|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sana H and Pigeolet M: The role of surgery
in global cancer services. Lancet. 403:1237–1238. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Paul S, Konig MF, Pardoll DM, Bettegowda
C, Papadopoulos N, Wright KM, Gabelli SB, Ho M, van Elsas A and
Zhou S: Cancer therapy with antibodies. Nat Rev Cancer. 24:399–426.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jin H, Wang L and Bernards R: Rational
combinations of targeted cancer therapies: Background, advances and
challenges. Nat Rev Drug Discov. 22:213–234. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Terai M and Sato T: Individualised
neoantigen cancer vaccine therapy. Lancet. 403:590–591. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Awwad SW, Serrano-Benitez A, Thomas JC,
Gupta V and Jackson SP: Revolutionizing DNA repair research and
cancer therapy with CRISPR-Cas screens. Nat Rev Mol Cell Biol.
24:477–494. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wu X, Liu J, Wang J, Wang L, Lin Z, Wang
X, Zhu J, Kong B, Fei J, Tang Y, et al: Senaparib as First-line
maintenance therapy in advanced ovarian cancer: A randomized phase
3 trial. Nat Med. 30:1612–1621. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Miller KD, Nogueira L, Devasia T, Mariotto
AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment
and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Li Y, Zhang L, Xu T, Zhao X, Jiang X, Xiao
F, Sun H and Wang L: Aberrant ENPP2 expression promotes tumor
progression in multiple myeloma. Leuk Lymphoma. 63:963–974. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hu M, Guo W, Liao Y, Xu D, Sun B, Song H,
Wang T, Kuang Y, Jing B, Li K, et al: Dysregulated ENPP1 increases
the malignancy of human lung cancer by inducing
epithelial-mesenchymal transition phenotypes and stem cell
features. Am J Cancer Res. 9:134–144. 2019.PubMed/NCBI
|
|
11
|
Bageritz J and Goidts V: Functional
characterization of ENPP1 reveals a link between cell cycle
progression and stem-like phenotype in glioblastoma. Mol Cell
Oncol. 1:e9640282014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Takahashi T, Old LJ and Boyse EA: Surface
alloantigens of plasma cells. J Exp Med. 131:1325–1341. 1970.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Goding JW, Grobben B and Slegers H:
Physiological and pathophysiological functions of the
Ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim
Biophys Acta. 1638:1–19. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Stefan C, Jansen S and Bollen M: NPP-type
ectophosphodiesterases: Unity in diversity. Trends Biochem Sci.
30:542–550. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ruf N, Uhlenberg B, Terkeltaub R, Nurnberg
P and Rutsch F: The mutational spectrum of ENPP1 as arising after
the analysis of 23 unrelated patients with generalized arterial
calcification of infancy (GACI). Hum Mutat. 25:982005. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Rutsch F, Vaingankar S, Johnson K,
Goldfine I, Maddux B, Schauerte P, Kalhoff H, Sano K, Boisvert WA,
Superti-Furga A and Terkeltaub R: PC-1 nucleoside triphosphate
pyrophosphohydrolase deficiency in idiopathic infantile arterial
calcification. Am J Pathol. 158:543–554. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Thakkar AD, Raj H, Chakrabarti D,
Ravishankar Saravanan N, Muthuvelan B, Balakrishnan A and Padigaru
M: Identification of gene expression signature in estrogen receptor
positive breast carcinoma. Biomark Cancer. 2:1–15. 2010.PubMed/NCBI
|
|
18
|
Lau WM, Doucet M, Stadel R, Huang D, Weber
KL and Kominsky SL: Enpp1: A potential facilitator of breast cancer
bone metastasis. PLoS One. 8:e667522013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Aerts I, Martin JJ, De Deyn PP, Van
Ginniken C, Van Ostade X, Kockx M, Dua G and Slegers H: The
expression of ecto-nucleotide pyrophosphatase/phosphodiesterase 1
(E-NPP1) is correlated with astrocytic tumor grade. Clin Neurol
Neurosurg. 113:224–229. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Huhn S, Bevier M, Rudolph A, Pardini B,
Naccarati A, Hein R, Hoffmeister M, Vodickova L, Novotny J, Brenner
H, et al: Shared ancestral susceptibility to colorectal cancer and
other nutrition related diseases. BMC Med Genet. 13:942012.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Attalla SS, Boucher J, Proud H, Taifour T,
Zuo D, Sanguin-Gendreau V, Ling C, Johnson G, Li V, Luo RB, et al:
HER2Delta16 engages ENPP1 to promote an Immune-Cold
microenvironment in breast cancer. Cancer Immunol Res.
11:1184–1202. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang S, Bohnert V, Joseph AJ, Sudaryo V,
Skariah G, Swinderman JT, Yu FB, Subramanyam V, Wolf DM, Lyu X, et
al: ENPP1 is an innate immune checkpoint of the anticancer
cGAMP-STING pathway in breast cancer. Proc Natl Acad Sci USA.
120:e23136931202023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Duangiad P, Nutho B, Chaijarasphong T,
Morales NP, Pongtharangkul T, Hamachi I, Ojida A and Wongkongkatep
J: Naturally occurring quercetin and myricetin as potent inhibitors
for human ectonucleotide pyrophosphatase/phosphodiesterase 1. Sci
Rep. 14:1252024. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Sun Y, Chen M, Han Y, Li W, Ma X, Shi Z,
Zhou Y, Xu L, Yu L, Wang Y, et al: Discovery of
Pyrido[2,3-d]pyrimidin-7-one derivatives as highly potent and
efficacious ectonucleotide pyrophosphatase/phosphodiesterase 1
(ENPP1) inhibitors for cancer treatment. J Med Chem. 67:3986–4006.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ruiz-Fernandez de Cordoba B, Moreno H,
Valencia K, Perurena N, Ruedas P, Walle T, Pezonaga-Torres A,
Hinojosa J, Guruceaga E, Pineda-Lucena A, et al: Tumor ENPP1
(CD203a)/Haptoglobin axis exploits Myeloid-derived suppressor cells
to promote Post-radiotherapy local recurrence in breast cancer.
Cancer Discov. 12:1356–1377. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li Z, He Q, Peng J, Yan Y and Fu C:
Identification of downregulated Exosome-associated gene ENPP1 as a
novel lipid metabolism and Immune-Associated biomarker for
hepatocellular carcinoma. J Oncol. 2022:48347912022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kato K, Nishimasu H, Okudaira S, Mihara E,
Ishitani R, Takagi J, Aoki J and Nureki O: Crystal structure of
Enpp1, an extracellular glycoprotein involved in bone
mineralization and insulin signaling. Proc Natl Acad Sci USA.
109:16876–16881. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Stefan C, Jansen S and Bollen M:
Modulation of purinergic signaling by NPP-type
ectophosphodiesterases. Purinergic Signal. 2:361–370. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Linden J, Koch-Nolte F and Dahl G: Purine
release, metabolism, and signaling in the inflammatory response.
Annu Rev Immunol. 37:325–347. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li S, Yokota T, Wang P, Ten Hoeve J, Ma F,
Le TM, Abt ER, Zhou Y, Wu R, Nanthavongdouangsy M, et al:
Cardiomyocytes disrupt pyrimidine biosynthesis in nonmyocytes to
regulate heart repair. J Clin Invest. 132:e1497112022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cimpean A, Stefan C, Gijsbers R, Stalmans
W and Bollen M: Substrate-specifying determinants of the nucleotide
pyrophosphatases/phosphodiesterases NPP1 and NPP2. Biochem J.
381:71–77. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ferreira CR, Carpenter TO and Braddock DT:
ENPP1 in blood and bone: Skeletal and soft tissue diseases induced
by ENPP1 deficiency. Annu Rev Pathol. 19:507–540. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Novais EJ, Narayanan R, Canseco JA, van de
Wetering K, Kepler CK, Hilibrand AS, Vaccaro AR and Risbud MV: A
new perspective on intervertebral disc Calcification-from bench to
bedside. Bone Res. 12:32024. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Okawa A, Nakamura I, Goto S, Moriya H,
Nakamura Y and Ikegawa S: Mutation in Npps in a mouse model of
ossification of the posterior longitudinal ligament of the spine.
Nat Genet. 19:271–273. 1998. View
Article : Google Scholar : PubMed/NCBI
|
|
35
|
Brampton C, Pomozi V, Le Corre Y, Zoll J,
Kauffenstein G, Ma C, Hoffmann PR, Martin L and Le Saux O: Bone
marrow-derived ABCC6 is an essential regulator of ectopic
calcification in pseudoxanthoma elasticum. J Invest Dermatol.
144:1772–1783.e3. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Harmey D, Hessle L, Narisawa S, Johnson
KA, Terkeltaub R and Millan JL: Concerted regulation of inorganic
pyrophosphate and osteopontin by akp2, enpp1, and ank: An
integrated model of the pathogenesis of mineralization disorders.
Am J Pathol. 164:1199–1209. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pillai ICL, Li S, Romay M, Lam L, Lu Y,
Huang J, Dillard N, Zemanova M, Rubbi L, Wang Y, et al: Cardiac
fibroblasts adopt osteogenic fates and can be targeted to attenuate
pathological heart calcification. Cell Stem Cell. 20:218–232.e5.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Abate N, Carulli L, Cabo-Chan A Jr,
Chandalia M, Snell PG and Grundy SM: Genetic polymorphism PC-1
K121Q and ethnic susceptibility to insulin resistance. J Clin
Endocrinol Metab. 88:5927–5934. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Maddux BA and Goldfine ID: Membrane
glycoprotein PC-1 inhibition of insulin receptor function occurs
via direct interaction with the receptor alpha-subunit. Diabetes.
49:13–19. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Maddux BA, Sbraccia P, Kumakura S, Sasson
S, Youngren J, Fisher A, Spencer S, Grupe A, Henzel W and Stewart
TA: Membrane glycoprotein PC-1 and insulin resistance in
non-insulin-dependent diabetes mellitus. Nature. 373:448–451. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Besic V, Stubbs RS and Hayes MT: Liver
ENPP1 protein increases with remission of type 2 diabetes after
gastric bypass surgery. BMC Gastroenterol. 14:2222014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Meyre D, Bouatia-Naji N, Tounian A, Samson
C, Lecoeur C, Vatin V, Ghoussaini M, Wachter C, Hercberg S,
Charpentier G, et al: Variants of ENPP1 are associated with
childhood and adult obesity and increase the risk of glucose
intolerance and type 2 diabetes. Nat Genet. 37:863–867. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chourabi M, Liew MS, Lim S, H'mida-Ben
Brahim D, Boussofara L, Dai L, Wong PM, Foo JN, Sriha B, Robinson
KS, et al: ENPP1 mutation causes recessive cole disease by altering
melanogenesis. J Invest Dermatol. 138:291–300. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Eytan O, Morice-Picard F, Sarig O,
Ezzedine K, Isakov O, Li Q, Ishida-Yamamoto A, Shomron N, Goldsmith
T, Fuchs-Telem D, et al: Cole disease results from mutations in
ENPP1. Am J Hum Genet. 93:752–757. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Nanda A, Xiong X, AlLafi A, Cesarato N and
Betz RC: Cole disease due to a novel pathogenic variant in the
ENPP1 gene. J Eur Acad Dermatol Venereol. 36:e559–e561. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Arima T, Sugimoto K, Taniwaki T, Maeda K,
Shibata Y, Tateyama M, Karasugi T, Tokunaga T, Sueyoshi T, Hisanaga
S, et al: Cartilage tissues regulate systemic aging via
ectonucleotide pyrophosphatase/phosphodiesterase 1 in mice. J Biol
Chem. 300:1055122024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang H, Gonzalez-Garcia I, Traba J, Jain
S, Conteh S, Shin DM, Qi C, Gao Y, Sun J, Kang S, et al:
ATP-degrading ENPP1 is required for survival (or persistence) of
Long-lived plasma cells. Sci Rep. 7:178672017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Watanabe R, Fujita N, Sato Y, Kobayashi T,
Morita M, Oike T, Miyamoto K, Kuro-O M, Michigami T, Fukumoto S, et
al: Enpp1 is an Anti-aging factor that regulates Klotho under
phosphate overload conditions. Sci Rep. 7:77862017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Shi J, Hua X, Zhu B, Ravichandran S, Wang
M, Nguyen C, Brodie SA, Palleschi A, Alloisio M, Pariscenti G, et
al: Somatic genomics and clinical features of lung adenocarcinoma:
A retrospective study. PLoS Med. 13:e10021622016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Crabtree TD, Puri V, Chen SB, Gierada DS,
Bell JM, Broderick S, Krupnick AS, Kreisel D, Patterson GA, Meyers
BF, et al: Does the method of radiologic surveillance affect
survival after resection of stage I non-small cell lung cancer? J
Thorac Cardiovasc Surg. 149:45–52. 53.e1–3. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Han Y, Wong FC, Wang D and Kahlert C: An
in silico analysis reveals an EMT-associated gene signature for
predicting recurrence of Early-Stage lung adenocarcinoma. Cancer
Inform. 21:117693512211007272022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Cancer Genome Atlas N: Comprehensive
molecular portraits of human breast tumours. Nature. 490:61–70.
2012. View Article : Google Scholar
|
|
54
|
Nolan E, Lindeman GJ and Visvader JE:
Deciphering breast cancer: From biology to the clinic. Cell.
186:1708–1728. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Awolaran O, Brooks SA and Lavender V:
Breast cancer osteomimicry and its role in bone specific
metastasis; an integrative, systematic review of preclinical
evidence. Breast. 30:156–171. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kurosaki M, Terao M, Liu D, Zanetti A,
Guarrera L, Bolis M, Gianni' M, Paroni G, Goodall GJ and Garattini
E: A DOCK1 Gene-derived circular RNA is highly expressed in luminal
mammary tumours and is involved in the epithelial differentiation,
growth, and motility of breast cancer cells. Cancers (Basel).
13:53252021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ledderose C, Hefti MM, Chen Y, Bao Y,
Seier T, Li L, Woehrle T, Zhang J and Junger WG: Adenosine arrests
breast cancer cell motility by A3 receptor stimulation. Purinergic
Signal. 12:673–685. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Attalla S, Taifour T and Muller W:
Tailoring therapies to counter the divergent immune landscapes of
breast cancer. Front Cell Dev Biol. 11:11117962023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Schettini F, Barbao P, Braso-Maristany F,
Galván P, Martínez D, Paré L, De Placido S, Prat A and Guedan S:
Identification of cell surface targets for CAR-T cell therapies and
antibody-drug conjugates in breast cancer. ESMO Open. 6:1001022021.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Manzano RG, Martinez-Navarro EM, Forteza J
and Brugarolas A: Microarray phosphatome profiling of breast cancer
patients unveils a complex phosphatase regulatory role of the MAPK
and PI3K pathways in estrogen Receptor-negative breast cancers. Int
J Oncol. 45:2250–2266. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Takahashi RU, Miyazaki H, Takeshita F,
Yamamoto Y, Minoura K, Ono M, Kodaira M, Tamura K, Mori M and
Ochiya T: Loss of microRNA-27b contributes to breast cancer stem
cell generation by activating ENPP1. Nat Commun. 6:73182015.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kawaguchi M, Han X, Hisada T, Nishikawa S,
Kano K, Ieda N, Aoki J, Toyama T and Nakagawa H: Development of an
ENPP1 fluorescence probe for inhibitor screening, cellular imaging,
and prognostic assessment of malignant breast cancer. J Med Chem.
62:9254–9269. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Goswami A, Deb B, Goyal S, Gosavi A, Mali
M, Martis AM, Khurana P, Gangar M, Raykar D, Mohanty A and Kulkarni
A: AVA-NP-695 selectively inhibits ENPP1 to activate STING pathway
and abrogate tumor metastasis in 4T1 breast cancer syngeneic mouse
model. Molecules. 27:67212022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Carozza JA, Brown JA, Bohnert V, Fernandez
D, AlSaif Y, Mardjuki RE, Smith M and Li L: Structure-aided
development of Small-molecule inhibitors of ENPP1, the
extracellular phosphodiesterase of the immunotransmitter cGAMP.
Cell Chem Biol. 27:1347–1358.e5. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Prostate cancer, . Nat Rev Dis Primers.
7:82021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Cai M, Song XL, Li XA, Chen M, Guo J, Yang
DH, Chen Z and Zhao SC: Current therapy and drug resistance in
metastatic Castration-resistant prostate cancer. Drug Resist Updat.
68:1009622023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
McKinney LP, Singh R, Jordan IK,
Varambally S, Dammer EB and Lillard JW Jr: Transcriptome analysis
identifies tumor immune microenvironment signaling networks
supporting metastatic Castration-Resistant prostate cancer. Onco
(Basel). 3:81–95. 2023.PubMed/NCBI
|
|
68
|
Wang QJ, Bin C, Xue Q, Gao Q, Huang A,
Wang K and Tang N: GSTZ1 sensitizes hepatocellular carcinoma cells
to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis.
Cell Death Dis. 12:4262021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Torre LA, Trabert B, DeSantis CE, Miller
KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A and Siegel RL:
Ovarian cancer statistics, 2018. CA Cancer J Clin. 68:284–296.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Stella J, Buers I, van de Wetering K,
Hohne W, Rutsch F and Nitschke Y: Effects of different variants in
the ENPP1 gene on the functional properties of ectonucleotide
pyrophosphatase/phosphodiesterase family member 1. Hum Mutat.
37:1190–1201. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Martinez-Ramirez AS, Diaz-Munoz M,
Battastini AM, Campos-Contreras A, Olvera A, Bergamin L, Glaser T,
Jacintho Moritz CE, Ulrich H and Vázquez-Cuevas FG: Cellular
migration ability is modulated by extracellular purines in ovarian
carcinoma SKOV-3 Cells. J Cell Biochem. 118:4468–4478. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang QF, Li YK, Chen CY, Zhang XD, Cao L,
Quan FF, Zeng X, Wang J and Liu J: Identification and validation of
a prognostic index based on a metabolic-genomic landscape analysis
of ovarian cancer. Biosci Rep. 40:BSR202019372020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang H, Ye F, Zhou C, Cheng Q and Chen H:
High expression of ENPP1 in high-grade serous ovarian carcinoma
predicts poor prognosis and as a molecular therapy target. PLoS
One. 16:e02457332021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Larjavaara S, Mantyla R, Salminen T,
Haapasalo H, Raitanen J, Jääskeläinen J and Auvinen A: Incidence of
gliomas by anatomic location. Neuro Oncol. 9:319–325. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tykocki T and Eltayeb M: Ten-year survival
in glioblastoma. A systematic review. J Clin Neurosci. 54:7–13.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bageritz J, Puccio L, Piro RM, Hovestadt
V, Phillips E, Pankert T, Lohr J, Herold-Mende C, Lichter P and
Goidts V: Stem cell characteristics in glioblastoma are maintained
by the Ecto-nucleotidase E-NPP1. Cell Death Differ. 21:929–940.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q,
Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem
cells promote radioresistance by preferential activation of the DNA
damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Roa JC, Garcia P, Kapoor VK, Maithel SK,
Javle M and Koshiol J: Gallbladder cancer. Nat Rev Dis Primers.
8:692022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Montalvo-Jave EE, Rahnemai-Azar AA,
Papaconstantinou D, Deloiza ME, Tsilimigras DI, Moris D,
Mendoza-Barrera GE, Weber SM and Pawlik TM: Molecular pathways and
potential biomarkers in gallbladder cancer: A comprehensive review.
Surg Oncol. 31:83–89. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Turgeon MK and Maithel SK:
Cholangiocarcinoma: A Site-specific update on the current state of
surgical management and multi-modality therapy. Chin Clin Oncol.
9:42020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yano Y, Hayashi Y, Sano K, Nagano H,
Nakaji M, Seo Y, Ninomiya T, Yoon S, Yokozaki H and Kasuga M:
Expression and localization of ecto-nucleotide
pyrophosphatase/phosphodiesterase I-1 (E-NPP1/PC-1) and −3
(E-NPP3/CD203c/PD-Ibeta/B10/gp130(RB13-6)) in inflammatory and
neoplastic bile duct diseases. Cancer Lett. 207:139–147. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yang C, Chen J, Yu Z, Luo J, Li X, Zhou B
and Jiang N: Mining of RNA Methylation-related genes and
elucidation of their molecular biology in gallbladder carcinoma.
Front Oncol. 11:6218062021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhang X, Li L, Zhang M, Zhang L, Liu S,
Guo J, Jiang N, Peng Q, Wang J and Ding S: Intelligent recognition
of CTCs from gallbladder cancer by ultrasensitive electrochemical
cytosensor and diagnosis of chemotherapeutic resistance. Biosens
Bioelectron. 228:1151832023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ng JH, Iyer NG, Tan MH and Edgren G:
Changing epidemiology of oral squamous cell carcinoma of the
tongue: A global study. Head Neck. 39:297–304. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S,
Nice EC, Tang J and Huang C: Oral squamous cell carcinomas: State
of the field and emerging directions. Int J Oral Sci. 15:442023.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Romano A, Di Stasio D, Petruzzi M, Fiori
F, Lajolo C, Santarelli A, Lucchese A, Serpico R and Contaldo M:
Noninvasive imaging methods to improve the diagnosis of oral
carcinoma and its precursors: State of the art and proposal of a
Three-step diagnostic process. Cancers (Basel). 13:28642021.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li J, Qiao Z, Li Y, Lu X, Shao T and Lv X:
Bioinformatic analysis indicated that STARD4-AS1 might be a novel
Ferroptosis-related biomarker of oral squamous cell carcinoma.
Heliyon. 10:e331932024. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Radaic A, Kamarajan P, Cho A, Wang S, Hung
GC, Najarzadegan F, Wong DT, Ton-That H, Wang CY and Kapila YL:
Biological biomarkers of oral cancer. Periodontol. 2000 Dec
10–2023.doi: 10.1111/prd.12542 (Epub ahead of print).
|
|
89
|
Wu T, Jiao Z, Li Y, Su X, Yao F, Peng J,
Chen W and Yang A: HPRT1 promotes chemoresistance in oral squamous
cell carcinoma via activating MMP1/PI3K/Akt signaling pathway.
Cancers (Basel). 14:8552022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liu Y, Wang Y, Li X, Jia Y, Wang J and Ao
X: FOXO3a in cancer drug resistance. Cancer Lett. 540:2157242022.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Narayanan S, Cai CY, Assaraf YG, Guo HQ,
Cui Q, Wei L, Huang JJ, Ashby CR Jr and Chen ZS: Targeting the
ubiquitin-proteasome pathway to overcome Anti-cancer drug
resistance. Drug Resist Updat. 48:1006632020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Perez-Valencia JA, Prosdocimi F, Cesari
IM, da Costa IR, Furtado C, Agostini M and Rumjanek FD:
Angiogenesis and evading immune destruction are the main related
transcriptomic characteristics to the invasive process of oral
tongue cancer. Sci Rep. 8:20072018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ma C, Zhao J, Zhou L, Jia C, Shi Y, Li X,
Jihu K and Zhang T: Targeting ENPP1 depletion may be a promising
therapeutic strategy for treating oral squamous cell carcinoma via
cytotoxic autophagy-related apoptosis. FASEB J. 38:e234202024.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Carozza JA, Cordova AF, Brown JA, AlSaif
Y, Böhnert V, Cao X, Mardjuki RE, Skariah G, Fernandez D and Li L:
ENPP1′s regulation of extracellular cGAMP is a ubiquitous mechanism
of attenuating STING signaling. Proc Natl Acad Sci USA.
119:e21191891192022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sun L, Wu J, Du F, Chen X and Chen ZJ:
Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates
the type I interferon pathway. Science. 339:786–791. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wu J, Sun L, Chen X, Du F, Shi H, Chen C
and Chen ZJ: Cyclic GMP-AMP is an endogenous second messenger in
innate immune signaling by cytosolic DNA. Science. 339:826–830.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Harding SM, Benci JL, Irianto J, Discher
DE, Minn AJ and Greenberg RA: Mitotic progression following DNA
damage enables pattern recognition within micronuclei. Nature.
548:466–470. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Li L: Stimulating STING for cancer
therapy: Taking the extracellular route. Cell Chem Biol.
31:851–861. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Mackenzie KJ, Carroll P, Martin CA, Murina
O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H, Rainger JK and
Leitch A: cGAS surveillance of micronuclei links genome instability
to innate immunity. Nature. 548:461–465. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Haag SM, Gulen MF, Reymond L, Gibelin A,
Abrami L, Decout A, Heymann M, van der Goot FG, Turcatti G,
Behrendt R and Ablasser A: Targeting STING with covalent
small-molecule inhibitors. Nature. 559:269–273. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kato K, Nishimasu H, Oikawa D, Hirano S,
Hirano H, Kasuya G, Ishitani R, Tokunaga F and Nureki O: Structural
insights into cGAMP degradation by Ecto-nucleotide pyrophosphatase
phosphodiesterase 1. Nat Commun. 9:44242018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wang X, Lu X, Yan D, Zhou Y and Tan X:
Development of Novel Ecto-nucleotide
pyrophosphatase/phosphodiesterase 1 (ENPP1) inhibitors for tumor
immunotherapy. Int J Mol Sci. 23:71042022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wu J, Dobbs N, Yang K and Yan N:
Interferon-Independent activities of mammalian STING mediate
antiviral response and tumor immune evasion. Immunity.
53:115–126.e5. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Liu FF, Shi W, Done SJ, Miller N, Pintilie
M, Voduc D, Nielsen TO, Nofech-Mozes S, Chang MC, Whelan TJ, et al:
Identification of a Low-Risk luminal a breast cancer cohort that
may not benefit from breast radiotherapy. J Clin Oncol.
33:2035–2040. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Cho Y, Kang M, Ji SH, Jeong HJ, Jung JE,
Oh DH, Park S, Park YY, Choi J, Kim S, et al: Discovery of orally
bioavailable phthalazinone analogues as an ENPP1 inhibitor for
STING-mediated cancer immunotherapy. J Med Chem. 66:15141–15170.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Jeong HJ, Lee HL, Kim SJ, Jeong JH, Ji SH,
Kim HB, Kang M, Chung HW, Park CS, Choo H, et al: Identification of
novel pyrrolopyrimidine and pyrrolopyridine derivatives as potent
ENPP1 inhibitors. J Enzyme Inhib Med Chem. 37:2434–2451. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Jung JE, Jang Y, Jeong HJ, Kim SJ, Park K,
Oh DH, Yu A, Park CS and Han SJ: Discovery of
3,4-dihydropyrimido[4,5-d]pyrimidin-2(1H)-one and
3,4-dihydropyrido[2,3-d]pyrimidin-2(1H)-one derivatives as novel
ENPP1 inhibitors. Bioorg Med Chem Lett. 75:1289472022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Khan Jadoon MS, Pelletier J, Sevigny J and
Iqbal J: Synthesis of new class of indole acetic acid sulfonate
derivatives as ectonucleotidases inhibitors. RSC Adv.
13:29496–29511. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Rohilla A, Singh AK, Koleske B, Srikrishna
G and Bishai WR: Structure-based virtual screening and in vitro
validation of inhibitors of cyclic dinucleotide phosphodiesterases
ENPP1 and CdnP. Microbiol Spectr. 12:e02012232024. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Guan D, Fang L, Feng M, Guo S, Xie L, Chen
C, Sun X, Wu Q, Yuan X, Xie Z, et al: Ecto-nucleotide
pyrophosphatase/phosphodiesterase 1 inhibitors: Research progress
and prospects. Eur J Med Chem. 267:1162112024. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ruiz-Fernandez de Cordoba B,
Martinez-Monge R and Lecanda F: ENPP1 immunobiology as a
therapeutic target. Clin Cancer Res. 29:2184–2193. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Dillon S, Suchacki K, Hsu SN, Stephen LA,
Wang R, Cawthorn WP, Stewart AJ, Nudelman F, Morton NM and
Farquharson C: Ablation of Enpp6 results in transient bone
hypomineralization. JBMR Plus. 5:e104392021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Yan J, Duan W, Gao Q, Mao T, Wang M, Duan
J and Li J: ENPP2 inhibitor improves proliferation in
AOM/DSS-induced colorectal cancer mice via remodeling the gut
barrier function and gut microbiota composition. Pharmacol Res.
195:1068772023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Masse K, Bhamra S, Paroissin C,
Maneta-Peyret L, Boue-Grabot E and Jones EA: The enpp4
ectonucleotidase regulates kidney patterning signalling networks in
Xenopus embryos. Commun Biol. 4:11582021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Thompson JA, Motzer RJ, Molina AM,
Choueiri TK, Heath EI, Redman BG, Sangha RS, Ernst DS, Pili R, Kim
SK, et al: Phase I trials of Anti-ENPP3 Antibody-drug conjugates in
advanced refractory renal cell carcinomas. Clin Cancer Res.
24:4399–4406. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Takaya K and Kishi K: Regulation of ENPP5,
a senescence-associated secretory phenotype factor, prevents skin
aging. Biogerontology. 25:529–542. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Boccon-Gibod L: Etiopathogenesis of benign
prostatic hypertrophy. Recent acquisitions. Ann Urol (Paris).
22:3–8. 1988.(In French). PubMed/NCBI
|
|
118
|
Onyedibe KI, Wang M and Sintim HO: ENPP1,
an old enzyme with new functions, and small molecule Inhibitors-A
STING in the tale of ENPP1. Molecules. 24:41922019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ullah S, Pelletier J, Sevigny J and Iqbal
J: Synthesis and biological evaluation of arylamide sulphonate
derivatives as ectonucleotide Pyrophosphatase/phosphodiesterase-1
and −3 inhibitors. ACS Omega. 7:26905–26918. 2022. View Article : Google Scholar : PubMed/NCBI
|