Transcriptomic analysis reveals Streptococcus agalactiae activation of oncogenic pathways in cervical adenocarcinoma
- Authors:
- Hong Duc Thi Nguyen
- Tan Minh Le
- Da-Ryung Jung
- Youngjae Jo
- Yeseul Choi
- Donghyeon Lee
- Olive Em Lee
- Junghwan Cho
- Nora Jee-Young Park
- Incheol Seo
- Gun Oh Chong
- Jae-Ho Shin
- Hyung Soo Han
-
Affiliations: Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Republic of Korea, Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea, Clinical Omics Institute, Kyungpook National University, Daegu 41405, Republic of Korea, Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea - Published online on: October 3, 2024 https://doi.org/10.3892/ol.2024.14720
- Article Number: 588
-
Copyright: © Nguyen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Burmeister CA, Khan SF, Schäfer G, Mbatani N, Adams T, Moodley J and Prince S: Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Res. 13:2002382022. View Article : Google Scholar : PubMed/NCBI | |
Couvreur K, Naert E, De Jaeghere E, Tummers P, Makar A, De Visschere P, Van Bockstal M, Van Dorpe J, De Neve W, Denys H and Vandecasteele K: Neo-adjuvant treatment of adenocarcinoma and squamous cell carcinoma of the cervix results in significantly different pathological complete response rates. BMC Cancer. 18:11012018. View Article : Google Scholar : PubMed/NCBI | |
Blake SJ, Wolf Y, Boursi B and Lynn DJ: Role of the microbiota in response to and recovery from cancer therapy. Nat Rev Immunol. 24:308–325. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Chen F and Wu G: Potential effects of gut microbiota on host cancers: Focus on immunity, DNA damage, cellular pathways, and anticancer therapy. ISME J. 17:1535–1551. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Ding X, Kong Y, Acharya S, Wu H, Huang C, Liang Y, Nong X and Chen H: The feature of cervical microbiota associated with the progression of cervical cancer among reproductive females. Gynecol Oncol. 163:348–357. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tango CN, Seo SS, Kwon M, Lee DO, Chang HK and Kim MK: Taxonomic and functional differences in cervical microbiome associated with cervical cancer development. Sci Rep. 10:97202020. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Zhang Y, Yu L, Shi X, Min M, Xiong L, Pan J, Liu P, Wu G and Gao G: A cross-sectional analysis about bacterial vaginosis, high-risk human papillomavirus infection, and cervical intraepithelial neoplasia in Chinese women. Sci Rep. 12:66092022. View Article : Google Scholar : PubMed/NCBI | |
Audirac-Chalifour A, Torres-Poveda K, Bahena-Román M, Téllez-Sosa J, Martínez-Barnetche J, Cortina-Ceballos B, López-Estrada G, Delgado-Romero K, Burguete-García AI, Cantú D, et al: Cervical microbiome and cytokine profile at various stages of cervical cancer: A pilot study. PLoS One. 11:e01532742016. View Article : Google Scholar : PubMed/NCBI | |
Nguyen HDT, Le TM, Lee E, Lee D, Choi Y, Cho J, Park NJ, Chong GO, Seo I and Han HS: Relationship between human papillomavirus status and the cervicovaginal microbiome in cervical cancer. Microorganisms. 11:14172023. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Wu Y, Quan L, Yang W, Lang J, Tian G and Meng B: Research of cervical microbiota alterations with human papillomavirus infection status and women age in Sanmenxia area of China. Front Microbiol. 13:10046642022. View Article : Google Scholar : PubMed/NCBI | |
Mulato-Briones IB, Rodriguez-Ildefonso IO, Jiménez-Tenorio JA, Cauich-Sánchez PI, Méndez-Tovar MDS, Aparicio-Ozores G, Bautista-Hernández MY, González-Parra JF, Cruz-Hernández J, López-Romero R, et al: Cultivable microbiome approach applied to cervical cancer exploration. Cancers (Basel). 16:3142024. View Article : Google Scholar : PubMed/NCBI | |
Kang GU, Jung DR, Lee YH, Jeon SY, Han HS, Chong GO and Shin JH: Potential association between vaginal microbiota and cervical carcinogenesis in korean women: A cohort study. Microorganisms. 294:2942021. View Article : Google Scholar | |
Armistead B, Oler E, Adams Waldorf K and Rajagopal L: The double life of Group B streptococcus: Asymptomatic colonizer and potent pathogen. J Mol Biol. 431:2914–2931. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aksu B and Yanilmaz O: Group B streptococci induce interleukin 8 production in human cervical epithelial cell cultures: The role of capsule polysaccharide. Clin Exp Health Sci. 9:49–52. 2018. | |
Maisey HC, Doran KS and Nizet V: Recent advances in understanding the molecular basis of group B Streptococcus virulence. Expert Rev Mol Med. 10:e272008. View Article : Google Scholar : PubMed/NCBI | |
Patras KA, Rösler B, Thoman ML and Doran KS: Characterization of host immunity during persistent vaginal colonization by Group B Streptococcus. Mucosal Immunol. 8:1339–1348. 2015. View Article : Google Scholar : PubMed/NCBI | |
Patras KA, Wang NY, Fletcher EM, Cavaco CK, Jimenez A, Garg M, Fierer J, Sheen TR, Rajagopal L and Doran KS: Group B Streptococcus CovR regulation modulates host immune signalling pathways to promote vaginal colonization. Cell Microbiol. 15:1154–1167. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Liu Y, Gao W, Pan Y, Gao Y, Shen J and Xiong H: The direct and indirect association of cervical microbiota with the risk of cervical intraepithelial neoplasia. Cancer Med. 7:2172–2179. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee YH, Kang GU, Jeon SY, Tagele SB, Pham HQ, Kim MS, Ahmad S, Jung DR, Park YJ, Han HS, et al: Vaginal microbiome-based bacterial signatures for predicting the severity of cervical intraepithelial neoplasia. Diagnostics (Basel). 10:10132020. View Article : Google Scholar : PubMed/NCBI | |
Mutz KO, Heilkenbrinker A, Lönne M, Walter JG and Stahl F: Transcriptome analysis using Next-generation sequencing. Curr Opin Biotechnol. 24:22–30. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ahmed W: RNA-seq resolving host-pathogen interactions: Advances and applications. Ecol Genet Genom. 15:1000572020. | |
Nathan S: Transcriptome profiling to understand Host-bacteria interactions: Past, present and future. ScienceAsia. 46:503–513. 2020. View Article : Google Scholar | |
Yip HYK and Papa A: Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments. Cells. 10:6592021. View Article : Google Scholar : PubMed/NCBI | |
Kwon OS, Kim W, Cha HJ and Lee H: In silico drug repositioning: From Large-scale transcriptome data to therapeutics. Arch Pharm Res. 42:879–889. 2019. View Article : Google Scholar : PubMed/NCBI | |
Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, Kosciolek T, Janssen S, Metcalf J, Song SJ, et al: Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature. 579:567–574. 2020. View Article : Google Scholar : PubMed/NCBI | |
Love MI, Huber W and Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI | |
Zhang B and Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 4:172005. View Article : Google Scholar : PubMed/NCBI | |
Langfelder P and Horvath S: WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI | |
Kolberg L, Raudvere U, Kuzmin I, Adler P, Vilo J and Peterson H: g:Profiler-interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 51:W207–W212. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, et al: Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44:W90–W97. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kanehisa M and Goto S: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28:27–30. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP and Tamayo P: The molecular signatures database hallmark gene set collection. Cell Syst. 1:417–425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wickham H: ggplot2: Elegant graphics for data analysis. second edition. Springer-Verlag; New York: 2016 | |
Ewels P, Magnusson M, Lundin S and Käller M: MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 32:3047–3048. 2016. View Article : Google Scholar : PubMed/NCBI | |
Andrews S: FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. | |
Martin M: Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads. 2011. View Article : Google Scholar | |
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M and Gingeras TR: STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 29:15–21. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lefol Y, Korfage T, Mjelle R, Prebensen C, Lüders T, Müller B, Krokan H, Sarno A, Alsøe L; CONSORTIUM LEMONAID, ; et al: TiSA: TimeSeriesAnalysis-A pipeline for the analysis of longitudinal transcriptomics data. NAR Genom Bioinform. 5:lqad0202023. View Article : Google Scholar : PubMed/NCBI | |
Nilsen G, Borgan Ø, LiestØl K and Lingjærde OC: Identifying clusters in genomics data by recursive partitioning. Stat Appl Genet Mol Biol. 12:637–652. 2013. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, et al: The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science. 313:1929–1935. 2006. View Article : Google Scholar : PubMed/NCBI | |
Samart K, Tuyishime P, Krishnan A and Ravi J: Reconciling multiple connectivity scores for drug repurposing. Brief Bioinform. 22:bbab1612021. View Article : Google Scholar : PubMed/NCBI | |
Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA, Asiedu JK, et al: A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 171:1437–1452.e17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ritz C, Baty F, Streibig JC and Gerhard D: Dose-response analysis using R. PLoS One. 10:e01460212015. View Article : Google Scholar : PubMed/NCBI | |
Zheng S, Wang W, Aldahdooh J, Malyutina A, Shadbahr T, Tanoli Z, Pessia A and Tang J: Synergy Finderplus: Toward better interpretation and annotation of drug combination screening datasets. Genomics Proteomics Bioinformatics. 20:587–596. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xia T, Xu LL, Guo PY, Shi WT, Cheng YQ and Liu AJ: Synergism of amlodipine and telmisartan or candesartan on blood pressure reduction by using SynergyFinder 3.0 and probability sum test in vivo. Pharmacol Res Perspect. 11:e010642023. View Article : Google Scholar : PubMed/NCBI | |
Holm S: A simple sequentially rejective multiple test procedure a simple sequentially rejective multiple test procedure. Stat Medics. 6:65–70. 1979. | |
Zhang Y, Zhang Y, Li M, Meng F, Yu Z, Chen Y and Cui G: Combination of SB431542, CHIR99021 and PD0325901 has a synergic effect on abrogating valproic acid-induced epithelial-mesenchymal transition and stemness in HeLa, 5637 and SCC-15 cells. Oncol Rep. 41:3545–3554. 2019.PubMed/NCBI | |
Ye H, Zhang Y, Wang Y, Xia J, Mao X and Yu X: The restraining effect of baicalein and U0126 on human cervical cancer cell line HeLa. Mol Med Rep. 16:957–963. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang EJ and Chang JH: PD98059 induces the apoptosis of human cervical cancer cells by regulating the expression of Bcl2 and ERK2. J Exp Biomed Sci. 17:291–295. 2011. | |
Zahmatyar M, Kharaz L, Abiri Jahromi N, Jahanian A, Shokri P and Nejadghaderi SA: The safety and efficacy of binimetinib for lung cancer: A systematic review. BMC Pulm Med. 24:3792024. View Article : Google Scholar : PubMed/NCBI | |
Tran B and Cohen MS: The discovery and development of binimetinib for the treatment of melanoma. Expert Opin Drug Discov. 15:745–754. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fu K, Cheung AHK, Wong CC, Liu W, Zhou Y, Wang F, Huang P, Yuan K, Coker OO, Pan Y, et al: Streptococcus anginosus promotes gastric inflammation, atrophy, and tumorigenesis in mice. Cell. 187:882–896. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kumar R, Herold JL, Schady D, Davis J, Kopetz S, Martinez-Moczygemba M, Murray BE, Han F, Li Y, Callaway E, et al: Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathog. 13:e10064402017. View Article : Google Scholar : PubMed/NCBI | |
Song X, Liu B, Zhao G, Pu X, Liu B, Ding M and Xue Y: Streptococcus pneumoniae promotes migration and invasion of A549 cells in vitro by activating mTORC2/AKT through up-regulation of DDIT4 expression. Front Microbiol. 13:10462262022. View Article : Google Scholar : PubMed/NCBI | |
Choi Y, Han HS, Chong GO, Le TM, Nguyen HDT, Lee OE, Lee D, Seong WJ, Seo I and Cha HH: Updates on Group B streptococcus infection in the field of obstetrics and gynecology. Microorganisms. 10:23982022. View Article : Google Scholar : PubMed/NCBI | |
Hsieh HY, Lu CH and Wang L: Long-term treatment outcomes/toxicities of definite chemoradiotherapy (intensity-modulated radiation therapy) for early-stage ‘bulky’ cervical cancer and survival impact of histological subtype. J Formos Med Assoc. 122:221–229. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pan X, Yang W, Wen Z, Li F, Tong L and Tang W: Does adenocarcinoma have a worse prognosis than squamous cell carcinoma in patients with cervical cancer? A real-world study with a propensity score matching analysis. J Gynecol Oncol. 31:e802020. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Pan W, Liu S, Shen Z, Xu Y and Hu L: ERK/MAPK signalling pathway and tumorigenesis (Review). Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI | |
Burotto M, Chiou VL, Lee JM and Kohn EC: The MAPK pathway across different malignancies: A new perspective. Cancer. 120:3446–3456. 2014. View Article : Google Scholar : PubMed/NCBI | |
Alto NM and Orth K: Subversion of cell signaling by pathogens. Cold Spring Harb Perspect Biol. 4:a0061142012. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Pan W, Liu S, Shen Z, Xu Y and Hu L: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI | |
Lavoie H, Gagnon J and Therrien M: ERK signalling: A master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol. 21:607–632. 2020. View Article : Google Scholar : PubMed/NCBI | |
Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ and Davis RJ: Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 270:7420–7426. 1995. View Article : Google Scholar : PubMed/NCBI | |
Tian T, Li X and Zhang J: mTOR signaling in cancer and mtor inhibitors in solid tumor targeting therapy. Int J Mol Sci. 20:7552019. View Article : Google Scholar : PubMed/NCBI | |
Zou Z, Tao T, Li H and Zhu X: MTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 10:312020. View Article : Google Scholar : PubMed/NCBI | |
Ben-Sahra I and Manning BD: mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol. 45:72–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pópulo H, Lopes JM and Soares P: The mTOR signalling pathway in human cancer. Int J Mol Sci. 13:1886–1918. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fisher FM and Maratos-Flier E: Understanding the physiology of FGF21. Annu Rev Physiol. 78:223–241. 2016. View Article : Google Scholar : PubMed/NCBI | |
Meng D, Yang Q, Wang H, Melick CH, Navlani R, Frank AR and Jewell JL: Glutamine and asparagine activate mTORC1 independently of Rag GTPases. J Biol Chem. 295:2890–2899. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gobert AP, Latour YL, Asim M, Finley JL, Verriere TG, Barry DP, Milne GL, Luis PB, Schneider C, Rivera ES, et al: Bacterial pathogens hijack the innate immune response by activation of the reverse transsulfuration pathway. mBio. 10:e02174–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xing J, Kornhauser JM, Xia Z, Thiele EA and Greenberg ME: Nerve growth factor activates extracellular Signal-regulated kinase and p38 Mitogen-activated protein kinase pathways to stimulate CREB serine 133 Phosphorylation. Mol Cell Biol. 18:1946–1955. 1998. View Article : Google Scholar : PubMed/NCBI | |
Yang HT, Cohen P and Rousseau S: IL-1β-stimulated activation of ERK1/2 and p38α MAPK mediates the transcriptional up-regulation of IL-6, IL-8 and GRO-α in HeLa cells. Cell Signal. 20:375–380. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li S, Deng P, Wang M, Liu X, Jiang M, Jiang B, Yang L and Hu J: IL-1α and IL-1β promote NOD2-induced immune responses by enhancing MAPK signaling. Lab Invest. 99:1321–1334. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Feng Z, Qu N, Li R and Niu Y: NUPR1 contribution to autophagy in primary bone tumor cells by regulating the AKT/mTOR signaling pathway. Acta Medica Mediterranea. 38:1223–1228. 2022. | |
Yang C, Xu X, Dong X, Yang B, Dong W, Luo Y, Liu X, Wu Y and Wang J: DDIT3/CHOP promotes autophagy in chondrocytes via SIRT1-AKT pathway. Biochim Biophys Acta Mol Cell Res. 1868:1190742021. View Article : Google Scholar : PubMed/NCBI | |
Fan T, Wang X, Zhang S, Deng P, Jiang Y, Liang Y, Jie S, Wang Q, Li C, Tian G, et al: NUPR1 promotes the proliferation and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy. Signal Transduct Target Ther. 7:1302022. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Huang J, Chen W, Wang RH, Kao MC, Pan YR, Chan SH, Tsai KW, Kung HJ, Lin KT and Wang LH: Dysregulation of cystathionine γ-lyase promotes prostate cancer progression and metastasis. EMBO Rep. 20:e459862019. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Liu S, Gao W and Liu H: DDIT3 modulates cancer stemness in gastric cancer by directly regulating CEBPβ. J Pharm Pharmacol. 72:807–815. 2020. View Article : Google Scholar : PubMed/NCBI | |
Krall AS, Xu S, Graeber TG, Braas D and Christofk HR: Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat Commun. 7:114572016. View Article : Google Scholar : PubMed/NCBI | |
Gelfo V, Romaniello D, Mazzeschi M, Sgarzi M, Grilli G, Morselli A, Manzan B, Rihawi K and Lauriola M: Roles of il-1 in cancer: From tumor progression to resistance to targeted therapies. Int J Mol Sci. 21:60092020. View Article : Google Scholar : PubMed/NCBI | |
Molloy NH, Read DE and Gorman AM: Nerve growth factor in cancer cell death and survival. Cancers (Basel). 3:510–530. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sui Y, Liu Q, Xu C, Ganesan K, Ye Z, Li Y, Wu J, Du B, Gao F, Song C and Chen J: Non-alcoholic fatty liver disease promotes breast cancer progression through upregulated hepatic fibroblast growth factor 21. Cell Death Dis. 15:672024. View Article : Google Scholar : PubMed/NCBI | |
Tyrrell GJ, Kennedy A, Shokoples SE and Sherburne RK: Binding and invasion of HeLa and MRC-5 cells by Streptococcus agalactiae. Microbiology (Reading). 148:3921–3931. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gerdes J, Lemke H, Baisch H, Wacker H, Schwab U and Stein H: Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 133:1710–1715. 1984. View Article : Google Scholar : PubMed/NCBI | |
Schlfiter C, Duchrow M, Wohlenberg C, Becker MHG, Key G, Flad HD and Gerdes J: The cell Proliferation-associated antigen of antibody Ki-67: A very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J Cell Biol. 123:513–522. 1993. View Article : Google Scholar | |
Uxa S, Castillo-Binder P, Kohler R, Stangner K, Müller GA and Engeland K: Ki-67 gene expression. Cell Death Differ. 28:3357–3370. 2021. View Article : Google Scholar : PubMed/NCBI | |
Burnham CAD, Shokoples SE and Tyrrell GJ: Invasion of HeLa cells by group B streptococcus requires the phosphoinositide-3-kinase signalling pathway and modulates phosphorylation of host-cell Akt and glycogen synthase kinase-3. Microbiology (Reading). 153:4240–4252. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ji J and Zheng PS: Activation of mTOR signaling pathway contributes to survival of cervical cancer cells. Gynecol Oncol. 117:103–108. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li XW, Tuergan M and Abulizi G: Expression of MAPK1 in cervical cancer and effect of MAPK1 gene silencing on epithelial-mesenchymal transition, invasion and metastasis. Asian Pac J Trop Med. 8:937–943. 2015. View Article : Google Scholar : PubMed/NCBI | |
Weth FR, Hoggarth GB, Weth AF, Paterson E, White MPJ, Tan ST, Peng L and Gray C: Unlocking hidden potential: Advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br J Cancer. 130:703–715. 2023. View Article : Google Scholar : PubMed/NCBI | |
K W To K and Cho WCS: Drug repurposing for cancer therapy in the era of precision medicine. Curr Mol Pharmacol. 15:895–903. 2022. View Article : Google Scholar : PubMed/NCBI | |
Colombo N, McMeekin DS, Schwartz PE, Sessa C, Gehrig PA, Holloway R, Braly P, Matei D, Morosky A, Dodion PF, et al: Ridaforolimus as a single agent in advanced endometrial cancer: Results of a single-arm, phase 2 trial. Br J Cancer. 108:1021–1026. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chon HS, Kang S, Lee JK, Apte SM, Shahzad MM, Williams-Elson I and Wenham RM: Phase I study of oral ridaforolimus in combination with paclitaxel and carboplatin in patients with solid tumor cancers. BMC Cancer. 17:4072017. View Article : Google Scholar : PubMed/NCBI | |
Finn RS, Ahn DH, Javle MM, Tan BR Jr, Weekes CD, Bendell JC, Patnaik A, Khan GN, Laheru D, Chavira R, et al: Phase 1b investigation of the MEK inhibitor binimetinib in patients with advanced or metastatic biliary tract cancer. Invest New Drugs. 36:1037–1043. 2018. View Article : Google Scholar : PubMed/NCBI | |
Woodfield SE, Zhang L, Scorsone KA, Liu Y and Zage PE: Binimetinib inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression. BMC Cancer. 16L:1722016. View Article : Google Scholar : PubMed/NCBI | |
Anttila JV, Shubin M, Cairns J, Borse F, Guo Q, Mononen T, Vázquez-García I, Pulkkinen O and Mustonen V: Contrasting the impact of cytotoxic and cytostatic drug therapies on tumour progression. PLoS Comput Biol. 15:e10074932019. View Article : Google Scholar : PubMed/NCBI | |
Hua H, Kong Q, Zhang H, Wang J, Luo T and Jiang Y: Targeting mTOR for cancer therapy. J Hematol Oncol. 12:712019. View Article : Google Scholar : PubMed/NCBI | |
Formisano L, Napolitano F, Rosa R, D'Amato V, Servetto A, Marciano R, De Placido P, Bianco C and Bianco R: Mechanisms of resistance to mTOR inhibitors. Crit Rev Oncol Hematol. 147:1028862020. View Article : Google Scholar : PubMed/NCBI | |
Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, Egia A, Sasaki AT, Thomas G, Kozma SC, et al: Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest. 118:3065–3074. 2008.PubMed/NCBI | |
Li Q, Li Z, Luo T and Shi H: Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. Mol Biomed. 3:472022. View Article : Google Scholar : PubMed/NCBI | |
Pitts TM, Newton TP, Bradshaw-Pierce EL, Addison R, Arcaroli JJ, Klauck PJ, Bagby SM, Hyatt SL, Purkey A, Tentler JJ, et al: Dual pharmacological targeting of the map kinase and pi3k/mtor pathway in preclinical models of colorectal cancer. PLoS One. 9:e1130372014. View Article : Google Scholar : PubMed/NCBI |