Targeted gold nanoparticles for ovarian cancer (Review)
- Authors:
- Wenjuan He
- Fuyuan Yang
- Keming Chen
- Qingsong Zeng
-
Affiliations: Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China, School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, Hubei 434000, P.R. China, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434000, P.R. China - Published online on: October 3, 2024 https://doi.org/10.3892/ol.2024.14723
- Article Number: 589
-
Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Yang Y, Zheng X, Chen L, Gong X, Yang H, Duan X and Zhu Y: Multifunctional gold nanoparticles in cancer diagnosis and treatment. Int J Nanomedicine. 17:2041–2067. 2022. View Article : Google Scholar : PubMed/NCBI | |
Schoutrop E, Moyano-Galceran L, Lheureux S, Mattsson J, Lehti K, Dahlstrand H and Magalhaes I: Molecular, cellular and systemic aspects of epithelial ovarian cancer and its tumor microenvironment. Semin Cancer Biol. 86:207–223. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang R, Siu MKY, Ngan HYS and Chan KKL: Molecular biomarkers for the early detection of ovarian cancer. Int J Mol Sci. 23:120412022. View Article : Google Scholar : PubMed/NCBI | |
Bhardwaj BK, Thankachan S, Magesh P, Venkatesh T, Tsutsumi R and Suresh PS: Current update on nanotechnology-based approaches in ovarian cancer therapy. Reprod Sci. 30:335–349. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jelovac D and Armstrong DK: Recent progress in the diagnosis and treatment of ovarian cancer. CA Cancer J Clin. 61:183–203. 2011. View Article : Google Scholar : PubMed/NCBI | |
Piktel E, Ościłowska I, Suprewicz Ł, Depciuch J, Marcińczyk N, Chabielska E, Wolak P, Wollny T, Janion M, Parlinska-Wojtan M and Bucki R: ROS-Mediated apoptosis and autophagy in ovarian cancer cells treated with peanut-shaped gold nanoparticles. Int J Nanomedicine. 16:1993–2011. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sperling RA and Parak WJ: Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans A Math Phys Eng Sci. 368:1333–1383. 2010.PubMed/NCBI | |
Kamal A, Saba M, Ullah K, Almutairi SM, AlMunqedhi BM and Ragab abdelGawwad M: Mycosynthesis, characterization of zinc oxide nanoparticles, and its assessment in various biological activities. Crystals. 13:1712023. View Article : Google Scholar | |
Huang CC, Yang Z, Lee KH and Chang HT: Synthesis of highly fluorescent gold nanoparticles for sensing mercury(II). Angew Chem Int Ed Engl. 46:6824–6828. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huynh KH, Pham XH, Kim J, Lee SH, Chang H, Rho WY and Jun BH: Synthesis, properties, and biological applications of metallic alloy nanoparticles. Int J Mol Sci. 21:51742020. View Article : Google Scholar : PubMed/NCBI | |
Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, Qari HA, Umar K and Mohamad Ibrahim MN: Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front Chem. 8:3412020. View Article : Google Scholar : PubMed/NCBI | |
Vargas-Molinero HY, Serrano-Medina A, Palomino-Vizcaino K, López-Maldonado EA, Villarreal-Gómez LJ, Pérez-González GL and Cornejo-Bravo JM: Hybrid systems of nanofibers and polymeric nanoparticles for biological application and delivery systems. Micromachines (Basel). 14:2082023. View Article : Google Scholar : PubMed/NCBI | |
Guo R, Song Y, Wang G and Murray RW: Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? J Am Chem Soc. 127:2752–2757. 2005. View Article : Google Scholar : PubMed/NCBI | |
Daniel MC and Astruc D: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 104:293–346. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Gnanasammandhan MK and Zhang Y: Optical imaging-guided cancer therapy with fluorescent nanoparticles. J R Soc Interface. 7:3–18. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aziz F, Ihsan A, Nazir A, Ahmad I, Bajwa SZ, Rehman A, Diallo A and Khan WS: Novel route synthesis of porous and solid gold nanoparticles for investigating their comparative performance as contrast agent in computed tomography scan and effect on liver and kidney function. Int J Nanomedicine. 12:1555–1563. 2017. View Article : Google Scholar : PubMed/NCBI | |
Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO and Ulberg ZR: Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology. EPMA J. 4:202013. View Article : Google Scholar : PubMed/NCBI | |
Khan JA, Pillai B, Das TK, Singh Y and Maiti S: Molecular effects of uptake of gold nanoparticles in HeLa cells. Chembiochem. 8:1237–1240. 2007. View Article : Google Scholar : PubMed/NCBI | |
Scaletti F, Hardie J, Lee YW, Luther DC, Ray M and Rotello VM: Protein delivery into cells using inorganic nanoparticle-protein supramolecular assemblies. Chem Soc Rev. 47:3421–3432. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AK, Han MS and Mirkin CA: Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 312:1027–1030. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dykman LA and Khlebtsov NG: Immunological properties of gold nanoparticles. Chem Sci. 8:1719–1735. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen YS, Hung YC, Lin WH and Huang GS: Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology. 21:1951012010. View Article : Google Scholar : PubMed/NCBI | |
Connor EE, Mwamuka J, Gole A, Murphy CJ and Wyatt MD: Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 1:325–327. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ielo I, Rando G, Giacobello F, Sfameni S, Castellano A, Galletta M, Drommi D, Rosace G and Plutino MR: Synthesis, chemical-physical characterization, and biomedical applications of functional gold nanoparticles: A review. Molecules. 26:58232021. View Article : Google Scholar : PubMed/NCBI | |
Xiong D, Chen M and Li H: Synthesis of para-sulfonatocalix[4]arene-modified silver nanoparticles as colorimetric histidine probes. Chem Commun (Camb). 880–882. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xiao W, Xiong J, Zhang S, Xiong Y, Zhang H and Gao H: Influence of ligands property and particle size of gold nanoparticles on the protein adsorption and corresponding targeting ability. Int J Pharm. 538:105–111. 2018. View Article : Google Scholar : PubMed/NCBI | |
De Luca G, Bonaccorsi P, Trovato V, Mancuso A, Papalia T, Pistone A, Casaletto MP, Mezzi A, Brunetti B, Minuti L, et al: Tripodal tris-disulfides as capping agents for a controlled mixed functionalization of gold nanoparticles. New J Chem. 42:16436–16440. 2018. View Article : Google Scholar | |
Boyer C, Whittaker MR, Chuah K, Liu J and Davis TP: Modulation of the surface charge on polymer-stabilized gold nanoparticles by the application of an external stimulus. Langmuir. 26:2721–2730. 2010. View Article : Google Scholar : PubMed/NCBI | |
Presnova GV, Rubtsova MY, Presnov DE, Grigorenko VG, Yaminsky IV and Egorov AM: Conjugates of Streptavidin conjugates with gold nanoparticles for the visualization of DNA single interactions on the silicon surface. Biomed Khim. 60:538–542. 2014.(In Russian). View Article : Google Scholar : PubMed/NCBI | |
Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ and Brar SK: Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnol. Environ. Eng. 2:182017. | |
Thakkar KN, Mhatre SS and Parikh RY: Biological synthesis of metallic nanoparticles. Nanomedicine. 6:257–262. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shnoudeh AJ, Hamad I, Abdo RW, et al: Synthesis, Characterization, and Applications of Metal Nanoparticles. Biomaterials and Bionanotechnology. pp527–612. 2019. View Article : Google Scholar | |
Kharissova OV, Kharisov BI, Oliva González CM, Méndez YP and López I: Greener synthesis of chemical compounds and materials. R Soc Open Sci. 6:1913782019. View Article : Google Scholar : PubMed/NCBI | |
Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G and Zoroddu MA: Noble metals in medicine: Latest advances. Coord Chem Rev. 284:329–350. 2015. View Article : Google Scholar | |
Salem SS and Fouda A: Green synthesis of metallic nanoparticles and their prospective biotechnological applications: An overview. Biol Trace Elem Res. 199:344–370. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gu X, Xu Z, Gu L, Xu H, Han F, Chen B and Pan X: Preparation and antibacterial properties of gold nanoparticles: A review. Environ Chem Lett. 19:167–187. 2021. View Article : Google Scholar : PubMed/NCBI | |
Amina SJ and Guo B: A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomedicine. 15:9823–9857. 2020. View Article : Google Scholar : PubMed/NCBI | |
Omran BA, Whitehead KA and Baek KH: One-pot bioinspired synthesis of fluorescent metal chalcogenide and carbon quantum dots: Applications and potential biotoxicity. Colloids Surf B Biointerfaces. 200:1115782021. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Li Y, Zhao X, Liu G, Pang B, Liao N, Li H and Shi J: Diversity of fungus-mediated synthesis of gold nanoparticles: Properties, mechanisms, challenges, and solving methods. Crit Rev Biotechnol. 44:924–940. 2024. View Article : Google Scholar : PubMed/NCBI | |
Borse VB, Konwar AN, Jayant RD and Patil PO: Perspectives of characterization and bioconjugation of gold nanoparticles and their application in lateral flow immunosensing. Drug Deliv Transl Res. 10:878–902. 2020. View Article : Google Scholar : PubMed/NCBI | |
Murphy CJ: Materials science. Nanocubes and nanoboxes. Science. 298:2139–2141. 2002. View Article : Google Scholar : PubMed/NCBI | |
Das SK and Marsili E: A green chemical approach for the synthesis of gold nanoparticles: Characterization and mechanistic aspect. Rev Environ Sci Biotechnol. 9:199–204. 2010. View Article : Google Scholar | |
Hamelian M, Varmira K and Veisi H: Green synthesis and characterizations of gold nanoparticles using Thyme and survey cytotoxic effect, antibacterial and antioxidant potential. J Photochem Photobiol B. 184:71–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
Patil MP and Kim GD: Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 101:79–92. 2017. View Article : Google Scholar : PubMed/NCBI | |
Patil MP and Kim GD: Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf B Biointerfaces. 172:487–495. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shedbalkar U, Singh R, Wadhwani S, Gaidhani S and Chopade BA: Microbial synthesis of gold nanoparticles: Current status and future prospects. Adv Colloid Interface Sci. 209:40–48. 2014. View Article : Google Scholar : PubMed/NCBI | |
Beveridge TJ and Murray RG: Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol. 141:876–887. 1980. View Article : Google Scholar : PubMed/NCBI | |
Lee CS, Kim TW, Oh DE, Bae SO, Ryu J, Kong H, Jeon H, Seo HK, Jeon S and Kim TH: In vivo and in vitro anticancer activity of doxorubicin-loaded DNA-AuNP nanocarrier for the ovarian cancer treatment. Cancers (Basel). 12:6342020. View Article : Google Scholar : PubMed/NCBI | |
Lee CS, Kim TW, Kang Y, Ju Y, Ryu J, Kong H, Jang YS, Oh DE, Jang SJ, Cho H, et al: Targeted drug delivery nanocarriers based on hyaluronic acid-decorated dendrimer encapsulating gold nanoparticles for ovarian cancer therapy. Mater Today Chem. 26:1010832022. View Article : Google Scholar | |
Kotcherlakota R, Srinivasan DJ, Mukherjee S, Haroon MM, Dar GH, Venkatraman U, Patra CR and Gopal V: Engineered fusion protein-loaded gold nanocarriers for targeted co-delivery of doxorubicin and erbB2-siRNA in human epidermal growth factor receptor-2+ ovarian cancer. J Mater Chem B. 5:7082–7098. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kotcherlakota R, Vydiam K, Jeyalakshmi Srinivasan D, Mukherjee S, Roy A, Kuncha M, Rao TN, Sistla R, Gopal V and Patra CR: Restoration of p53 function in ovarian cancer mediated by gold nanoparticle-based EGFR targeted gene delivery system. ACS Biomater Sci Eng. 5:3631–3644. 2019. View Article : Google Scholar : PubMed/NCBI | |
Piktel E, Oscilowska I, Suprewicz Ł, Depciuch J, Marcińczyk N, Chabielska E, Wolak P, Głuszek K, Klimek J, Zieliński PM, et al: Peanut-Shaped gold nanoparticles with shells of ceragenin CSA-131 display the ability to inhibit ovarian cancer growth in vitro and in a tumor xenograft model. Cancers (Basel). 13:54242021. View Article : Google Scholar : PubMed/NCBI | |
Jabir M, Sahib UI, Taqi Z, Taha A, Sulaiman G, Albukhaty S, Al-Shammari A, Alwahibi M, Soliman D, Dewir YH and Rizwana H: Linalool-Loaded glutathione-modified gold nanoparticles conjugated with CALNN peptide as apoptosis inducer and NF-κB translocation inhibitor in SKOV-3 cell line. Int J Nanomedicine. 15:9025–9047. 2020. View Article : Google Scholar : PubMed/NCBI | |
Asl SS, Tafvizi F and Noorbazargan H: Biogenic synthesis of gold nanoparticles using Satureja rechingeri Jamzad: A potential anticancer agent against cisplatin-resistant A2780CP ovarian cancer cells. Environ Sci Pollut Res Int. 30:20168–20184. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiong X, Arvizo RR, Saha S, Robertson DJ, McMeekin S, Bhattacharya R and Mukherjee P: Sensitization of ovarian cancer cells to cisplatin by gold nanoparticles. Oncotarget. 5:6453–6465. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kip B, Tunc CU and Aydin O: Triple-combination therapy assisted with ultrasound-active gold nanoparticles and ultrasound therapy against 3D cisplatin-resistant ovarian cancer model. Ultrason Sonochem. 82:1059032022. View Article : Google Scholar : PubMed/NCBI | |
Patra CR, Bhattacharya R and Mukherjee P: Fabrication and functional characterization of goldnanoconjugates for potential application in ovarian cancer. J Mater Chem. 20:547–554. 2010. View Article : Google Scholar : PubMed/NCBI | |
Borghei YS and Hosseinkhani S: Bio-synthesis of a functionalized whey proteins theranostic nanoprobe with cancer-specific cytotoxicity and as a live/dead cell imaging probe. Journal of Photochemistry and Photobiology A: Chemistry. 431:1140252022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wang L, Xu T, Guo C, Liu C, Zhang H, Li J and Liang Z: Synthesis of 15P-conjugated PPy-modified gold nanoparticles and their application to photothermal therapy of ovarian cancer. Chem Res Chin Univ. 30:959–964. 2014. View Article : Google Scholar | |
Shen Y, Wang M, Wang H, Zhou J and Chen J: Multifunctional human serum albumin fusion protein as a docetaxel nanocarrier for chemo-photothermal synergetic therapy of ovarian cancer. ACS Appl Mater Interfaces. 14:19907–19917. 2022. View Article : Google Scholar : PubMed/NCBI | |
Van de Broek B, Devoogdt N, D'Hollander A, Gijs HL, Jans K, Lagae L, Muyldermans S, Maes G and Borghs G: Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano. 5:4319–4328. 2011. View Article : Google Scholar : PubMed/NCBI | |
Geng F, Song K, Xing JZ, Yuan C, Yan S, Yang Q, Chen J and Kong B: Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology. 22:2851012011. View Article : Google Scholar : PubMed/NCBI | |
Cui T, Liang JJ, Chen H, Geng DD, Jiao L, Yang JY, Qian H, Zhang C and Ding Y: Performance of doxorubicin-conjugated gold nanoparticles: Regulation of drug location. ACS Appl Mater Interfaces. 9:8569–8580. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wani WA, Baig U, Shreaz S, Shiekh RA, Iqbal PF, Jameel E, Ahmad A, Mohd-Setapar SH, Mushtaque M and Hun LT: Recent advances in iron complexes as potential anticancer agents. New J Chem. 40:1063–1090. 2016. View Article : Google Scholar | |
Baetke SC, Lammers T and Kiessling F: Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol. 88:201502072015. View Article : Google Scholar : PubMed/NCBI | |
Fan M, Han Y, Gao S, Yan H, Cao L, Li Z, Liang XJ and Zhang J: Ultrasmall gold nanoparticles in cancer diagnosis and therapy. Theranostics. 10:4944–4957. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Potocny AM, Rosenthal J and Day ES: Gold nanoshell-linear tetrapyrrole conjugates for near infrared-activated dual photodynamic and photothermal therapies. ACS Omega. 5:926–940. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Campbell S, Wallace GQ, Claing A, Bazuin CG and Masson JF: Branched Au nanoparticles on nanofibers for surface-enhanced raman scattering sensing of intracellular pH and extracellular pH gradients. ACS Sens. 5:2155–2167. 2020. View Article : Google Scholar : PubMed/NCBI | |
Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM and Xia Y: Gold nanocages: Synthesis, properties, and applications. Acc Chem Res. 41:1587–1595. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Wang W, Qiu J, Bai MY and Xia Y: Direct visualization and semi-quantitative analysis of payload loading in the case of gold nanocages. Angew Chem Int Ed Engl. 58:17671–17674. 2019. View Article : Google Scholar : PubMed/NCBI | |
Murthy SK: Nanoparticles in modern medicine: State of the art and future challenges. Int J Nanomedicine. 2:129–141. 2007.PubMed/NCBI | |
Ghosh P, Yang X, Arvizo R, Zhu ZJ, Agasti SS, Mo Z and Rotello VM: Intracellular delivery of a membrane-impermeable enzyme in active form using functionalized gold nanoparticles. J Am Chem Soc. 132:2642–2645. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Du Y and Wei T: Transcriptomic analysis of human breast cancer cells reveals differentially expressed genes and related cellular functions and pathways in response to gold nanorods. Biophys Rep. 1:106–114. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Zhang Y, Ding T, Liu J and Zhao H: Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol. 8:9902020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Mou L and Jiang X: Surface chemistry of gold nanoparticles for health-related applications. Chem Sci. 11:923–936. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR and Sastry M: Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir. 21:10644–10654. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ben Haddada M, Gerometta E, Chawech R, Sorres J, Bialecki A, Pesnel S, Spadavecchia J and Morel AL: Assessment of antioxidant and dermoprotective activities of gold nanoparticles as safe cosmetic ingredient. Colloids Surf B Biointerfaces. 189:1108552020. View Article : Google Scholar : PubMed/NCBI | |
Taratummarat S, Sangphech N, Vu CTB, Palaga T, Ondee T, Surawut S, Sereemaspun A, Ritprajak P and Leelahavanichkul A: Gold nanoparticles attenuates bacterial sepsis in cecal ligation and puncture mouse model through the induction of M2 macrophage polarization. BMC Microbiol. 18:852018. View Article : Google Scholar : PubMed/NCBI | |
Feng ZV, Gunsolus IL, Qiu TA, Hurley KR, Nyberg LH, Frew H, Johnson KP, Vartanian AM, Jacob LM, Lohse SE, et al: Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chem Sci. 6:5186–5196. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cho TJ, MacCuspie RI, Gigault J, Gorham JM, Elliott JT and Hackley VA: Highly stable positively charged dendron-encapsulated gold nanoparticles. Langmuir. 30:3883–3893. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ and Hussain SM: Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale. 3:410–420. 2011. View Article : Google Scholar : PubMed/NCBI | |
Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V and Mijakovic I: Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 19:19792018. View Article : Google Scholar : PubMed/NCBI | |
Ghosh C, Priegue P, Leelayuwapan H, Fuchsberger FF, Rademacher C and Seeberger PH: Synthetic Glyconanoparticles Modulate Innate Immunity but Not the Complement System. ACS Appl Bio Mater. 5:2185–2192. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nath D and Banerjee P: Green nanotechnology-a new hope for medical biology. Environ Toxicol Pharmacol. 36:997–1014. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U and Jahnen-Dechent W: Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 5:2067–2076. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yasinska IM, Calzolai L, Raap U, Hussain R, Siligardi G, Sumbayev VV and Gibbs BF: Targeting of basophil and mast cell pro-allergic reactivity using functionalised gold nanoparticles. Front Pharmacol. 10:3332019. View Article : Google Scholar : PubMed/NCBI | |
Weaver JL, Tobin GA, Ingle T, Bancos S, Stevens D, Rouse R, Howard KE, Goodwin D, Knapton A, Li X, et al: Evaluating the potential of gold, silver, and silica nanoparticles to saturate mononuclear phagocytic system tissues under repeat dosing conditions. Part Fibre Toxicol. 14:252017. View Article : Google Scholar : PubMed/NCBI | |
Golchin K, Golchin J, Ghaderi S, Alidadiani N, Eslamkhah S, Eslamkhah M, Davaran S and Akbarzadeh A: Gold nanoparticles applications: From artificial enzyme till drug delivery. Artif Cells Nanomed Biotechnol. 46:250–254. 2018. View Article : Google Scholar : PubMed/NCBI | |
Parveen S, Misra R and Sahoo SK: Nanoparticles: A boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 8:147–166. 2012. View Article : Google Scholar : PubMed/NCBI | |
Byrne JD, Betancourt T and Brannon-Peppas L: Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 60:1615–1626. 2008. View Article : Google Scholar : PubMed/NCBI | |
Attia MF, Anton N, Wallyn J, Omran Z and Vandamme TF: An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 71:1185–1198. 2019. View Article : Google Scholar : PubMed/NCBI | |
Blanco MD, Teijon C, Olmo RM and Teijo JM: Targeted Nanoparticles for Cancer Therapy. In: Recent Advances in Novel Drug Carrier Systems. InTech; 2012 | |
Melancon M, Lu W and Li C: Gold-Based magneto/optical nanostructures: Challenges for in vivo applications in cancer diagnostics and therapy. Mater Res Bull. 34:415–421. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wu J: The enhanced permeability and retention (EPR) Effect: The significance of the concept and methods to enhance its application. J Pers Med. 11:7712021. View Article : Google Scholar : PubMed/NCBI | |
Matsumura Y and Maeda H: A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46((12 Pt 1)): 6387–6392. 1986.PubMed/NCBI | |
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF and Chan WCW: Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 1:160142016. View Article : Google Scholar | |
Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M and Akbarzadeh A: Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol. 44:410–422. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Wang Y, Song Z, Feng Y, Chen Y, Zhang D and Feng L: The basic properties of gold nanoparticles and their applications in tumor diagnosis and treatment. Int J Mol Sci. 21:24802020. View Article : Google Scholar : PubMed/NCBI | |
Wang X and Guo Z: Targeting and delivery of platinum-based anticancer drugs. Chem Soc Rev. 42:202–224. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ruan S, Xiao W, Hu C, Zhang H, Rao J, Wang S, Wang X, He Q and Gao H: Ligand-Mediated and enzyme-directed precise targeting and retention for the enhanced treatment of glioblastoma. ACS Appl Mater Interfaces. 9:20348–20360. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bao QY, Geng DD, Xue JW, Zhou G, Gu SY, Ding Y and Zhang C: Glutathione-mediated drug release from Tiopronin-conjugated gold nanoparticles for acute liver injury therapy. Int J Pharm. 446:112–118. 2013. View Article : Google Scholar : PubMed/NCBI | |
Piktel E, Niemirowicz K, Wątek M, Wollny T, Deptuła P and Bucki R: Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy. J Nanobiotechnology. 14:392016. View Article : Google Scholar : PubMed/NCBI | |
Hartmann JT, Kollmannsberger C, Kanz L and Bokemeyer C: Platinum organ toxicity and possible prevention in patients with testicular cancer. Int J Cancer. 83:866–869. 1999. View Article : Google Scholar : PubMed/NCBI | |
Thompson SW, Davis LE, Kornfeld M, Hilgers RD and Standefer JC: Cisplatin neuropathy. Clinical, electrophysiologic, morphologic, and toxicologic studies. Cancer. 54:1269–1275. 1984. View Article : Google Scholar : PubMed/NCBI | |
Yoo J, Park C, Yi G, Lee D and Koo H: Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers. 11:6402019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Qiao R, Tang N, Lu Z, Wang H, Zhang Z, Xue X, Huang Z, Zhang S, Zhang G and Li Y: Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials. 127:25–35. 2017. View Article : Google Scholar : PubMed/NCBI | |
Suh MS, Shen J, Kuhn LT and Burgess DJ: Layer-by-layer nanoparticle platform for cancer active targeting. Int J Pharm. 517:58–66. 2017. View Article : Google Scholar : PubMed/NCBI | |
Slovak R, Ludwig JM, Gettinger SN, Herbst RS and Kim HS: Immuno-thermal ablations-boosting the anticancer immune response. J Immunother Cancer. 5:782017. View Article : Google Scholar : PubMed/NCBI | |
Kroemer G, Galassi C, Zitvogel L and Galluzzi L: Immunogenic cell stress and death. Nat Immunol. 23:487–500. 2022. View Article : Google Scholar : PubMed/NCBI | |
Goddard ZR, Marín MJ, Russell DA and Searcey M: Active targeting of gold nanoparticles as cancer therapeutics. Chem Soc Rev. 49:8774–8789. 2020. View Article : Google Scholar : PubMed/NCBI | |
Emami F, Banstola A, Vatanara A, Lee S, Kim JO, Jeong JH and Yook S: Doxorubicin and Anti-PD-L1 antibody conjugated gold nanoparticles for colorectal cancer photochemotherapy. Mol Pharm. 16:1184–1199. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang N, Liu Y, Fang Y, Zheng S, Wu J, Wang M, Zhong W, Shi M, Xing M and Liao W: Gold nanoparticles induce tumor vessel normalization and impair metastasis by inhibiting endothelial smad2/3 signaling. ACS Nano. 14:7940–7958. 2020. View Article : Google Scholar : PubMed/NCBI | |
Berchuck A, Kamel A, Whitaker R, Kerns B, Olt G, Kinney R, Soper JT, Dodge R, Clarke-Pearson DL, Marks P, et al: Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 50:4087–4091. 1990.PubMed/NCBI | |
Kong T, Zeng J, Wang X, Yang X, Yang J, McQuarrie S, McEwan A, Roa W, Chen J and Xing JZ: Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small. 4:1537–1543. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yu J, Bomba HN, Zhu Y and Gu Z: Mechanical force-triggered drug delivery. Chem Rev. 116:12536–12563. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wood AK and Sehgal CM: A review of low-intensity ultrasound for cancer therapy. Ultrasound Med Biol. 41:905–928. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wan Y, Chen Y, Blum NT, Lin J and Huang P: Ultrasound-Enhanced chemo-photodynamic combination therapy by using albumin ‘Nanoglue’-Based Nanotheranostics. ACS Nano. 14:5560–5569. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sadauskas E, Danscher G, Stoltenberg M, Vogel U, Larsen A and Wallin H: Protracted elimination of gold nanoparticles from mouse liver. Nanomedicine. 5:162–169. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gad SC, Sharp KL, Montgomery C, Payne JD and Goodrich GP: Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells). Int J Toxicol. 31:584–594. 2012. View Article : Google Scholar : PubMed/NCBI | |
Higbee-Dempsey EM, Amirshaghaghi A, Case MJ, Bouché M, Kim J, Cormode DP and Tsourkas A: Biodegradable Gold nanoclusters with improved excretion due to pH-Triggered hydrophobic-to-hydrophilic transition. J Am Chem Soc. 142:7783–7794. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kesharwani P, Ma R, Sang L, Fatima M, Sheikh A, Abourehab MAS, Gupta N, Chen ZS and Zhou Y: Gold nanoparticles and gold nanorods in the landscape of cancer therapy. Mol Cancer. 22:982023. View Article : Google Scholar : PubMed/NCBI | |
Mironava T, Hadjiargyrou M, Simon M, Jurukovski V and Rafailovich MH: Gold nanoparticles cellular toxicity and recovery: Effect of size, concentration and exposure time. Nanotoxicology. 4:120–137. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mikhailova EO: Gold nanoparticles: Biosynthesis and potential of biomedical application. J Funct Biomater. 12:2021. View Article : Google Scholar : PubMed/NCBI | |
Epanchintseva AV, Poletaeva JE, Pyshnyi DV, Ryabchikova EI and Pyshnaya IA: Long-term stability and scale-up of noncovalently bound gold nanoparticle-siRNA suspensions. Beilstein J Nanotechnol. 10:2568–2578. 2019. View Article : Google Scholar : PubMed/NCBI |