|
1
|
Medinger M, Heim D, Halter JP, Lengerke C
and Passweg JR: Diagnosis and therapy of acute myeloid leukemia.
Ther Umsch. 76:481–486. 2019.(In German). View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Pelcovits A and Niroula R: Acute myeloid
leukemia: A review. R I Med J. 103:38–40. 2020.
|
|
3
|
Shimony S, Stahl M and Stone RM: Acute
myeloid leukemia: 2023 update on diagnosis, risk-stratification,
and management. Am J Hematol. 98:502–526. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ren Y, Mao X, Xu H, Dang Q, Weng S, Zhang
Y, Chen S, Liu S, Ba Y, Zhou Z, et al: Ferroptosis and EMT: Key
targets for combating cancer progression and therapy resistance.
Cell Mol Life Sci. 80:2632023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang C, Liu X, Jin S, Chen Y and Guo R:
Ferroptosis in cancer therapy: A novel approach to reversing drug
resistance. Mol Cancer. 21:472022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C
and Li B: Ferroptosis, a new form of cell death: Opportunities and
challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lei G, Zhuang L and Gan B: Targeting
ferroptosis as a vulnerability in cancer. Nat Rev Cancer.
22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Liang C, Zhang X, Yang M and Dong X:
Recent progress in ferroptosis inducers for cancer therapy. Adv
Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liang D, Minikes AM and Jiang X:
Ferroptosis at the intersection of lipid metabolism and cellular
signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Balihodzic A, Prinz F, Dengler MA, Calin
GA, Jost PJ and Pichler M: Non-coding RNAs and ferroptosis:
Potential implications for cancer therapy. Cell Death Differ.
29:1094–1106. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hirschhorn T and Stockwell BR: The
development of the concept of ferroptosis. Free Radic Biol Med.
133:130–143. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao
N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell
Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Stockwell BR, Jiang X and Gu W: Emerging
mechanisms and disease relevance of ferroptosis. Trends Cell Biol.
30:478–490. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chen X, Li J, Kang R, Klionsky DJ and Tang
D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv
H, AlQudsy LHH and Shang P: Ferroptosis, a novel pharmacological
mechanism of anti-cancer drugs. Cancer Lett. 483:127–136. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Miotto G, Rossetto M, Di Paolo ML, Orian
L, Venerando R, Roveri A, Vučković AM, Bosello Travain V, Zaccarin
M, Zennaro L, et al: Insight into the mechanism of ferroptosis
inhibition by ferrostatin-1. Redox Biol. 28:1013282020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and
Wang J: Molecular mechanisms of ferroptosis and its role in cancer
therapy. J Cell Mol Med. 23:4900–4912. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Tang D, Chen X, Kang R and Kroemer G:
Ferroptosis: Molecular mechanisms and health implications. Cell
Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Liu Y, Wan Y, Jiang Y, Zhang L and Cheng
W: GPX4: The hub of lipid oxidation, ferroptosis, disease and
treatment. Biochim Biophys Acta Rev Cancer. 1878:1888902023.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Forcina GC and Dixon SJ: GPX4 at the
crossroads of lipid homeostasis and ferroptosis. Proteomics.
19:e18003112019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Xing K, Bian X, Shi D, Dong S, Zhou H,
Xiao S, Bai J and Wu W: miR-612 Enhances RSL3-Induced ferroptosis
of hepatocellular carcinoma cells via mevalonate pathway. J
Hepatocell Carcinoma. 10:2173–2185. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H
and Zhou Z: Role and mechanism of ferroptosis in neurological
diseases. Mol Metab. 61:1015022022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Noe R, Inglese N, Romani P, Serafini T,
Paoli C, Calciolari B, Fantuz M, Zamborlin A, Surdo NC, Spada V, et
al: Organic Selenium induces ferroptosis in pancreatic cancer
cells. Redox Biol. 68:1029622023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zheng J and Conrad M: The metabolic
underpinnings of ferroptosis. Cell Metab. 32:920–937. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Xia J, Si H, Yao W, Li C, Yang G, Tian Y
and Hao C: Research progress on the mechanism of ferroptosis and
its clinical application. Exp Cell Res. 409:1129322021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liu J, Zhang C, Wang J, Hu W and Feng Z:
The regulation of ferroptosis by tumor suppressor p53 and its
pathway. Int J Mol Sci. 21:83872020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lei P, Bai T and Sun Y: Mechanisms of
ferroptosis and relations with regulated cell death: A Review.
Front Physiol. 10:1392019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Xu R, Wang W and Zhang W: Ferroptosis and
the bidirectional regulatory factor p53. Cell Death Discov.
9:1972023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang H, Guo M, Wei H and Chen Y: Targeting
p53 pathways: Mechanisms, structures, and advances in therapy.
Signal Transduct Target Ther. 8:922023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Park E and Chung SW: ROS-mediated
autophagy increases intracellular iron levels and ferroptosis by
ferritin and transferrin receptor regulation. Cell Death Dis.
10:8222019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Stockwell BR: Ferroptosis turns 10:
Emerging mechanisms, physiological functions, and therapeutic
applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Fuhrmann DC and Brune B: A graphical
journey through iron metabolism, microRNAs, and hypoxia in
ferroptosis. Redox Biol. 54:1023652022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bayir H, Dixon SJ, Tyurina YY, Kellum JA
and Kagan VE: Ferroptotic mechanisms and therapeutic targeting of
iron metabolism and lipid peroxidation in the kidney. Nat Rev
Nephrol. 19:315–336. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R
and Tang D: Activation of the p62-Keap1-NRF2 pathway protects
against ferroptosis in hepatocellular carcinoma cells. Hepatology.
63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li D and Li Y: The interaction between
ferroptosis and lipid metabolism in cancer. Signal Transduct Target
Ther. 5:1082020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zheng XJ, Chen WL, Yi J, Li W, Liu JY, Fu
WQ, Ren LW, Li S, Ge BB, Yang YH, et al: Apolipoprotein C1 promotes
glioblastoma tumorigenesis by reducing KEAP1/NRF2 and CBS-regulated
ferroptosis. Acta Pharmacol Sin. 43:2977–2992. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zheng XJ, Chen WL, Yi J, Li W, Liu JY, Fu
WQ, Ren LW, Li S, Ge BB, Yang YH, et al: Author Correction:
Apolipoprotein C1 promotes glioblastoma tumorigenesis by reducing
KEAP1/NRF2 and CBS-regulated ferroptosis. Acta Pharmacol Sin. May
13–2024.doi: 10.1038/s41401-024-01271-2 (Epub ahead of print).
|
|
39
|
Zimta AA, Cenariu D, Irimie A, Magdo L,
Nabavi SM, Atanasov AG and Berindan-Neagoe I: The role of Nrf2
activity in cancer development and progression. Cancers (Basel).
11:17552019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Grignano E, Birsen R, Chapuis N and
Bouscary D: From iron chelation to overload as a therapeutic
strategy to induce ferroptosis in leukemic cells. Front Oncol.
10:5865302020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zeng F, Nijiati S, Tang L, Ye J, Zhou Z
and Chen X: Ferroptosis detection: From approaches to applications.
Angew Chem Int Ed Engl. 62:e2023003792023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chen X, Kang R, Kroemer G and Tang D:
Broadening horizons: The role of ferroptosis in cancer. Nat Rev
Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Koppula P, Zhuang L and Gan B: Cystine
transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient
dependency, and cancer therapy. Protein Cell. 12:599–620. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X,
Wang H, Cao L and Tang D: HSPB1 as a novel regulator of ferroptotic
cancer cell death. Oncogene. 34:5617–5625. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liu Y and Gu W: p53 in ferroptosis
regulation: The new weapon for the old guardian. Cell Death Differ.
29:895–910. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gong D, Chen M, Wang Y, Shi J and Hou Y:
Role of ferroptosis on tumor progression and immunotherapy. Cell
Death Discov. 8:4272022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Liu Y and Gu W: The complexity of
p53-mediated metabolic regulation in tumor suppression. Semin
Cancer Biol. 85:4–32. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gao Y, Zhang H, Wang J, Li F, Li X, Li T,
Wang C, Li L, Peng R, Liu L, et al: Annexin A5 ameliorates
traumatic brain injury-induced neuroinflammation and neuronal
ferroptosis by modulating the NF-kB/HMGB1 and Nrf2/HO-1 pathways.
Int Immunopharmacol. 114:1096192023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ursini F and Maiorino M: Lipid
peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic
Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Pope LE and Dixon SJ: Regulation of
ferroptosis by lipid metabolism. Trends Cell Biol. 33:1077–1087.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhao L, Zhou X, Xie F and Zhang L, Yan H,
Huang J, Zhang C, Zhou F, Chen J and Zhang L: Ferroptosis in cancer
and cancer immunotherapy. Cancer Commun (Lond). 42:88–116. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lee H, Zandkarimi F, Zhang Y, Meena JK,
Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, et al:
Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat
Cell Biol. 22:225–234. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Song X, Zhu S, Chen P, Hou W, Wen Q, Liu
J, Xie Y, Liu J, Klionsky DJ, Kroemer G, et al: AMPK-Mediated BECN1
phosphorylation promotes ferroptosis by directly blocking system
Xc-Activity. Curr Biol. 28:2388–2399. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Winer ES: Secondary acute myeloid
leukemia: A primary challenge of diagnosis and treatment. Hematol
Oncol Clin North Am. 34:449–463. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv
H, AlQudsy LHH and Shang P: Ferroptosis, a novel pharmacological
mechanism of anti-cancer drugs. Cancer Lett. 483:127–136. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Farge T, Saland E, de Toni F, Aroua N,
Hosseini M, Perry R, Bosc C, Sugita M, Stuani L, Fraisse M, et al:
Chemotherapy-Resistant human acute myeloid leukemia cells are not
enriched for leukemic stem cells but require oxidative metabolism.
Cancer Discov. 7:716–735. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Akiyama H, Zhao R, Ostermann LB, Li Z,
Tcheng M, Yazdani SJ, Moayed A, Pryor ML II, Slngh S, Baran N, et
al: Correction: Mitochondrial regulation of GPX4
inhibition-mediated ferroptosis in acute myeloid leukemia.
Leukemia. 38:9262024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Auberger P, Favreau C, Savy C, Jacquel A
and Robert G: Emerging role of glutathione peroxidase 4 in myeloid
cell lineage development and acute myeloid leukemia. Cell Mol Biol
Lett. 29:982024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhong X, Zhang Z, Shen H, Xiong Y, Shah
YM, Liu Y, Fan XG and Rui L: Hepatic NF-κB-Inducing kinase and
inhibitor of NF-κB kinase subunit α promote liver oxidative stress,
ferroptosis, and liver injury. Hepatol Commun. 5:1704–1720. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Rushworth SA, Zaitseva L, Murray MY, Shah
NM, Bowles KM and MacEwan DJ: The high Nrf2 expression in human
acute myeloid leukemia is driven by NF-κB and underlies its
chemo-resistance. Blood. 120:5188–5198. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Akiyama H, Zhao R, Ostermann LB, Li Z,
Tcheng M, Yazdani SJ, Moayed A, Pryor ML II, Slngh S, Baran N, et
al: Mitochondrial regulation of GPX4 inhibition-mediated
ferroptosis in acute myeloid leukemia. Leukemia. 38:729–740. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Pabst T, Kortz L, Fiedler GM, Ceglarek U,
Idle JR and Beyoğlu D: The plasma lipidome in acute myeloid
leukemia at diagnosis in relation to clinical disease features. BBA
Clin. 7:105–114. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Strickland SA and Vey N: Diagnosis and
treatment of therapy-related acute myeloid leukemia. Crit Rev Oncol
Hematol. 171:1036072022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Roberts MD, Langston AA and Heffner LJ:
Acute myeloid leukemia in young adults: Does everyone need a
transplant? J Oncol Pract. 15:315–320. 2019. View Article : Google Scholar
|
|
65
|
Barriga F, Ramirez P, Wietstruck A and
Rojas N: Hematopoietic stem cell transplantation: Clinical use and
perspectives. Biol Res. 45:307–316. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Birsen R, Larrue C, Decroocq J, Johnson N,
Guiraud N, Gotanegre M, Cantero-Aguilar L, Grignano E, Huynh T,
Fontenay M, et al: APR-246 induces early cell death by ferroptosis
in acute myeloid leukemia. Haematologica. 107:403–416. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yusuf RZ, Saez B, Sharda A, van Gastel N,
Yu VWC, Baryawno N, Scadden EW, Acharya S, Chattophadhyay S, Huang
C, et al: Aldehyde dehydrogenase 3a2 protects AML cells from
oxidative death and the synthetic lethality of ferroptosis
inducers. Blood. 136:1303–1316. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li Q, Su R, Bao X, Cao K, Du Y, Wang N,
Wang J, Xing F, Yan F, Huang K and Feng S: Glycyrrhetinic acid
nanoparticles combined with ferrotherapy for improved cancer
immunotherapy. Acta Biomater. 144:109–120. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Cao K, Du Y, Bao X, Han M, Su R, Pang J,
Liu S, Shi Z, Yan F and Feng S: Glutathione-Bioimprinted
nanoparticles targeting of N6-methyladenosine FTO Demethylase as a
strategy against leukemic stem cells. Small. 18:e21065582022.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Peng X, Zhang MQ, Conserva F, Hosny G,
Selivanova G, Bykov VJ, Arnér ES and Wiman KG: APR-246/PRIMA-1MET
inhibits thioredoxin reductase 1 and converts the enzyme to a
dedicated NADPH oxidase. Cell Death Dis. 4:e8812013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ali D, Jonsson-Videsater K, Deneberg S,
Bengtzén S, Nahi H, Paul C and Lehmann S: APR-246 exhibits
anti-leukemic activity and synergism with conventional
chemotherapeutic drugs in acute myeloid leukemia cells. Eur J
Haematol. 86:206–215. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sallman DA, DeZern AE, Garcia-Manero G,
Steensma DP, Roboz GJ, Sekeres MA, Cluzeau T, Sweet KL, McLemore A,
McGraw KL, et al: Eprenetapopt (APR-246) and azacitidine in
TP53-Mutant myelodysplastic syndromes. J Clin Oncol. 39:1584–1594.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang Y, Tang B, Zhu J, Yu J, Hui J, Xia S
and Ji J: Emerging mechanisms and targeted therapy of ferroptosis
in neurological diseases and Neuro-oncology. Int J Biol Sci.
18:4260–4274. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Dong LH, Huang JJ, Zu P, Liu J, Gao X, Du
JW and Li YF: CircKDM4C upregulates P53 by sponging hsa-let-7b-5p
to induce ferroptosis in acute myeloid leukemia. Environ Toxicol.
36:1288–1302. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kang R, Kroemer G and Tang D: The tumor
suppressor protein p53 and the ferroptosis network. Free Radic Biol
Med. 133:162–168. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yu Y, Meng Y, Xu X, Tong T, He C, Wang L,
Wang K, Zhao M, You X, Zhang W, et al: A Ferroptosis-inducing and
leukemic cell-Targeting drug nanocarrier formed by Redox-Responsive
cysteine polymer for acute myeloid leukemia therapy. ACS Nano.
17:3334–3345. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lang X, Green MD, Wang W, Yu J, Choi JE,
Jiang L, Liao P, Zhou J, Zhang Q, Dow A, et al: Radiotherapy and
immunotherapy promote tumoral lipid oxidation and ferroptosis via
synergistic repression of SLC7A11. Cancer Discov. 9:1673–1685.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Xu H, Ye D, Ren M, Zhang H and Bi F:
Ferroptosis in the tumor microenvironment: Perspectives for
immunotherapy. Trends Mol Med. 27:856–867. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Su R, Dong L, Li Y, Gao M, Han L,
Wunderlich M, Deng X, Li H, Huang Y, Gao L, et al: Targeting FTO
suppresses cancer stem cell maintenance and immune evasion. Cancer
Cell. 38:79–96. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Du Y, Han M, Cao K, Li Q, Pang J, Dou L,
Liu S, Shi Z, Yan F and Feng S: Gold nanorods exhibit intrinsic
therapeutic activity via controlling N6-methyladenosine-based
Epitranscriptomics in acute myeloid leukemia. ACS Nano.
15:17689–17704. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wen Q, Liu J, Kang R, Zhou B and Tang D:
The release and activity of HMGB1 in ferroptosis. Biochem Biophys
Res Commun. 510:278–283. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Chen GQ, Benthani FA, Wu J, Liang D, Bian
ZX and Jiang X: Artemisinin compounds sensitize cancer cells to
ferroptosis by regulating iron homeostasis. Cell Death Differ.
27:242–254. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhu HY, Huang ZX, Chen GQ, Sheng F and
Zheng YS: Typhaneoside prevents acute myeloid leukemia (AML)
through suppressing proliferation and inducing ferroptosis
associated with autophagy. Biochem Biophys Res Commun.
516:1265–1271. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Du Y, Bao J, Zhang MJ, Li LL, Xu XL, Chen
H, Feng YB, Peng XQ and Chen FH: Targeting ferroptosis contributes
to ATPR-induced AML differentiation via ROS-autophagy-lysosomal
pathway. Gene. 755:1448892020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bruedigam C, Porter AH, Song A, Vroeg In
de Wei G, Stoll T, Straube J, Cooper L, Cheng G, Kahl VFS, Sobinoff
AP, et al: Imetelstat-mediated alterations in fatty acid metabolism
to induce ferroptosis as a therapeutic strategy for acute myeloid
leukemia. Nat Cancer. 5:47–65. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lai X, Sun Y, Zhang X, Wang D, Wang J,
Wang H, Zhao Y, Liu X, Xu X, Song H, et al: Honokiol induces
ferroptosis by upregulating HMOX1 in acute myeloid leukemia cells.
Front Pharmacol. 13:8977912022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Gan B: How erastin assassinates cells by
ferroptosis revealed. Protein Cell. 14:84–86. 2023.PubMed/NCBI
|
|
88
|
Yu Y, Xie Y, Cao L, Yang L, Yang M, Lotze
MT, Zeh HJ, Kang R and Tang D: The ferroptosis inducer erastin
enhances sensitivity of acute myeloid leukemia cells to
chemotherapeutic agents. Mol Cell Oncol. 2:e10545492015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ye F, Chai W, Xie M, Yang M, Yu Y, Cao L
and Yang L: HMGB1 regulates erastin-induced ferroptosis via
RAS-JNK/p38 signaling in HL-60/NRAS(Q61L) cells. Am J Cancer Res.
9:730–739. 2019.PubMed/NCBI
|
|
90
|
Du J, Wang T, Li Y, Zhou Y, Wang X, Yu X,
Ren X, An Y, Wu Y, Sun W, et al: DHA inhibits proliferation and
induces ferroptosis of leukemia cells through autophagy dependent
degradation of ferritin. Free Radic Biol Med. 131:356–369. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Nishizawa H, Yamanaka M and Igarashi K:
Ferroptosis: Regulation by competition between NRF2 and BACH1 and
propagation of the death signal. FEBS J. 290:1688–1704. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Du Y, Zhang MJ, Li LL, Xu XL, Chen H, Feng
YB, Li Y, Peng XQ and Chen FH: ATPR triggers acute myeloid
leukaemia cells differentiation and cycle arrest via the
RARalpha/LDHB/ERK-glycolysis signalling axis. J Cell Mol Med.
24:6952–6965. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Pelcovits A and Niroula R: Acute myeloid
leukemia: A review. R I Med J (2013). 103:38–40. 2020.PubMed/NCBI
|
|
94
|
Yin Z, Li F, Zhou Q, Zhu J, Liu Z, Huang
J, Shen H, Ou R, Zhu Y, Zhang Q and Liu S: A ferroptosis-related
gene signature and immune infiltration patterns predict the overall
survival in acute myeloid leukemia patients. Front Mol Biosci.
9:9597382022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Prada-Arismendy J, Arroyave JC and
Rothlisberger S: Molecular biomarkers in acute myeloid leukemia.
Blood Rev. 31:63–76. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Han C, Zheng J, Li F, Guo W and Cai C:
Novel prognostic signature for acute myeloid leukemia:
Bioinformatics analysis of combined CNV-driven and
ferroptosis-related genes. Front Genet. 13:8494372022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Song Y, Tian S, Zhang P, Zhang N, Shen Y
and Deng J: Construction and validation of a novel
Ferroptosis-Related prognostic model for acute myeloid leukemia.
Front Genet. 12:7086992022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wei J, Xie Q, Liu X, Wan C, Wu W, Fang K,
Yao Y, Cheng P, Deng D and Liu Z: Identification the prognostic
value of glutathione peroxidases expression levels in acute myeloid
leukemia. Ann Transl Med. 8:6782020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chen Z, Wu T, Yan Z and Zhang M:
Identification and validation of an 11-Ferroptosis related gene
signature and its correlation with immune checkpoint molecules in
glioma. Front Cell Dev Biol. 9:6525992021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Huang X, Zhou D, Ye X and Jin J: A novel
ferroptosis-related gene signature can predict prognosis and
influence immune microenvironment in acute myeloid leukemia. Bosn J
Basic Med Sci. 22:608–628. 2021.PubMed/NCBI
|
|
101
|
Zhu L, Yang F, Wang L, Dong L, Huang Z,
Wang G, Chen G and Li Q: Identification the ferroptosis-related
gene signature in patients with esophageal adenocarcinoma. Cancer
Cell Int. 21:1242021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zhang X, Zhang X, Liu K, Li W, Wang J, Liu
P and Ma W: HIVEP3 cooperates with ferroptosis gene signatures to
confer adverse prognosis in acute myeloid leukemia. Cancer Med.
11:5050–5065. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Jiang B, Zhao Y, Shi M, Song L, Wang Q,
Qin Q, Song X, Wu S, Fang Z and Liu X: DNAJB6 promotes ferroptosis
in esophageal squamous cell carcinoma. Dig Dis Sci. 65:1999–2008.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Meng E, Shevde LA and Samant RS:
Retraction: Emerging roles and underlying molecular mechanisms of
DNAJB6 in cancer. Oncotarget. 14:6692023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liang Y, Wang Y, Zhang Y, Ye F, Luo D, Li
Y, Jin Y, Han D, Wang Z, Chen B, et al: HSPB1 facilitates
chemoresistance through inhibiting ferroptotic cancer cell death
and regulating NF-κB signaling pathway in breast cancer. Cell Death
Dis. 14:4342023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yan XS, Sun YJ, Du J, Niu WY, Qiao H and
Yin XC: Effects of ferroptosis-related gene HSPB1 on acute myeloid
leukemia. Int J Lab Hematol. June 2–2024.(Epub ahead of print).
View Article : Google Scholar
|
|
107
|
Ma Z, Ye W, Huang X, Li X, Li F, Lin X, Hu
C, Wang J, Jin J, Zhu B and Huang J: The ferroptosis landscape in
acute myeloid leukemia. Aging (Albany NY). 15:13486–13503. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Guo S, Li F, Liang Y, Zheng Y, Mo Y, Zhao
D, Jiang Z, Cui M, Qi L, Chen J, et al: AIFM2 promotes
hepatocellular carcinoma metastasis by enhancing mitochondrial
biogenesis through activation of SIRT1/PGC-1α signaling.
Oncogenesis. 12:462023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Sun Q, Liu D, Cui W, Cheng H, Huang L,
Zhang R, Gu J, Liu S, Zhuang X, Lu Y, et al: Cholesterol mediated
ferroptosis suppression reveals essential roles of Coenzyme Q and
squalene. Commun Biol. 6:11082023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Shi J, Wu P, Sheng L, Sun W and Zhang H:
Ferroptosis-related gene signature predicts the prognosis of
papillary thyroid carcinoma. Cancer Cell Int. 21:6692021.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Song Y, Tian S, Zhang P, Zhang N, Shen Y
and Deng J: Construction and validation of a novel
Ferroptosis-Related Prognostic model for acute myeloid leukemia.
Front Genet. 12:7086992021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Dixon SJ, Patel DN, Welsch M, Skouta R,
Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS
and Stockwell BR: Pharmacological inhibition of Cystine-glutamate
exchange induces endoplasmic reticulum stress and ferroptosis.
Elife. 3:e025232014. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zhang X, Peng T, Li C, Ai C, Wang X, Lei
X, Li G and Li T: Inhibition of CISD1 alleviates mitochondrial
dysfunction and ferroptosis in mice with acute lung injury. Int
Immunopharmacol. 130:1116852024. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J,
Zhong M, Yuan H, Zhang L, Billiar TR, et al: The tumor suppressor
p53 limits ferroptosis by blocking DPP4 activity. Cell Rep.
20:1692–1704. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhang L, Song A, Yang QC, Li SJ, Wang S,
Wan SC, Sun J, Kwok RTK, Lam JWY, Deng H, et al: Integration of
AIEgens into covalent organic frameworks for pyroptosis and
ferroptosis primed cancer immunotherapy. Nat Commun. 14:53552023.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wang J, Zhuo Z, Wang Y, Yang S, Chen J,
Wang Y, Geng S, Li M, Du X, Lai P, et al: Identification and
validation of a prognostic Risk-scoring model based on
Ferroptosis-associated cluster in acute myeloid leukemia. Front
Cell Dev Biol. 9:8002672021. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Rudin CM, Reck M, Johnson ML, Blackhall F,
Hann CL, Yang JC, Bailis JM, Bebb G, Goldrick A, Umejiego J and
Paz-Ares L: Emerging therapies targeting the delta-like ligand 3
(DLL3) in small cell lung cancer. J Hematol Oncol. 16:662023.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Ruvolo PP, Ma H, Ruvolo VR, Zhang X, Post
SM and Andreeff M: LGALS1 acts as a pro-survival molecule in AML.
Biochim Biophys Acta Mol Cell Res. 1867:1187852020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Sun J, Lu P, Guan S and Liu S:
Heterogeneity analysis of pancreatic cancer and identification of
molecular subtypes of tumor cells based on CEACAM5, LGALS1 and
CENPF gene expression. Nan Fang Yi Ke Da Xue Xue Bao. 43:1567–1576.
2023.(In Chinese). PubMed/NCBI
|
|
120
|
Zhu W, Liu D, Lu Y, Sun J, Zhu J, Xing Y,
Ma X, Wang Y, Ji M and Jia Y: PHKG2 regulates RSL3-induced
ferroptosis in Helicobacter pylori related gastric cancer. Arch
Biochem Biophys. 740:1095602023. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Sabatier M, Birsen R, Lauture L, Mouche S,
Angelino P, Dehairs J, Goupille L, Boussaid I, Heiblig M, Boet E,
et al: C/EBPα confers dependence to fatty acid anabolic pathways
and vulnerability to lipid oxidative Stress-Induced ferroptosis in
FLT3-mutant leukemia. Cancer Discov. 13:1720–1747. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Chen X, Hu S, Han Y, Cai Y, Lu T, Hu X,
Chu Y, Zhou X and Wang X: Ferroptosis-related STEAP3 acts as
predictor and regulator in diffuse large B cell lymphoma through
immune infiltration. Clin Exp Med. 23:2601–2617. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Dai E, Han L, Liu J, Xie Y, Zeh HJ, Kang
R, Bai L and Tang D: Ferroptotic damage promotes pancreatic
tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway.
Nat Commun. 11:63392020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Sadeghi M, Moslehi A, Kheiry H, Kiani FK,
Zarei A, Khodakarami A, Karpisheh V, Masjedi A, Rahnama B,
Hojjat-Farsangi M, et al: The sensitivity of acute myeloid leukemia
cells to cytarabine is increased by suppressing the expression of
Heme oxygenase-1 and hypoxia-inducible factor 1-alpha. Cancer Cell
Int. 24:2172024. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Bartolacci C, Andreani C, El-Gammal Y and
Scaglioni PP: Lipid metabolism regulates oxidative stress and
ferroptosis in RAS-Driven cancers: A perspective on cancer
progression and therapy. Front Mol Biosci. 8:7066502021. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Diao J, Jia Y, Dai E, Liu J, Kang R, Tang
D, Han L, Zhong Y and Meng L: Ferroptotic therapy in cancer:
Benefits, side effects, and risks. Mol Cancer. 23:892024.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Chen X, Song X, Li J, Zhang R, Yu C, Zhou
Z, Liu J, Liao S, Klionsky DJ, Kroemer G, et al: Identification of
HPCAL1 as a specific autophagy receptor involved in ferroptosis.
Autophagy. 19:54–74. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zhang H and Sun C, Sun Q, Li Y, Zhou C and
Sun C: Susceptibility of acute myeloid leukemia cells to
ferroptosis and evasion strategies. Front Mol Biosci.
10:12757742023. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Liu J, Kang R and Tang D: Signaling
pathways and defense mechanisms of ferroptosis. FEBS J.
289:7038–7050. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Cui J, Wang Y, Tian X, Miao Y, Ma L, Zhang
C, Xu X, Wang J, Fang W and Zhang X: LPCAT3 is transcriptionally
regulated by YAP/ZEB/EP300 and collaborates with ACSL4 and YAP to
determine ferroptosis sensitivity. Antioxid Redox Signal.
39:491–511. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
De Voeght A, Jaspers A, Beguin Y, Baron F
and De Prijck B: Overview of the general management of acute
leukemia for adults. Rev Med Liege. 76:470–475, (In French).
PubMed/NCBI
|