|
1
|
Yang Y, Zheng X, Chen L, Gong X, Yang H,
Duan X and Zhu Y: Multifunctional gold nanoparticles in cancer
diagnosis and treatment. Int J Nanomedicine. 17:2041–2067. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Schoutrop E, Moyano-Galceran L, Lheureux
S, Mattsson J, Lehti K, Dahlstrand H and Magalhaes I: Molecular,
cellular and systemic aspects of epithelial ovarian cancer and its
tumor microenvironment. Semin Cancer Biol. 86:207–223. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhang R, Siu MKY, Ngan HYS and Chan KKL:
Molecular biomarkers for the early detection of ovarian cancer. Int
J Mol Sci. 23:120412022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bhardwaj BK, Thankachan S, Magesh P,
Venkatesh T, Tsutsumi R and Suresh PS: Current update on
nanotechnology-based approaches in ovarian cancer therapy. Reprod
Sci. 30:335–349. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jelovac D and Armstrong DK: Recent
progress in the diagnosis and treatment of ovarian cancer. CA
Cancer J Clin. 61:183–203. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Piktel E, Ościłowska I, Suprewicz Ł,
Depciuch J, Marcińczyk N, Chabielska E, Wolak P, Wollny T, Janion
M, Parlinska-Wojtan M and Bucki R: ROS-Mediated apoptosis and
autophagy in ovarian cancer cells treated with peanut-shaped gold
nanoparticles. Int J Nanomedicine. 16:1993–2011. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sperling RA and Parak WJ: Surface
modification, functionalization and bioconjugation of colloidal
inorganic nanoparticles. Philos Trans A Math Phys Eng Sci.
368:1333–1383. 2010.PubMed/NCBI
|
|
8
|
Kamal A, Saba M, Ullah K, Almutairi SM,
AlMunqedhi BM and Ragab abdelGawwad M: Mycosynthesis,
characterization of zinc oxide nanoparticles, and its assessment in
various biological activities. Crystals. 13:1712023. View Article : Google Scholar
|
|
9
|
Huang CC, Yang Z, Lee KH and Chang HT:
Synthesis of highly fluorescent gold nanoparticles for sensing
mercury(II). Angew Chem Int Ed Engl. 46:6824–6828. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Huynh KH, Pham XH, Kim J, Lee SH, Chang H,
Rho WY and Jun BH: Synthesis, properties, and biological
applications of metallic alloy nanoparticles. Int J Mol Sci.
21:51742020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yaqoob AA, Ahmad H, Parveen T, Ahmad A,
Oves M, Ismail IMI, Qari HA, Umar K and Mohamad Ibrahim MN: Recent
advances in metal decorated nanomaterials and their various
biological applications: A review. Front Chem. 8:3412020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Vargas-Molinero HY, Serrano-Medina A,
Palomino-Vizcaino K, López-Maldonado EA, Villarreal-Gómez LJ,
Pérez-González GL and Cornejo-Bravo JM: Hybrid systems of
nanofibers and polymeric nanoparticles for biological application
and delivery systems. Micromachines (Basel). 14:2082023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Guo R, Song Y, Wang G and Murray RW: Does
core size matter in the kinetics of ligand exchanges of
monolayer-protected Au clusters? J Am Chem Soc. 127:2752–2757.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Daniel MC and Astruc D: Gold
nanoparticles: Assembly, supramolecular chemistry,
quantum-size-related properties, and applications toward biology,
catalysis, and nanotechnology. Chem Rev. 104:293–346. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Jiang S, Gnanasammandhan MK and Zhang Y:
Optical imaging-guided cancer therapy with fluorescent
nanoparticles. J R Soc Interface. 7:3–18. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Aziz F, Ihsan A, Nazir A, Ahmad I, Bajwa
SZ, Rehman A, Diallo A and Khan WS: Novel route synthesis of porous
and solid gold nanoparticles for investigating their comparative
performance as contrast agent in computed tomography scan and
effect on liver and kidney function. Int J Nanomedicine.
12:1555–1563. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Spivak MY, Bubnov RV, Yemets IM, Lazarenko
LM, Tymoshok NO and Ulberg ZR: Development and testing of gold
nanoparticles for drug delivery and treatment of heart failure: a
theranostic potential for PPP cardiology. EPMA J. 4:202013.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Khan JA, Pillai B, Das TK, Singh Y and
Maiti S: Molecular effects of uptake of gold nanoparticles in HeLa
cells. Chembiochem. 8:1237–1240. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Scaletti F, Hardie J, Lee YW, Luther DC,
Ray M and Rotello VM: Protein delivery into cells using inorganic
nanoparticle-protein supramolecular assemblies. Chem Soc Rev.
47:3421–3432. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Rosi NL, Giljohann DA, Thaxton CS,
Lytton-Jean AK, Han MS and Mirkin CA: Oligonucleotide-modified gold
nanoparticles for intracellular gene regulation. Science.
312:1027–1030. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Dykman LA and Khlebtsov NG: Immunological
properties of gold nanoparticles. Chem Sci. 8:1719–1735. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chen YS, Hung YC, Lin WH and Huang GS:
Assessment of gold nanoparticles as a size-dependent vaccine
carrier for enhancing the antibody response against synthetic
foot-and-mouth disease virus peptide. Nanotechnology.
21:1951012010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Connor EE, Mwamuka J, Gole A, Murphy CJ
and Wyatt MD: Gold nanoparticles are taken up by human cells but do
not cause acute cytotoxicity. Small. 1:325–327. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ielo I, Rando G, Giacobello F, Sfameni S,
Castellano A, Galletta M, Drommi D, Rosace G and Plutino MR:
Synthesis, chemical-physical characterization, and biomedical
applications of functional gold nanoparticles: A review. Molecules.
26:58232021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Xiong D, Chen M and Li H: Synthesis of
para-sulfonatocalix[4]arene-modified silver nanoparticles as
colorimetric histidine probes. Chem Commun (Camb). 880–882. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Xiao W, Xiong J, Zhang S, Xiong Y, Zhang H
and Gao H: Influence of ligands property and particle size of gold
nanoparticles on the protein adsorption and corresponding targeting
ability. Int J Pharm. 538:105–111. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
De Luca G, Bonaccorsi P, Trovato V,
Mancuso A, Papalia T, Pistone A, Casaletto MP, Mezzi A, Brunetti B,
Minuti L, et al: Tripodal tris-disulfides as capping agents for a
controlled mixed functionalization of gold nanoparticles. New J
Chem. 42:16436–16440. 2018. View Article : Google Scholar
|
|
28
|
Boyer C, Whittaker MR, Chuah K, Liu J and
Davis TP: Modulation of the surface charge on polymer-stabilized
gold nanoparticles by the application of an external stimulus.
Langmuir. 26:2721–2730. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Presnova GV, Rubtsova MY, Presnov DE,
Grigorenko VG, Yaminsky IV and Egorov AM: Conjugates of
Streptavidin conjugates with gold nanoparticles for the
visualization of DNA single interactions on the silicon surface.
Biomed Khim. 60:538–542. 2014.(In Russian). View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Das RK, Pachapur VL, Lonappan L, Naghdi M,
Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ and Brar SK:
Biological synthesis of metallic nanoparticles: Plants, animals and
microbial aspects. Nanotechnol. Environ. Eng. 2:182017.
|
|
31
|
Thakkar KN, Mhatre SS and Parikh RY:
Biological synthesis of metallic nanoparticles. Nanomedicine.
6:257–262. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shnoudeh AJ, Hamad I, Abdo RW, et al:
Synthesis, Characterization, and Applications of Metal
Nanoparticles. Biomaterials and Bionanotechnology. pp527–612. 2019.
View Article : Google Scholar
|
|
33
|
Kharissova OV, Kharisov BI, Oliva González
CM, Méndez YP and López I: Greener synthesis of chemical compounds
and materials. R Soc Open Sci. 6:1913782019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Medici S, Peana M, Nurchi VM, Lachowicz
JI, Crisponi G and Zoroddu MA: Noble metals in medicine: Latest
advances. Coord Chem Rev. 284:329–350. 2015. View Article : Google Scholar
|
|
35
|
Salem SS and Fouda A: Green synthesis of
metallic nanoparticles and their prospective biotechnological
applications: An overview. Biol Trace Elem Res. 199:344–370. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Gu X, Xu Z, Gu L, Xu H, Han F, Chen B and
Pan X: Preparation and antibacterial properties of gold
nanoparticles: A review. Environ Chem Lett. 19:167–187. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Amina SJ and Guo B: A review on the
synthesis and functionalization of gold nanoparticles as a drug
delivery vehicle. Int J Nanomedicine. 15:9823–9857. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Omran BA, Whitehead KA and Baek KH:
One-pot bioinspired synthesis of fluorescent metal chalcogenide and
carbon quantum dots: Applications and potential biotoxicity.
Colloids Surf B Biointerfaces. 200:1115782021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Xu F, Li Y, Zhao X, Liu G, Pang B, Liao N,
Li H and Shi J: Diversity of fungus-mediated synthesis of gold
nanoparticles: Properties, mechanisms, challenges, and solving
methods. Crit Rev Biotechnol. 44:924–940. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Borse VB, Konwar AN, Jayant RD and Patil
PO: Perspectives of characterization and bioconjugation of gold
nanoparticles and their application in lateral flow immunosensing.
Drug Deliv Transl Res. 10:878–902. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Murphy CJ: Materials science. Nanocubes
and nanoboxes. Science. 298:2139–2141. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Das SK and Marsili E: A green chemical
approach for the synthesis of gold nanoparticles: Characterization
and mechanistic aspect. Rev Environ Sci Biotechnol. 9:199–204.
2010. View Article : Google Scholar
|
|
43
|
Hamelian M, Varmira K and Veisi H: Green
synthesis and characterizations of gold nanoparticles using Thyme
and survey cytotoxic effect, antibacterial and antioxidant
potential. J Photochem Photobiol B. 184:71–79. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Patil MP and Kim GD: Eco-friendly approach
for nanoparticles synthesis and mechanism behind antibacterial
activity of silver and anticancer activity of gold nanoparticles.
Appl Microbiol Biotechnol. 101:79–92. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Patil MP and Kim GD: Marine microorganisms
for synthesis of metallic nanoparticles and their biomedical
applications. Colloids Surf B Biointerfaces. 172:487–495. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shedbalkar U, Singh R, Wadhwani S,
Gaidhani S and Chopade BA: Microbial synthesis of gold
nanoparticles: Current status and future prospects. Adv Colloid
Interface Sci. 209:40–48. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Beveridge TJ and Murray RG: Sites of metal
deposition in the cell wall of Bacillus subtilis. J Bacteriol.
141:876–887. 1980. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lee CS, Kim TW, Oh DE, Bae SO, Ryu J, Kong
H, Jeon H, Seo HK, Jeon S and Kim TH: In vivo and in vitro
anticancer activity of doxorubicin-loaded DNA-AuNP nanocarrier for
the ovarian cancer treatment. Cancers (Basel). 12:6342020.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lee CS, Kim TW, Kang Y, Ju Y, Ryu J, Kong
H, Jang YS, Oh DE, Jang SJ, Cho H, et al: Targeted drug delivery
nanocarriers based on hyaluronic acid-decorated dendrimer
encapsulating gold nanoparticles for ovarian cancer therapy. Mater
Today Chem. 26:1010832022. View Article : Google Scholar
|
|
50
|
Kotcherlakota R, Srinivasan DJ, Mukherjee
S, Haroon MM, Dar GH, Venkatraman U, Patra CR and Gopal V:
Engineered fusion protein-loaded gold nanocarriers for targeted
co-delivery of doxorubicin and erbB2-siRNA in human epidermal
growth factor receptor-2+ ovarian cancer. J Mater Chem B.
5:7082–7098. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kotcherlakota R, Vydiam K, Jeyalakshmi
Srinivasan D, Mukherjee S, Roy A, Kuncha M, Rao TN, Sistla R, Gopal
V and Patra CR: Restoration of p53 function in ovarian cancer
mediated by gold nanoparticle-based EGFR targeted gene delivery
system. ACS Biomater Sci Eng. 5:3631–3644. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Piktel E, Oscilowska I, Suprewicz Ł,
Depciuch J, Marcińczyk N, Chabielska E, Wolak P, Głuszek K, Klimek
J, Zieliński PM, et al: Peanut-Shaped gold nanoparticles with
shells of ceragenin CSA-131 display the ability to inhibit ovarian
cancer growth in vitro and in a tumor xenograft model. Cancers
(Basel). 13:54242021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jabir M, Sahib UI, Taqi Z, Taha A,
Sulaiman G, Albukhaty S, Al-Shammari A, Alwahibi M, Soliman D,
Dewir YH and Rizwana H: Linalool-Loaded glutathione-modified gold
nanoparticles conjugated with CALNN peptide as apoptosis inducer
and NF-κB translocation inhibitor in SKOV-3 cell line. Int J
Nanomedicine. 15:9025–9047. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Asl SS, Tafvizi F and Noorbazargan H:
Biogenic synthesis of gold nanoparticles using Satureja rechingeri
Jamzad: A potential anticancer agent against cisplatin-resistant
A2780CP ovarian cancer cells. Environ Sci Pollut Res Int.
30:20168–20184. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Xiong X, Arvizo RR, Saha S, Robertson DJ,
McMeekin S, Bhattacharya R and Mukherjee P: Sensitization of
ovarian cancer cells to cisplatin by gold nanoparticles.
Oncotarget. 5:6453–6465. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kip B, Tunc CU and Aydin O:
Triple-combination therapy assisted with ultrasound-active gold
nanoparticles and ultrasound therapy against 3D cisplatin-resistant
ovarian cancer model. Ultrason Sonochem. 82:1059032022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Patra CR, Bhattacharya R and Mukherjee P:
Fabrication and functional characterization of goldnanoconjugates
for potential application in ovarian cancer. J Mater Chem.
20:547–554. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Borghei YS and Hosseinkhani S:
Bio-synthesis of a functionalized whey proteins theranostic
nanoprobe with cancer-specific cytotoxicity and as a live/dead cell
imaging probe. Journal of Photochemistry and Photobiology A:
Chemistry. 431:1140252022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang L, Wang L, Xu T, Guo C, Liu C, Zhang
H, Li J and Liang Z: Synthesis of 15P-conjugated PPy-modified gold
nanoparticles and their application to photothermal therapy of
ovarian cancer. Chem Res Chin Univ. 30:959–964. 2014. View Article : Google Scholar
|
|
60
|
Shen Y, Wang M, Wang H, Zhou J and Chen J:
Multifunctional human serum albumin fusion protein as a docetaxel
nanocarrier for chemo-photothermal synergetic therapy of ovarian
cancer. ACS Appl Mater Interfaces. 14:19907–19917. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Van de Broek B, Devoogdt N, D'Hollander A,
Gijs HL, Jans K, Lagae L, Muyldermans S, Maes G and Borghs G:
Specific cell targeting with nanobody conjugated branched gold
nanoparticles for photothermal therapy. ACS Nano. 5:4319–4328.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Geng F, Song K, Xing JZ, Yuan C, Yan S,
Yang Q, Chen J and Kong B: Thio-glucose bound gold nanoparticles
enhance radio-cytotoxic targeting of ovarian cancer.
Nanotechnology. 22:2851012011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Cui T, Liang JJ, Chen H, Geng DD, Jiao L,
Yang JY, Qian H, Zhang C and Ding Y: Performance of
doxorubicin-conjugated gold nanoparticles: Regulation of drug
location. ACS Appl Mater Interfaces. 9:8569–8580. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wani WA, Baig U, Shreaz S, Shiekh RA,
Iqbal PF, Jameel E, Ahmad A, Mohd-Setapar SH, Mushtaque M and Hun
LT: Recent advances in iron complexes as potential anticancer
agents. New J Chem. 40:1063–1090. 2016. View Article : Google Scholar
|
|
65
|
Baetke SC, Lammers T and Kiessling F:
Applications of nanoparticles for diagnosis and therapy of cancer.
Br J Radiol. 88:201502072015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fan M, Han Y, Gao S, Yan H, Cao L, Li Z,
Liang XJ and Zhang J: Ultrasmall gold nanoparticles in cancer
diagnosis and therapy. Theranostics. 10:4944–4957. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang J, Potocny AM, Rosenthal J and Day
ES: Gold nanoshell-linear tetrapyrrole conjugates for near
infrared-activated dual photodynamic and photothermal therapies.
ACS Omega. 5:926–940. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhao X, Campbell S, Wallace GQ, Claing A,
Bazuin CG and Masson JF: Branched Au nanoparticles on nanofibers
for surface-enhanced raman scattering sensing of intracellular pH
and extracellular pH gradients. ACS Sens. 5:2155–2167. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Skrabalak SE, Chen J, Sun Y, Lu X, Au L,
Cobley CM and Xia Y: Gold nanocages: Synthesis, properties, and
applications. Acc Chem Res. 41:1587–1595. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yang M, Wang W, Qiu J, Bai MY and Xia Y:
Direct visualization and semi-quantitative analysis of payload
loading in the case of gold nanocages. Angew Chem Int Ed Engl.
58:17671–17674. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Murthy SK: Nanoparticles in modern
medicine: State of the art and future challenges. Int J
Nanomedicine. 2:129–141. 2007.PubMed/NCBI
|
|
72
|
Ghosh P, Yang X, Arvizo R, Zhu ZJ, Agasti
SS, Mo Z and Rotello VM: Intracellular delivery of a
membrane-impermeable enzyme in active form using functionalized
gold nanoparticles. J Am Chem Soc. 132:2642–2645. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhou T, Du Y and Wei T: Transcriptomic
analysis of human breast cancer cells reveals differentially
expressed genes and related cellular functions and pathways in
response to gold nanorods. Biophys Rep. 1:106–114. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hu X, Zhang Y, Ding T, Liu J and Zhao H:
Multifunctional gold nanoparticles: A novel nanomaterial for
various medical applications and biological activities. Front
Bioeng Biotechnol. 8:9902020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang J, Mou L and Jiang X: Surface
chemistry of gold nanoparticles for health-related applications.
Chem Sci. 11:923–936. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shukla R, Bansal V, Chaudhary M, Basu A,
Bhonde RR and Sastry M: Biocompatibility of gold nanoparticles and
their endocytotic fate inside the cellular compartment: A
microscopic overview. Langmuir. 21:10644–10654. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ben Haddada M, Gerometta E, Chawech R,
Sorres J, Bialecki A, Pesnel S, Spadavecchia J and Morel AL:
Assessment of antioxidant and dermoprotective activities of gold
nanoparticles as safe cosmetic ingredient. Colloids Surf B
Biointerfaces. 189:1108552020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Taratummarat S, Sangphech N, Vu CTB,
Palaga T, Ondee T, Surawut S, Sereemaspun A, Ritprajak P and
Leelahavanichkul A: Gold nanoparticles attenuates bacterial sepsis
in cecal ligation and puncture mouse model through the induction of
M2 macrophage polarization. BMC Microbiol. 18:852018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Feng ZV, Gunsolus IL, Qiu TA, Hurley KR,
Nyberg LH, Frew H, Johnson KP, Vartanian AM, Jacob LM, Lohse SE, et
al: Impacts of gold nanoparticle charge and ligand type on surface
binding and toxicity to Gram-negative and Gram-positive bacteria.
Chem Sci. 6:5186–5196. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cho TJ, MacCuspie RI, Gigault J, Gorham
JM, Elliott JT and Hackley VA: Highly stable positively charged
dendron-encapsulated gold nanoparticles. Langmuir. 30:3883–3893.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Schaeublin NM, Braydich-Stolle LK, Schrand
AM, Miller JM, Hutchison J, Schlager JJ and Hussain SM: Surface
charge of gold nanoparticles mediates mechanism of toxicity.
Nanoscale. 3:410–420. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Singh P, Pandit S, Mokkapati VRSS, Garg A,
Ravikumar V and Mijakovic I: Gold nanoparticles in diagnostics and
therapeutics for human cancer. Int J Mol Sci. 19:19792018.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ghosh C, Priegue P, Leelayuwapan H,
Fuchsberger FF, Rademacher C and Seeberger PH: Synthetic
Glyconanoparticles Modulate Innate Immunity but Not the Complement
System. ACS Appl Bio Mater. 5:2185–2192. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Nath D and Banerjee P: Green
nanotechnology-a new hope for medical biology. Environ Toxicol
Pharmacol. 36:997–1014. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Pan Y, Leifert A, Ruau D, Neuss S,
Bornemann J, Schmid G, Brandau W, Simon U and Jahnen-Dechent W:
Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative
stress and mitochondrial damage. Small. 5:2067–2076. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yasinska IM, Calzolai L, Raap U, Hussain
R, Siligardi G, Sumbayev VV and Gibbs BF: Targeting of basophil and
mast cell pro-allergic reactivity using functionalised gold
nanoparticles. Front Pharmacol. 10:3332019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Weaver JL, Tobin GA, Ingle T, Bancos S,
Stevens D, Rouse R, Howard KE, Goodwin D, Knapton A, Li X, et al:
Evaluating the potential of gold, silver, and silica nanoparticles
to saturate mononuclear phagocytic system tissues under repeat
dosing conditions. Part Fibre Toxicol. 14:252017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Golchin K, Golchin J, Ghaderi S,
Alidadiani N, Eslamkhah S, Eslamkhah M, Davaran S and Akbarzadeh A:
Gold nanoparticles applications: From artificial enzyme till drug
delivery. Artif Cells Nanomed Biotechnol. 46:250–254. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Parveen S, Misra R and Sahoo SK:
Nanoparticles: A boon to drug delivery, therapeutics, diagnostics
and imaging. Nanomedicine. 8:147–166. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Byrne JD, Betancourt T and Brannon-Peppas
L: Active targeting schemes for nanoparticle systems in cancer
therapeutics. Adv Drug Deliv Rev. 60:1615–1626. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Attia MF, Anton N, Wallyn J, Omran Z and
Vandamme TF: An overview of active and passive targeting strategies
to improve the nanocarriers efficiency to tumour sites. J Pharm
Pharmacol. 71:1185–1198. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Blanco MD, Teijon C, Olmo RM and Teijo JM:
Targeted Nanoparticles for Cancer Therapy. In: Recent Advances in
Novel Drug Carrier Systems. InTech; 2012
|
|
93
|
Melancon M, Lu W and Li C: Gold-Based
magneto/optical nanostructures: Challenges for in vivo applications
in cancer diagnostics and therapy. Mater Res Bull. 34:415–421.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wu J: The enhanced permeability and
retention (EPR) Effect: The significance of the concept and methods
to enhance its application. J Pers Med. 11:7712021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Matsumura Y and Maeda H: A new concept for
macromolecular therapeutics in cancer chemotherapy: Mechanism of
tumoritropic accumulation of proteins and the antitumor agent
smancs. Cancer Res. 46((12 Pt 1)): 6387–6392. 1986.PubMed/NCBI
|
|
96
|
Wilhelm S, Tavares AJ, Dai Q, Ohta S,
Audet J, Dvorak HF and Chan WCW: Analysis of nanoparticle delivery
to tumours. Nat Rev Mater. 1:160142016. View Article : Google Scholar
|
|
97
|
Daraee H, Eatemadi A, Abbasi E, Fekri Aval
S, Kouhi M and Akbarzadeh A: Application of gold nanoparticles in
biomedical and drug delivery. Artif Cells Nanomed Biotechnol.
44:410–422. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Bai X, Wang Y, Song Z, Feng Y, Chen Y,
Zhang D and Feng L: The basic properties of gold nanoparticles and
their applications in tumor diagnosis and treatment. Int J Mol Sci.
21:24802020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wang X and Guo Z: Targeting and delivery
of platinum-based anticancer drugs. Chem Soc Rev. 42:202–224. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ruan S, Xiao W, Hu C, Zhang H, Rao J, Wang
S, Wang X, He Q and Gao H: Ligand-Mediated and enzyme-directed
precise targeting and retention for the enhanced treatment of
glioblastoma. ACS Appl Mater Interfaces. 9:20348–20360. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Bao QY, Geng DD, Xue JW, Zhou G, Gu SY,
Ding Y and Zhang C: Glutathione-mediated drug release from
Tiopronin-conjugated gold nanoparticles for acute liver injury
therapy. Int J Pharm. 446:112–118. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Piktel E, Niemirowicz K, Wątek M, Wollny
T, Deptuła P and Bucki R: Recent insights in nanotechnology-based
drugs and formulations designed for effective anti-cancer therapy.
J Nanobiotechnology. 14:392016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Hartmann JT, Kollmannsberger C, Kanz L and
Bokemeyer C: Platinum organ toxicity and possible prevention in
patients with testicular cancer. Int J Cancer. 83:866–869. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Thompson SW, Davis LE, Kornfeld M, Hilgers
RD and Standefer JC: Cisplatin neuropathy. Clinical,
electrophysiologic, morphologic, and toxicologic studies. Cancer.
54:1269–1275. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yoo J, Park C, Yi G, Lee D and Koo H:
Active targeting strategies using biological ligands for
nanoparticle drug delivery systems. Cancers. 11:6402019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang Z, Qiao R, Tang N, Lu Z, Wang H,
Zhang Z, Xue X, Huang Z, Zhang S, Zhang G and Li Y: Active
targeting theranostic iron oxide nanoparticles for MRI and magnetic
resonance-guided focused ultrasound ablation of lung cancer.
Biomaterials. 127:25–35. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Suh MS, Shen J, Kuhn LT and Burgess DJ:
Layer-by-layer nanoparticle platform for cancer active targeting.
Int J Pharm. 517:58–66. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Slovak R, Ludwig JM, Gettinger SN, Herbst
RS and Kim HS: Immuno-thermal ablations-boosting the anticancer
immune response. J Immunother Cancer. 5:782017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Kroemer G, Galassi C, Zitvogel L and
Galluzzi L: Immunogenic cell stress and death. Nat Immunol.
23:487–500. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Goddard ZR, Marín MJ, Russell DA and
Searcey M: Active targeting of gold nanoparticles as cancer
therapeutics. Chem Soc Rev. 49:8774–8789. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Emami F, Banstola A, Vatanara A, Lee S,
Kim JO, Jeong JH and Yook S: Doxorubicin and Anti-PD-L1 antibody
conjugated gold nanoparticles for colorectal cancer
photochemotherapy. Mol Pharm. 16:1184–1199. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Huang N, Liu Y, Fang Y, Zheng S, Wu J,
Wang M, Zhong W, Shi M, Xing M and Liao W: Gold nanoparticles
induce tumor vessel normalization and impair metastasis by
inhibiting endothelial smad2/3 signaling. ACS Nano. 14:7940–7958.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Berchuck A, Kamel A, Whitaker R, Kerns B,
Olt G, Kinney R, Soper JT, Dodge R, Clarke-Pearson DL, Marks P, et
al: Overexpression of HER-2/neu is associated with poor survival in
advanced epithelial ovarian cancer. Cancer Res. 50:4087–4091.
1990.PubMed/NCBI
|
|
114
|
Kong T, Zeng J, Wang X, Yang X, Yang J,
McQuarrie S, McEwan A, Roa W, Chen J and Xing JZ: Enhancement of
radiation cytotoxicity in breast-cancer cells by localized
attachment of gold nanoparticles. Small. 4:1537–1543. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhang Y, Yu J, Bomba HN, Zhu Y and Gu Z:
Mechanical force-triggered drug delivery. Chem Rev.
116:12536–12563. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wood AK and Sehgal CM: A review of
low-intensity ultrasound for cancer therapy. Ultrasound Med Biol.
41:905–928. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhang Y, Wan Y, Chen Y, Blum NT, Lin J and
Huang P: Ultrasound-Enhanced chemo-photodynamic combination therapy
by using albumin ‘Nanoglue’-Based Nanotheranostics. ACS Nano.
14:5560–5569. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Sadauskas E, Danscher G, Stoltenberg M,
Vogel U, Larsen A and Wallin H: Protracted elimination of gold
nanoparticles from mouse liver. Nanomedicine. 5:162–169. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Gad SC, Sharp KL, Montgomery C, Payne JD
and Goodrich GP: Evaluation of the toxicity of intravenous delivery
of auroshell particles (gold-silica nanoshells). Int J Toxicol.
31:584–594. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Higbee-Dempsey EM, Amirshaghaghi A, Case
MJ, Bouché M, Kim J, Cormode DP and Tsourkas A: Biodegradable Gold
nanoclusters with improved excretion due to pH-Triggered
hydrophobic-to-hydrophilic transition. J Am Chem Soc.
142:7783–7794. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kesharwani P, Ma R, Sang L, Fatima M,
Sheikh A, Abourehab MAS, Gupta N, Chen ZS and Zhou Y: Gold
nanoparticles and gold nanorods in the landscape of cancer therapy.
Mol Cancer. 22:982023. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Mironava T, Hadjiargyrou M, Simon M,
Jurukovski V and Rafailovich MH: Gold nanoparticles cellular
toxicity and recovery: Effect of size, concentration and exposure
time. Nanotoxicology. 4:120–137. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Mikhailova EO: Gold nanoparticles:
Biosynthesis and potential of biomedical application. J Funct
Biomater. 12:2021. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Epanchintseva AV, Poletaeva JE, Pyshnyi
DV, Ryabchikova EI and Pyshnaya IA: Long-term stability and
scale-up of noncovalently bound gold nanoparticle-siRNA
suspensions. Beilstein J Nanotechnol. 10:2568–2578. 2019.
View Article : Google Scholar : PubMed/NCBI
|