1
|
Dyrskjøt L, Hansel DE, Efstathiou JA,
Knowles MA, Galsky MD, Teoh J and Theodorescu D: Bladder cancer.
Nat Rev Dis Primers. 9:582023. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lopez-Beltran A, Cookson MS, Guercio BJ
and Cheng L: Advances in diagnosis and treatment of bladder cancer.
BMJ. 384:e0767432024. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jubber I, Ong S, Bukavina L, Black PC,
Compérat E, Kamat AM, Kiemeney L, Lawrentschuk N, Lerner SP, Meeks
JJ, et al: Epidemiology of bladder cancer in 2023: A systematic
review of risk factors. Eur Urol. 84:176–190. 2023. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lange SM, Armstrong LA and Kulathu Y:
Deubiquitinases: From mechanisms to their inhibition by small
molecules. Mol Cell. 82:15–29. 2022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y,
Zhang Z, Zhou F and Zhang L: Deubiquitylating enzymes in cancer and
immunity. Adv Sci (Weinh). 10:e23038072023. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nelson JK, Thin MZ, Evan T, Howell S, Wu
M, Almeida B, Legrave N, Koenis DS, Koifman G, Sugimoto Y, et al:
USP25 promotes pathological HIF-1-driven metabolic reprogramming
and is a potential therapeutic target in pancreatic cancer. Nat
Commun. 13:20702022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Park HB and Baek KH: Current and future
directions of USP7 interactome in cancer study. Biochim Biophys
Acta Rev Cancer. 1878:1889922023. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chang G, Xie GS, Ma L, Li P, Li L and
Richard HT: USP36 promotes tumorigenesis and drug sensitivity of
glioblastoma by deubiquitinating and stabilizing ALKBH5. Neuro
Oncol. 25:841–853. 2023. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tang J, Long G, Hu K, Xiao D, Liu S, Xiao
L, Zhou L and Tao Y: Targeting USP8 inhibits O-GlcNAcylation of
SLC7A11 to promote ferroptosis of hepatocellular carcinoma via
stabilization of OGT. Adv Sci (Weinh). 10:e23029532023. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ning F, Xin H, Liu J, Lv C, Xu X, Wang M,
Wang Y, Zhang W and Zhang X: Structure and function of USP5:
Insight into physiological and pathophysiological roles. Pharmacol
Res. 157:1045572020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dewson G, Eichhorn PJA and Komander D:
Deubiquitinases in cancer. Nat Rev Cancer. 23:842–862. 2023.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Yan B, Guo J, Deng S, Chen D and Huang M:
A pan-cancer analysis of the role of USP5 in human cancers. Sci
Rep. 13:89722023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Meng J, Ai X, Lei Y, Zhong W, Qian B, Qiao
K, Wang X, Zhou B, Wang H, Huai L, et al: USP5 promotes
epithelial-mesenchymal transition by stabilizing SLUG in
hepatocellular carcinoma. Theranostics. 9:573–587. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang W, Liu X, Zhang Y, Deng M, Li G,
Chen G, Yu L, Jin L, Liu T, Wang Y and Chen Y: USP5 promotes breast
cancer cell proliferation and metastasis by stabilizing HIF2α. J
Cell Physiol. 237:2211–2219. 2022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang Z, Cui Z, Xie Z, Li C, Xu C, Guo X,
Yu J, Chen T, Facchinetti F, Bohnenberger H, et al: Deubiquitinase
USP5 promotes non-small cell lung cancer cell proliferation by
stabilizing cyclin D1. Transl Lung Cancer Res. 10:3995–4011. 2021.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Akhmetkaliyev A, Alibrahim N, Shafiee D
and Tulchinsky E: EMT/MET plasticity in cancer and Go-or-Grow
decisions in quiescence: The two sides of the same coin? Mol
Cancer. 22:902023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Huang Y, Hong W and Wei X: The molecular
mechanisms and therapeutic strategies of EMT in tumor progression
and metastasis. J Hematol Oncol. 15:1292022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Li D, Xia L, Huang P, Wang Z, Guo Q, Huang
C, Leng W and Qin S: Heterogeneity and plasticity of
epithelial-mesen-chymal transition (EMT) in cancer metastasis:
Focusing on partial EMT and regulatory mechanisms. Cell Prolif.
56:e134232023. View Article : Google Scholar : PubMed/NCBI
|
19
|
Debnath P, Huirem RS, Dutta P and
Palchaudhuri S: Epithelial-mesenchymal transition and its
transcription factors. Biosci Rep. 42:BSR202117542022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chi M, Liu J, Mei C, Shi Y, Liu N, Jiang
X, Liu C, Xue N, Hong H, Xie J, et al: TEAD4 functions as a
prognostic biomarker and triggers EMT via PI3K/AKT pathway in
bladder cancer. J Exp Clin Cancer Res. 41:1752022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang H, Mei Y, Luo C, Huang Q, Wang Z, Lu
GM, Qin L, Sun Z, Huang CW, Yang ZW, et al: Single-cell analyses
reveal mechanisms of cancer stem cell maintenance and
epithelial-mesenchymal transition in recurrent bladder cancer. Clin
Cancer Res. 27:6265–6278. 2021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yang J, Antin P, Berx G, Blanpain C,
Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori
G, et al: Guidelines and definitions for research on
epithelial-mesenchymal transition. Nat Rev Mol Cell Biol.
21:341–352. 2020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Cockram PE, Kist M, Prakash S, Chen SH,
Wertz IE and Vucic D: Ubiquitination in the regulation of
inflammatory cell death and cancer. Cell Death Differ. 28:591–605.
2021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Deng L, Meng T, Chen L, Wei W and Wang P:
The role of ubiquitination in tumorigenesis and targeted drug
discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xiao X, Shi J, He C, Bu X, Sun Y, Gao M,
Xiang B, Xiong W, Dai P, Mao Q, et al: ERK and USP5 govern PD-1
homeostasis via deubiquitination to modulate tumor immunotherapy.
Nat Commun. 14:28592023. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pan J, Qiao Y, Chen C, Zang H, Zhang X, Qi
F, Chang C, Yang F, Sun M, Lin S, et al: USP5 facilitates non-small
cell lung cancer progression through stabilization of PD-L1. Cell
Death Dis. 12:10512021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xia P, Zhang H, Lu H, Xu K, Jiang X, Jiang
Y, Gongye X, Chen Z, Liu J, Chen X, et al: METTL5 stabilizes c-Myc
by facilitating USP5 translation to reprogram glucose metabolism
and promote hepatocellular carcinoma progression. Cancer Commun
(Lond). 43:338–364. 2023. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cao L, Liu H, Huang C, Guo C, Zhao L, Gao
C, Xu Y, Wang G, Liang N and Li S: USP5 knockdown alleviates lung
cancer progression via activating PARP1-mediated mTOR signaling
pathway. Biol Direct. 18:162023. View Article : Google Scholar : PubMed/NCBI
|
30
|
Pan S and Chen R: Pathological implication
of protein post-translational modifications in cancer. Mol Aspects
Med. 86:1010972022. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lee JM, Hammarén HM, Savitski MM and Baek
SH: Control of protein stability by post-translational
modifications. Nat Commun. 14:2012023. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li W, Shen M, Jiang YZ, Zhang R, Zheng H,
Wei Y, Shao ZM and Kang Y: Deubiquitinase USP20 promotes breast
cancer metastasis by stabilizing SNAI2. Genes Dev. 34:1310–1315.
2020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Iwakami Y, Yokoyama S, Watanabe K and
Hayakawa Y: STAM-binding protein regulates melanoma metastasis
through SLUG stabilization. Biochem Biophys Res Commun.
507:484–488. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu SS, Qi J, Teng ZD, Tian FT, Lv XX, Li
K, Song YJ, Xie WD, Hu ZW and Li X: Resistomycin attenuates
triple-negative breast cancer progression by inhibiting E3 ligase
Pellino-1 and inducing SNAIL/SLUG degradation. Signal Transduct
Target Ther. 5:1332020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Inoue Y, Itoh Y, Sato K, Kawasaki F,
Sumita C, Tanaka T, Morishita D and Hayashi H: Regulation of
epithelial-mesenchymal transition by E3 ubiquitin ligases and
deubiquitinase in cancer. Curr Cancer Drug Targets. 16:110–118.
2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ouchida AT, Kacal M, Zheng A, Ambroise G,
Zhang B, Norberg E and Vakifahmetoglu-Norberg H: USP10 regulates
the stability of the EMT-transcription factor Slug/SNAI2. Biochem
Biophys Res Commun. 502:429–434. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mann MK, Zepeda-Velázquez CA,
González-Álvarez H, Dong A, Kiyota T, Aman AM, Loppnau P, Li Y,
Wilson B, Arrowsmith CH, et al: Structure-activity relationship of
USP5 inhibitors. J Med Chem. 64:15017–15036. 2021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kapuria V, Peterson LF, Showalter HDH,
Kirchhoff PD, Talpaz M and Donato NJ: Protein cross-linking as a
novel mechanism of action of a ubiquitin-activating enzyme
inhibitor with anti-tumor activity. Biochem Pharmacol. 82:341–349.
2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kapuria V, Peterson LF, Fang D, Bornmann
WG, Talpaz M and Donato NJ: Deubiquitinase inhibition by
small-molecule WP1130 triggers aggresome formation and tumor cell
apoptosis. Cancer Res. 70:9265–9276. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li J, Li H, Zhu W, Zhou B, Ying J, Wu J,
Zhang H, Sun H and Gao S: Deubiquitinase inhibitor degrasyn
suppresses metastasis by targeting USP5-WT1-E-cadherin signalling
pathway in pancreatic ductal adenocarcinoma. J Cell Mol Med.
24:1370–1382. 2020. View Article : Google Scholar : PubMed/NCBI
|