23:4550–4555.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Orienti I, Francescangeli F, De Angelis
ML, Fecchi K, Bongiorno-Borbone L, Signore M, Peschiaroli A, Boe A,
Bruselles A, Costantino A, et al: A new bioavailable fenretinide
formulation with antiproliferative, antimetabolic, and cytotoxic
effects on solid tumors. Cell Death Dis. 10:5292019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bensa V, Calarco E, Giusto E, Perri P,
Corrias MV, Ponzoni M, Brignole C and Pastorino F: Retinoids
delivery systems in cancer: Liposomal fenretinide for
neuroectodermal-derived tumors. Pharmaceuticals (Basel).
14:8542021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Thomas JS, El-khoueiry AB, Maurer BJ,
Groshen S, Jacek K, Cobos E, Gandara DR, Lenz HJ, Kang MH, Reynolds
CP and Newman EM: A phase I study of intravenous fenretinide
(4-HPR) for patients with malignant solid tumors. Cancer Chemother
Pharmacol. 87:525–532. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Brack E, Wachtel M, Wolf A, Kaech A,
Ziegler U and Schäfer BW: Fenretinide induces a new form of
dynamin-dependent cell death in pediatric sarcoma. Cell Death
Differ. 27:2500–2516. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Darwiche N, Abou-Lteif G and Bazarbachi A:
Reactive oxygen species mediate
N-(4-hydroxyphenyl)retinamide-induced cell death in malignant T
cells and are inhibited by the HTLV–I oncoprotein tax. Leukemia.
21:261–269. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang H, Maurer BJ, Liu YY, Wang E,
Allegood JC, Kelly S, Symolon H, Liu Y, Merrill AH Jr,
Gouazé-Andersson V, et al: N-(4-Hydroxyphenyl)retinamide increases
dihydroceramide and synergizes with dimethylsphingosine to enhance
cancer cell killing. Mol Cancer Ther. 7:2967–2976. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Lai WL and Wong NS: The PERK/eIF2 alpha
signaling pathway of unfolded protein response is essential for
N-(4-hydroxyphenyl)retinamide (4HPR)-induced cytotoxicity in cancer
cells. Exp Cell Res. 314:1667–1682. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Apraiz A, Idkowiak-baldys J,
Nieto-rementería N, Boyano MD, Hannun YA and Asumendi A:
Dihydroceramide accumulation and reactive oxygen species are
distinct and nonessential events in 4-HPR-mediated leukemia cell
death. Biochem Cell Biol. 90:209–223. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kraveka JM, Li L, Szulc ZM, Bielawski J,
Ogretmen B, Hannun YA, Obeid LM and Bielawska A: Involvement of
dihydroceramide desaturase in cell cycle progression in human
neuroblastoma cells. J Biol Chem. 282:16718–16728. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Lim J and Murthy A: Targeting autophagy to
treat cancer: Challenges and opportunities. Front Pharmacol.
11:5903442020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Nguyen TB, Louie SM, Daniele JR, Tran Q,
Dillin A, Zoncu R, Nomura DK and Olzmann JA: DGAT1-dependent lipid
droplet biogenesis protects mitochondrial function during
starvation-induced autophagy. Dev Cell. 42:9–21. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Martinez-Lopez N and Singh R: Autophagy
and lipid droplets in the liver. Ann Rev Nutr. 35:215–237. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bouriez D, Giraud J, Gronnier C and Varon
C: Efficiency of all-trans retinoic acid on gastric cancer: A
narrative literature review. Int J Mol Sci. 19:33882018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yücel EI and Sahin M: Fenretinide reduces
angiogenesis by downregulating CDH5, FOXM1 and eNOS genes and
suppressing microRNA-10b. Mol Biol Rep. 47:1649–1658. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zeng J, Zhang H, Tan Y, Sun C, Liang Y, Yu
J and Zou H: Aggregation of lipid rafts activates c-met and c-Src
in non-small cell lung cancer cells. BMC Cancer. 18:6112018.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Sogno I, Venè R, Ferrari N, De Censi A,
Imperatori A, Noonan DM, Tosetti F and Albini A: Angioprevention
with fenretinide: Targeting angiogenesis in prevention and
therapeutic strategies. Crit Rev Oncol Hematol. 75:2–14. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Mayer B, Klement G, Kaneko M, Man S, Jothy
S, Rak J and Kerbel RS: Multicellular gastric cancer spheroids
recapitulate growth pattern and differentiation phenotype of human
gastric carcinomas. Gastroenterology. 121:839–852. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Carl-McGrath S, Ebert MPA, Lendeckel U and
Röcken C: Expression of the local angiotensin II system in gastric
cancer may facilitate lymphatic invasion and nodal spread. Cancer
Biol Ther. 6:1218–1226. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Takaishi S, Okumura T, Tu S, Wang SSW,
Shibata W, Vigneshwaran R, Gordon SA, Shimada Y and Wang TC:
Identification of gastric cancer stem cells using the cell surface
marker CD44. Stem Cells. 27:1006–1020. 2009. View Article : Google Scholar : PubMed/NCBI
|